Αρχιτεκτονική Νευρωνικών Δικτύων
|
|
- Παρθενορή Ίσις Αναγνώστου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Αρχιτεκτονική Νευρωνικών Δικτύων Επίπεδο Νευρώνων Κυριακίδης Ιωάννης 2013
2 Βασική Αρχιτεκτονική Η βασική αρχιτεκτονική αποτελείται από τριών τύπων επίπεδα: Input Layer (Επίπεδο εισόδου) Hidden Layer (Κρυφό επίπεδο) Output Layer (Επίπεδο Εξόδου)
3 Παραδείγματα εισόδου Η είσοδος σε ένα νευρωνικό δίκτυο εξαρτάτε τον στόχο που θέλουμε να επιτύχουμε. Έτσι μπορούμε να έχουμε ως είσοδο: Τιμές για τα pixel (εικονοστοιχεία) μιας εικόνας. Δείγματα από ένα σήμα ήχου. Συνεχόμενες τιμές μετοχών.
4 Σενάριο χρήσης (σόναρ) Έστω ότι έχουμε ένα νευρωνικό δίκτυο το οποίο αναγνωρίζει αντικείμενα από το σήμα ενός σονάρ. Στην διάθεση μας έχουμε 1000 δείγματα (πρότυπα εκπαίδευσης) από το σήμα. Πως θα αναγνωρίσουμε (με ΤΝΔ) αν τα δεδομένα μας αναπαριστούν ένα υποβρύχιο, μια φάλαινα, ένα υποβρύχιο βουνό ή τίποτα από όλα αυτά;
5 Σενάριο χρήσης (σόναρ) Θα τροφοδοτήσουμε στο επίπεδο εισόδου τα 1000 διαθέσιμα δείγματα, με αποτέλεσμα να βγαίνουν κάποιες τιμές από το επίπεδο εξόδου. Επιλέγοντας τα κατάλληλα βάρη μπορούμε να ρυθμίσουμε την έξοδο ώστε να μας δίνει διάφορες πληροφορίες. Για παράδειγμα, Είναι υποβρύχιο (ναι / όχι), είναι φάλαινα (ναι / όχι), είναι υποβρύχιο νησί (ναι / όχι). Είναι από μέταλλο ή όχι, είναι εχθρός ή σύμμαχος κτλ Βλέπουμε ότι δεν αλλάζουν οι αλγόριθμοι, οι κανόνες, οι διαδικασίες αλλά μόνο οι σχέση μεταξύ της εισόδου και την εξόδου επιλέγοντας τα κατάλληλα βάρη.
6 Βασική Αρχιτεκτονική Κάθε επίπεδο αποτελείται από ένα ή περισσότερους Η βασική αρχιτεκτονική αποτελείται από τριών τύπων επίπεδα: νευρώνες. Στο σχήμα απεικονίζονται ως κύκλοι. Input Layer (Επίπεδο εισόδου) Hidden Layer (Κρυφό επίπεδο) Output Layer (Επίπεδο Εξόδου)
7 Βασική Αρχιτεκτονική Η βασική αρχιτεκτονική αποτελείται από τριών τύπων επίπεδα: Input Layer (Επίπεδο εισόδου) Hidden Layer (Κρυφό επίπεδο) Output Layer (Επίπεδο Εξόδου) Οι γραμμές μεταξύ τους δηλώνουν την πορεία της πληροφορίας από τον έναν νευρώνα στον άλλο.
8 Ενεργοί και Παθητικοί νευρώνες Οι νευρώνες στο επίπεδο εισόδου είναι παθητικοί, το οποίο σημαίνει ότι δεν τροποποιούν τα δεδομένα. Λαμβάνουν μια τιμή στην είσοδο τους και την αναμεταδίδουν σε όλες τις εξόδους τους. Αν χρειάζεται μπορούμε να τροποποιήσουμε τα δεδομένα μας πριν τα εισάγουμε στο νευρωνικό δίκτυο (Pre-Processing). Οι νευρώνες στα κρυφά επίπεδα και στο επίπεδο εξόδου είναι ενεργοί. Το οποίο σημαίνει ότι τροποποιούν τα δεδομένα εισόδου (όπως μελετήσαμε στο προηγούμενο μάθημα)
9 Επίπεδα ενεργών νευρώνων Στην γενική περίπτωση όλες οι χαρακτηριστικές τιμές της εισόδου συνδέονται πλήρως με τους νευρώνες του επιπέδου (fully interconnected). Για κάθε νευρώνα του επιπέδου οι χαρακτηριστικές τιμές εισέρχονται σταθμισμένες με τον συντελεστή του βάρους (w). Ως συνολική έξοδο από το επίπεδο του νευρώνα έχουμε το διάνυσμα a το οποίο έχει S χαρακτηριστικές τιμές, όσοι δηλαδή είναι και οι νευρώνες του επιπέδου.
10 Παρατηρούμε ότι Δεν είναι απαραίτητο ο αριθμός των νευρώνων του επιπέδου να ταυτίζεται με τον αριθμό των χαρακτηριστικών τιμών του διανύσματος εισόδου. Δεν είναι απαραίτητο όλοι οι νευρώνες να υλοποιούν την ίδια συνάρτηση μεταφοράς f. Προγραμματιστικά αν για παράδειγμα οι νευρώνες ενός επιπέδου υλοποιούν δύο συναρτήσεις μεταφοράς (f 1 και f 2 ) δημιουργούμε παράλληλα δίκτυα.
11 Παρατηρούμε ότι Για το λόγο του ότι υπάρχει πλήρη σύνδεση μεταξύ του διανύσματος εισόδου και των νευρώνων του επιπέδου, τα βάρη θα τα συμβολίζουμε με τον όρο w ij Όπου: i ο αριθμός του νευρώνα που καταλήγει η σύνδεση j ο αριθμός της χαρακτηριστικής τιμής του διανύσματος από όπου ξεκινά η σύνδεση.
12 Παρατηρούμε ότι Όλες οι συνδέσεις μεταξύ του διανύσματος εισόδου και του επιπέδου των νευρώνων συμβολίζονται με τον πίνακα των βαρών ο οποίος είναι:
13 Παρατηρούμε ότι Η κάθε γραμμή του πίνακα αυτού περιέχει τα βάρη των συνδέσεων που καταλήγουν σε ένα συγκεκριμένο νευρώνα Η κάθε στήλη του περιέχει τα βάρη των συνδέσεων που ξεκινούν από μια συγκεκριμένη χαρακτηριστική τιμή της εισόδου.
14 Μαθηματική Υλοποίηση Το άθροισμα n i κάθε νευρώνα υπολογίζεται από τον τύπο: n i p1w i1 p2wi 2 p R W ir b i Η τιμή n i εισέρχεται στη συνάρτηση μεταφοράς f και η τελική έξοδος του νευρώνα είναι: a i f ( n i ) Η συνολική έξοδος του επιπέδου θα είναι το διάνυσμα α.
15 Πιθανή υλοποίηση στο Matlab (1 η )
16 Πιθανή υλοποίηση στο Matlab (2 η )
17 Απορίες - Ερωτήσεις ;
18 Ασκήσεις για το σπίτι Οι ασκήσεις είναι ατομικές!!! 1. Συμπιέστε όλα τα αρχεία m-file σε ένα αρχείο με όνομα: lab02_ομx_yyyy (όπου X ο αριθμός ομάδας εργαστηρίου και YYYY το ΑΜ σας) 2. Υποβάλετε το αρχείο στην αντίστοιχη άσκηση στο eclass
19 Άσκηση Τροποποιήστε τον κώδικα της δεύτερης υλοποίησης προκειμένου να μας δίνει αποτελέσματα όταν ως είσοδο έχουμε τον πίνακα meas από το σετ fisheriris του Matlab. Ως αποτελέσματα εννοούμε τον πίνακα α, όπου θα υπάρχουν οι έξοδοι για κάθε πρότυπο εκπαίδευσης p (150 συνολικά) και για κάθε νευρώνα (4 συνολικά). Η εντολή για την εισαγωγή του σετ δεδομένων στο Matlab είναι load fisheriris. Πληροφορίες για αυτό το σετ δεδομένων μπορείτε να βρείτε στο Παράρτημα των σημειώσεων του εργαστηριακού μαθήματος.
Εισαγωγή στους Νευρώνες. Κυριακίδης Ιωάννης 2013
Εισαγωγή στους Νευρώνες Κυριακίδης Ιωάννης 2013 Τι είναι τα Τεχνητά Νευρωνικά Δίκτυα; Είναι μια προσπάθεια μαθηματικής προσομοίωσης της λειτουργίας του ανθρώπινου εγκεφάλου. Είναι ένα υπολογιστικό μοντέλο
Προσομοίωση Νευρωνικού Δικτύου στο MATLAB. Κυριακίδης Ιωάννης 2013
Προσομοίωση Νευρωνικού Δικτύου στο MATLAB Κυριακίδης Ιωάννης 2013 Εισαγωγή Ένα νευρωνικό δίκτυο αποτελεί μια πολύπλοκη δομή, όπου τα βασικά σημεία που περιλαμβάνει είναι τα εξής: Πίνακες με τα βάρη των
Ανταγωνιστική Εκμάθηση Δίκτυα Kohonen. Κυριακίδης Ιωάννης 2013
Ανταγωνιστική Εκμάθηση Δίκτυα Kohonen Κυριακίδης Ιωάννης 2013 Εισαγωγή Στα προβλήματα που έχουμε αντιμετωπίσει μέχρι τώρα, υπήρχε μια διαδικασία εκπαίδευσης του δικτύου, κατά την οποία είχαμε διανύσματα
Δίκτυα Perceptron. Κυριακίδης Ιωάννης 2013
Δίκτυα Perceptron Κυριακίδης Ιωάννης 2013 Αρχιτεκτονική του δικτύου Το δίκτυο Perceptron είναι το πρώτο νευρωνικό δίκτυο το οποίο θα κατασκευάσουμε και στη συνέχεια θα εκπαιδεύσουμε προκειμένου να το χρησιμοποιήσουμε
Α.Σ.Ε.Ι ΚΡΗΣΗ ΣΜΗΜΑ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ & ΠΟΛΤΜΕΩΝ ΕΡΓΑΣΗΡΙΟ ΝΕΤΡΩΝΙΚΩΝ ΔΙΚΣΤΩΝ 2
Α.Σ.Ε.Ι ΚΡΗΣΗ ΣΜΗΜΑ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ & ΠΟΛΤΜΕΩΝ ΕΡΓΑΣΗΡΙΟ ΝΕΤΡΩΝΙΚΩΝ ΔΙΚΣΤΩΝ 2 Α. ΕΠΙΠΕΔΟ ΝΕΤΡΩΝΩΝ - ΑΡΧΙΣΕΚΣΟΝΙΚΗ Ωσ επίπεδο νευρώνων ορίζουμε την δομή εκείνη η οποία μπορεί να περιέχει θεωρητικά
Backpropagation Multilayer Feedforward Δίκτυα. Κυριακίδης Ιωάννης 2013
Backpropagation Multilayer Feedforward Δίκτυα Κυριακίδης Ιωάννης 2013 Εισαγωγή Τα νευρωνικά δίκτυα Perceptron που εξετάσαμε μέχρι τώρα είχαν το μειονέκτημα ότι δεν μπορούσαν να αντιμετωπίσουν προβλήματα
Μετασχηματισμός Z. Κυριακίδης Ιωάννης 2011
Μετασχηματισμός Z Κυριακίδης Ιωάννης 20 Τελευταία ενημέρωση: /2/20 Εισαγωγή Ο μετασχηματισμός- είναι ένα πολύ ισχυρό μαθηματικό εργαλείο για τη μελέτη διακριτών σημάτων και συστημάτων. Μπορεί να χρησιμοποιηθεί:
Α.Τ.Ε.Ι ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΕΡΓΑΣΤΗΡΙΟ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ. Σχήμα 1 Η λειτουργία του νευρώνα
Α.Τ.Ε.Ι ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΕΡΓΑΣΤΗΡΙΟ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ 1 Ο Νευρώνας Τα τεχνικά νευρωνικά δίκτυα αποτελούν μια προσπάθεια μαθηματικής προσομοίωσης της λειτουργίας του ανθρώπινου
Συστήματα Διακριτού Χρόνου (Discrete-Time Systems) Κυριακίδης Ιωάννης 2011
Συστήματα Διακριτού Χρόνου (Discrete-Time Systems) Κυριακίδης Ιωάννης 2011 Τελευταία ενημέρωση: 11/11/2011 Πράξεις διακριτών σημάτων (υπενθύμιση) Πρόσθεση x(n) + y(n) Αφαίρεση x(n) y(n) Πολλαπλασιασμός
Α.Τ.ΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΟΛΥΜΕΣΩΝ. ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΗΤΩΝ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ
Α.Τ.ΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΟΛΥΜΕΣΩΝ. ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΗΤΩΝ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ ΑΝΤΑΓΩΝΙΣΤΙΚΗ ΕΚΜΑΘΗΣΗ ΤΑ ΔΙΚΤΥΑ KOHONEN A. ΕΙΣΑΓΩΓΗ Στα προβλήματα που έχουμε αντιμετωπίσει μέχρι τώρα
Σχεδιασμός Φίλτρων. Κυριακίδης Ιωάννης 2011
Σχεδιασμός Φίλτρων Κυριακίδης Ιωάννης 2011 Εισαγωγή Τα φίλτρα IIR (Infinite Impulse Response) είναι φίλτρα των οποίων η κρουστική απόκριση δεν είναι πεπερασμένη. Συνήθως χρησιμοποιούνται οι παρακάτω τρείς
Α. ΤΕΙ ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής και Πολυµέσων Εργαστήριο Νευρωνικών Δικτύων
Α. ΤΕΙ ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής και Πολυµέσων Εργαστήριο Νευρωνικών Δικτύων 5 BACKPROPAGATION MULTILAYER FEEDFORWARD ΔΙΚΤΥΑ Α. ΕΙΣΑΓΩΓΗ Τα νευρωνικά δίκτυα που εξετάσαµε µέχρι τώρα είχαν
Υπολογιστική Νοημοσύνη. Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks
Υπολογιστική Νοημοσύνη Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks Γενικά Ένα νευρωνικό δίκτυο λέγεται αναδρομικό, εάν υπάρχει έστω και μια σύνδεση από έναν νευρώνα επιπέδου i προς έναν νευρώνα επιπέδου
Ψηφιακά Φίλτρα. Κυριακίδης Ιωάννης 2011
Ψηφιακά Φίλτρα Κυριακίδης Ιωάννης 2011 Συνέλιξη Convolution) Με το άθροισμα της συνέλιξης μπορούμε να βρούμε την απόκριση ενός συστήματος διακριτού χρόνου για είσοδο xn), αν γνωρίζουμε την κρουστική του
Εισαγωγή στα Σήματα. Κυριακίδης Ιωάννης 2011
Εισαγωγή στα Σήματα Κυριακίδης Ιωάννης 2011 Τελευταία ενημέρωση: 11/11/2011 Τι είναι ένα σήμα; Ως σήμα ορίζουμε το σύνολο των τιμών που λαμβάνει μια ποσότητα (εξαρτημένη μεταβλητή) όταν αυτή μεταβάλλεται
Υπολογιστική Νοημοσύνη. Μάθημα 12: Παραδείγματα Ασκήσεων 2
Υπολογιστική Νοημοσύνη Μάθημα 12: Παραδείγματα Ασκήσεων 2 Δίκτυα Πολλών Επιπέδων Με μη γραμμικούς νευρώνες Έστω ένα πρόβλημα κατηγοριοποίησης, με δύο βαθμούς ελευθερίας (x, y) και δύο κατηγορίες (A, B).
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 7) Δεκέμβριος 2014
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7) Δρ Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 7) Δεκέμβριος 2014 1
Ασκήσεις μελέτης της 19 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 19 ης διάλεξης 19.1. Δείξτε ότι το Perceptron με (α) συνάρτηση ενεργοποίησης
7 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 7 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΤΗΡΙΟ 1 Διδάσκουσα καθηγήτρια: Ε.Κατσίρη 1 Υπεύθυνος εργαστηρίου: Α.Γαζής 2 Για την εγγραφή στο μάθημα, στην πλατφόρμα του Eclass -1/2- ΒΗΜΑ 1 Σύνδεση στο eclass BHMA 2 Eπιλογή:
Τυπικές χρήσεις της Matlab
Matlab Μάθημα 1 Τι είναι η Matlab Ολοκληρωμένο Περιβάλλον Περιβάλλον ανάπτυξης Διερμηνευμένη γλώσσα Υψηλή επίδοση Ευρύτητα εφαρμογών Ευκολία διατύπωσης Cross platform (Wintel, Unix, Mac) Τυπικές χρήσεις
Εργαστήρια Αριθμητικής Ανάλυσης Ι. 4 ο Εργαστήριο. Διανύσματα-Πίνακες 1 ο Μέρος
Εργαστήρια Αριθμητικής Ανάλυσης Ι 4 ο Εργαστήριο Διανύσματα-Πίνακες 1 ο Μέρος 2017 Εισαγωγή Όπως έχουμε προαναφέρει σε προηγούμενα εργαστήρια. Ο βασικός τύπος δεδομένων στο Matlab είναι οι πίνακες. Ένα
Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο
Ασκήσεις Φροντιστηρίου 4 o Φροντιστήριο Πρόβλημα 1 ο Ο πίνακας συσχέτισης R x του διανύσματος εισόδου x( στον LMS αλγόριθμο 1 0.5 R x = ορίζεται ως: 0.5 1. Ορίστε το διάστημα των τιμών της παραμέτρου μάθησης
Φυλλάδιο 1 - Σημεία Προσοχής στις Παραγράφους 1.1, 1.2 και 1.3
Φυλλάδιο 1 - Σημεία Προσοχής στις Παραγράφους 1.1, 1.2 και 1.3 1. Σπάμε ένα Διάνυσμα Έστω ότι έχουμε ένα διάνυσμα. Τότε αυτό μπορούμε να το σπάσουμε σε δύο (ή περισσότερα), παρεμβάλλοντας ανάμεσα στα γράμματα
Α.Τ.Ε.Ι ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΕΡΓΑΣΤΗΡΙΟ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ 4
Α.Τ.Ε.Ι ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΕΡΓΑΣΤΗΡΙΟ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ 4 ΤΟ ΔΙΚΤΥΟ PERCEPTRON I. Αρχιτεκτονική του δικτύου Το δίκτυο Perceptron είναι το πρώτο νευρωνικό δίκτυο το οποίο
Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο
Πρόβλημα ο Ασκήσεις Φροντιστηρίου 5 o Φροντιστήριο Δίνεται το παρακάτω σύνολο εκπαίδευσης: # Είσοδος Κατηγορία 0 0 0 Α 2 0 0 Α 0 Β 4 0 0 Α 5 0 Β 6 0 0 Α 7 0 Β 8 Β α) Στον παρακάτω κύβο τοποθετείστε τα
Σημειώσεις του εργαστηριακού μαθήματος Πληροφορική ΙΙ. Εισαγωγή στην γλώσσα προγραμματισμού
Σημειώσεις του εργαστηριακού μαθήματος Πληροφορική ΙΙ Εισαγωγή στην γλώσσα προγραμματισμού Ακαδημαϊκό έτος 2016-2017, Εαρινό εξάμηνο Οι σημειώσεις βασίζονται στα συγγράμματα: A byte of Python (ελληνική
µέχρι και την Τρίτη 24.3.2015 και ώρα 22:30 1η Ασκηση ΑΜΕΣΟΙ ΜΕΘΟ ΟΙ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ : ΑΡΙΘΜΗΤΙΚΗ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΗΜΕΡ/ΝΙΑ 9.3.205 Καταληκτική Ηµερ/νία υποβολής µέχρι
Διακριτός Μετασχηματισμός Fourier
Διακριτός Μετασχηματισμός Fourier 1 Διακριτός Μετασχηματισμός Fourier Ο μετασχηματισμός Fourier αποτελεί τον ακρογωνιαίο λίθο της επεξεργασίας σήματος αλλά και συχνή αιτία πονοκεφάλου για όσους πρωτοασχολούνται
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 14: Τεχνικές Βελτίωσης Απόδοσης Κώδικα σε Matlab, Ανάπτυξη Κώδικα σε Matlab για την Τεχνική Κλιμάκωσης της Ισορρόπησης Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν
ΚΕΦΑΛΑΙΟ 5. Matlab GUI για FWSVM και Global SVM
ΚΕΦΑΛΑΙΟ 5 Matlab GUI για FWSVM και Global SVM Προκειμένου να γίνουν οι πειραματικές προσομοιώσεις του κεφαλαίου 4, αναπτύξαμε ένα γραφικό περιβάλλον (Graphical User Interface) που εξασφαλίζει την εύκολη
Μοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP)
Μοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP) x -0,5 a x x 2 0 0 0 0 - -0,5 y y 0 0 x 2 -,5 a 2 θ η τιμή κατωφλίου Μία λύση του προβλήματος XOR Multi Layer Perceptron (MLP) x -0,5 Μία
d dx ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ
ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ α) Η παράγωγος μιας συνάρτησης = f() σε ένα σημείο 0 εκφράζει το ρυθμό μεταβολής της συνάρτησης (ή τον παράγωγο αριθμό) στο σημείο 0. β) Γραφικά, η παράγωγος της συνάρτησης στο σημείο
Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.
i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical
διανύσματα - Πίνακες - Struct Στατικό διάνυσμα Είσοδος Έξοδος δεδομένων Συναρτήσεις Χειρισμός σφαλμάτων ΤΕΤΑΡΤΗ ΔΙΑΛΕΞΗ
ΤΕΤΑΡΤΗ ΔΙΑΛΕΞΗ Σύνολο στοιχείων ίδιου τύπου (1/2) Ένα σύνολο στοιχείων ίδιου τύπου διακρίνεται σε δύο κατηγορίες με βάση τη διάσταση: Μονοδιάστατο Αν μπορούμε να θεωρούμε ότι τα στοιχεία είναι συνεχόμενα
Εργαστήρια Αριθμητικής Ανάλυσης Ι. 9 ο Εργαστήριο. Απαλοιφή Gauss με μερική οδήγηση - Παρεμβολη
Εργαστήρια Αριθμητικής Ανάλυσης Ι 9 ο Εργαστήριο Απαλοιφή Gauss με μερική οδήγηση - Παρεμβολη 2018 Απαλοιφή Gauss Με Μερική Οδήγηση Για την εύρεση του οδηγού στοιχείου στο k ο βήμα, αναζητούμε το μέγιστο
ΑΝΤΑΓΩΝΙΣΤΙΚΗ ΜΑΘΗΣΗ ΔΙΚΤΥA LVQ και SOM. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
ΑΝΤΑΓΩΝΙΣΤΙΚΗ ΜΑΘΗΣΗ ΔΙΚΤΥA LVQ και SOM Μάθηση χωρίς επίβλεψη (unsupervised learning) Σύνολο εκπαίδευσης D={(x n )}, n=1,,n. x n =(x n1,, x nd ) T, δεν υπάρχουν τιμές-στόχοι t n. Προβλήματα μάθησης χωρίς
Εργαστήρια Αριθμητικής Ανάλυσης Ι. 7 ο Εργαστήριο. Διανύσματα-Πίνακες 2 ο Μέρος
Εργαστήρια Αριθμητικής Ανάλυσης Ι 7 ο Εργαστήριο Διανύσματα-Πίνακες 2 ο Μέρος 2017 Εντολή size Σε προηγούμενο εργαστήριο είχαμε κάνει αναφορά στην συνάρτηση length, και την χρησιμότητα της όταν δουλεύουμε
Analog vs Digital. Δούρβας Ιωάννης ΙΩΑΝΝΗΣ ΔΟΥΡΒΑΣ
Analog vs Digital Δούρβας Ιωάννης Ηλεκτρονικός Υπολογιστής ψηφιακή μηχανή Ο υπολογιστής αποτελείται από ένα σύνολο (εκατομμύρια) ηλεκτρικά κυκλώματα. Για τα ηλεκτρικά κυκλώματα υπάρχουν μόνο 2 καταστάσεις.
Εισαγωγή στην Αριθμητική Ανάλυση
Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στη MATLAB ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΑΚΡΙΒΗΣ ΒΟΗΘΟΙ: ΔΗΜΗΤΡΙΑΔΗΣ ΣΩΚΡΑΤΗΣ, ΣΚΟΡΔΑ ΕΛΕΝΗ E-MAIL: SDIMITRIADIS@CS.UOI.GR, ESKORDA@CS.UOI.GR Τι είναι Matlab Είναι ένα περιβάλλον
1 η Εργαστηριακή Άσκηση MATLAB Εισαγωγή
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΗΠΕΙΡΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. Εργαστήριο Επεξεργασία Εικόνας & Βίντεο 1 η Εργαστηριακή Άσκηση MATLAB Εισαγωγή Νικόλαος Γιαννακέας Άρτα 2018 1 Εισαγωγή Το Matlab
Μάθημα: Ακουστική και Ψυχοακουστική
Τμήμα Τεχνών Ήχου και Εικόνας Ιόνιο Πανεπιστήμιο Μάθημα: Ακουστική και Ψυχοακουστική Εργαστηριακή Άσκηση 3 «Ποσοτική εκτίμηση σφάλματος απωλεστικής συμπίεσης ηχητικών δεδομένων» Διδάσκων: Φλώρος Ανδρέας
Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων)
Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων) Στην πράξη, για πολύ σημαντικές εφαρμογές, γίνονται μετρήσεις τιμών μιας ποσότητας σε μια κλινική, για μια σφυγμομέτρηση,
ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΤΗΛΕΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ
Συστήματα Ψηφιακής Επεξεργασίας Σήματος σε Πραγματικό Χρόνο 2009 10 ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΤΗΛΕΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Συστήματα Ψηφιακής Επεξεργασία Σήματος σε Πραγματικό
Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης
Πιθανότητες & Τυχαία Σήματα Διγαλάκης Βασίλης Τυχαία Σήματα Γενίκευση τυχαίων διανυσμάτων Άπειρο σύνολο πιθανά αριθμήσιμο από τυχαίες μεταβλητές Παραδείγματα τυχαίων σημάτων: Τηλεπικοινωνίες: Σήμα πληροφορίας
ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.
ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα
ΠΛΗΡΟΦΟΡΙΚΗ Ι Εργαστήριο 1 MATLAB ΠΛΗΡΟΦΟΡΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ 1. Θέμα εργαστηρίου: Εισαγωγή στο MATLAB και στο Octave
ΠΛΗΡΟΦΟΡΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ 1 Θέμα εργαστηρίου: Εισαγωγή στο MATLAB και στο Octave Περιεχόμενο εργαστηρίου: - Το περιβάλλον ανάπτυξης προγραμμάτων Octave - Διαδικασία ανάπτυξης προγραμμάτων MATLAB - Απλά
Προγραμματισμός Η/Υ 1 (Εργαστήριο)
Προγραμματισμός Η/Υ 1 (Εργαστήριο) Ενότητα 2: Δομή ενός προγράμματος C Καθηγήτρια Εφαρμογών: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
K24 Ψηφιακά Ηλεκτρονικά 6: Πολυπλέκτες/Αποπολυπλέκτες
K24 Ψηφιακά Ηλεκτρονικά 6: Πολυπλέκτες/Αποπολυπλέκτες TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 1 2 3 4 Λειτουργία Πολυπλέκτης (Mul plexer) Ο
Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού Μάθημα 5ο Aντώνης Σπυρόπουλος Πράξεις μεταξύ των
Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων
Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων Εργαστήριο 5 Γραµµικότητα (Linearity), Αναλογικότητα (Proportionality), και Επαλληλία (Superposition)
5. (Λειτουργικά) Δομικά Διαγράμματα
5. (Λειτουργικά) Δομικά Διαγράμματα Γενικά, ένα λειτουργικό δομικό διάγραμμα έχει συγκεκριμένη δομή που περιλαμβάνει: Τις δομικές μονάδες (λειτουργικά τμήματα ή βαθμίδες) που συμβολίζουν συγκεκριμένες
ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ
Ψηφιακή Επεξεργασία Εικόνας-ΚΕΦ. -- ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΝΤΑΣΕΩΣ Η επεξεργασία εικόνας µέσω του ιστογράµµατος ουσιαστικά αποτελεί µία βασική επεξεργασία εικόνας που ανήκει
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΊΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΊΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΜΕΤΡΗΣΕΙΣ ΣΤΗ ΒΙΟΪΑΤΡΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6: ΠΑΡΑΛΛΗΛΗ
Συστήματα Παράλληλης και Κατανεμημένης Επεξεργασίας
Συστήματα Παράλληλης και Κατανεμημένης Επεξεργασίας Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:06 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων
ΔΙΔΑΣΚΟΝΤΕΣ Ε. Σπανάκης, Δ. Θεοδωρίδης, Δ. Στεφανάκης, Γ.Φανουργάκης & ΜΤΠΧ
ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΕΤΥ203 3 Ώρες εργαστηρίου την ημέρα Προαπαιτούμενo: Φυσική Ι (ΕΤΥ101) Βαθμός Μαθήματος: 0.1*(Μ.Ο. Βαθμών προφορικής εξέτασης) + 0.5*(Μ.Ο. Βαθμών Αναφορών) + 0.4*(Βαθμός Τελικής εξέτασης
Πληροφοριακά Συστήματα Διοίκησης
Πληροφοριακά Συστήματα Διοίκησης Τρεις αλγόριθμοι μηχανικής μάθησης ΠΜΣ Λογιστική Χρηματοοικονομική και Διοικητική Επιστήμη ΤΕΙ Ηπείρου @ 2018 Μηχανική μάθηση αναγνώριση προτύπων Η αναγνώριση προτύπων
Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)
Σχέσεις μεταξύ του πρωτεύοντος και του δυϊκού του. Για να χρησιμοποιήσουμε τη θεωρία δυϊκότητας αλλάζουμε την μορφή του πίνακα της μεθόδου simplex, προσθέτοντας μια σειρά και μια στήλη. Η σειρά προστίθεται
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 12 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ
ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΟΚΙΝΗΤΗΡΩΝ ΚΑΙ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΔΙΔΑΚΤΙΚΗ ΠΕΡΙΟΧΗ: ΕΡΓΑΣΤΗΡΙΟ ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ Υπεύθυνος: Επικ. Καθηγητής Δρ. Α. ΦΑΤΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 20: Ανάπτυξη Κώδικα σε Matlab για τη δημιουργία τυχαίων βέλτιστων Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Σχέδια μαθημάτων για την δημιουργία συναρτήσεων υπολογισμού του ΜΚΔ και του ΕΚΠ στην MSWLogo
Σχέδια μαθημάτων για την δημιουργία συναρτήσεων υπολογισμού του Μέγιστου Κοινού Διαιρέτη (ΜΚΔ) και του Ελάχιστου Κοινού Πολλαπλασίου (ΕΚΠ) δύο αριθμών, με την γλώσσα προγραμματισμού Logo Κογχυλάκης Σ.
Ανάλυση Ηλεκτρικών Κυκλωμάτων με Αντιστάσεις
Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-2: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Ανάλυση Ηλεκτρικών Κυκλωμάτων με Αντιστάσεις H ανάλυση ενός κυκλώματος με αντιστάσεις στη
Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων
Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Εργαστήριο 5 Γραμμικότητα (Linearity), Αναλογικότητα (Proportionality), και Επαλληλία (Superposition)
ΠΕΚ ΤΡΙΠΟΛΗΣ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠ/ΚΩΝ ΠΕ19,20 ΗΜ/ΝΙΑ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ
ΠΕΚ ΤΡΙΠΟΛΗΣ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠ/ΚΩΝ ΠΕ19,20 ΗΜ/ΝΙΑ 4-11-07 ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ Γ Γενικού Λυκείου (τεχνολογική κατεύθυνση) ΚΕΦ. 2 ο -7 ο : ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Διανυσματικοί Χώροι και Υπόχωροι: Βάσεις και Διάσταση Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής
2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ
.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Έστω διανύσματα που ανήκουν στο χώρο δ i = ( a i, ai,, ai) i =,,, και έστω γραμμικός συνδυασμός των i : xδ + x δ + + x δ = b που ισούται με το διάνυσμα b,
12/3/2012. Εργαστήριο Αλγόριθμοι Γραμμικής Βελτιστοποίησης. Lab03 1. Διανυσματοποίηση Βρόχων. Αρχικοποίηση μητρών (preallocating)
Τμήμα Εφαρμοσμένης Πληροφορικής ΑΛΓΟΡΙΘΜΟΙ ΓΡΑΜΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ 8 Ο ΕΞΑΜΗΝΟ ΣΑΜΑΡΑΣ ΝΙΚΟΛΑΟΣ, ΕΠ. ΚΑΘΗΓΗΤΗΣ Βελτίωση Απόδοσης ιανυσματοποίηση βρόχων Αρχικοποίηση μητρών (preallocating) Χρήση κατάλληλων
Ανασκόπηση-Μάθημα 12 Συναρτήσεις πολλών μεταβλητών-καμπύλες-πολικές συντεταγμένες
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Ανασκόπηση-Μάθημα 12 Συναρτήσεις πολλών μεταβλητών-καμπύλες-πολικές συντεταγμένες Στο δωδέκατο μάθημα (24/10/2018)
Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 9 Ανάλυση Fourier: Από τη Θεωρία στην Πρακτική Εφαρμογή των Μαθηματικών
Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 9 Ανάλυση Fourier: Από τη Θεωρία στην Πρακτική Εφαρμογή των Μαθηματικών Τύπων. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Σκοπός Βασική δομή ενός προγράμματος
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Ενότητα 7: Πολυώνυμα Διδάσκουσα: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Υπολογιστική Νοημοσύνη. Μάθημα 6: Μάθηση με Οπισθοδιάδοση Σφάλματος Backpropagation Learning
Υπολογιστική Νοημοσύνη Μάθημα 6: Μάθηση με Οπισθοδιάδοση Σφάλματος Backpropagation Learning Κεντρική ιδέα Τα παραδείγματα μάθησης παρουσιάζονται στο μηεκπαιδευμένο δίκτυο και υπολογίζονται οι έξοδοι. Για
Η-Υ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Εργαστήριο 1 Εισαγωγή στη C. Σοφία Μπαλτζή s.mpaltzi@di.uoa.gr
Η-Υ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Εργαστήριο 1 Εισαγωγή στη C Σοφία Μπαλτζή s.mpaltzi@di.uoa.gr Διαδικαστικά Ιστοσελίδα μαθήματος: http://eclass.uoa.gr/courses/f30/ Υποχρεωτική παρακολούθηση: Παρασκευή 14:00 16:00 στην
ΘΕΜΑ : «Από την ΜicroWorlds Pro στην Python. Μια Βιωματική Διδακτική Πρόταση.»
Η προτεινόμενη διδακτική πρόταση υλοποιήθηκε στα πλαίσια του μαθήματος της Πληροφορικής στη Γ Γυμνασίου. ΘΕΜΑ : «Από την ΜicroWorlds Pro στην Python. Μια Βιωματική Διδακτική Πρόταση.» Μαζέρας Αχιλλέας
ΔΙΚΤΥO RBF. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
ΔΙΚΤΥO RBF Αρχιτεκτονική δικτύου RBF Δίκτυα RBF: δίκτυα συναρτήσεων πυρήνα (radial basis function networks). Πρόσθιας τροφοδότησης (feedforward) για προβλήματα μάθησης με επίβλεψη. Εναλλακτικό του MLP.
Οδηγός λύσης θέματος 1
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Οδηγός λύσης θέματος 1 Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Αρχείο δεδομένων (DataSet1.txt)
5 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 5 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΣΥΝΕΛΙΞΗ ΜΕΡΟΣ Α Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ
Αναγνώριση Προτύπων Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ Χριστόδουλος Χαμζάς Τα περιεχόμενο της παρουσίασης βασίζεται στο βιβλίο: Introduction to Pattern Recognition A Matlab Approach, S. Theodoridis,
an:3 are:6 a:10
Άσκηση 1 Προγραμματισμός Συστήματος Προθεσμία: 18 Μαΐου 2014 Σ αυτή την άσκηση θα υλοποιήσετε ένα σύστημα auto-complete κατά τη διάρκεια πληκτρολόγησης. Ο πυρήνας του συστήματος είναι μια δομή trie (απλό
Θεωρία Αποφάσεων ο. 4 Φροντιστήριο. Λύσεις των Ασκήσεων
Θεωρία Αποφάσεων ο Φροντιστήριο Λύσεις των Ασκήσεων Άσκηση Έστω ένα πρόβλημα ταξινόμησης μιας διάστασης με δύο κατηγορίες, όπου για κάθε κατηγορία έχουν συλλεχθεί τα παρακάτω δεδομένα: D = {, 2,,,,7 }
Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron Βιολογικός Νευρώνας Δενδρίτες, που αποτελούν τις γραμμές εισόδου των ερεθισμάτων (βιολογικών σημάτων) Σώμα, στο οποίο γίνεται η συσσώρευση των ερεθισμάτων και
Νέο υλικό. www.cs.uoi.gr/~develeg. Matlab2.pdf - Παρουσίαση μαθήματος 2. Matlab-reference.pdf Σημειώσεις matlab στα ελληνικά (13 σελίδες).
Matlab Μάθημα Νέο υλικό www.cs.uoi.gr/~develeg Matlab.pdf - Παρουσίαση μαθήματος. Matlab-reference.pdf Σημειώσεις matlab στα ελληνικά (3 σελίδες). Επαναληπτικές δομές Όταν εκτελείται μια πράξη σε ένα διάνυσμα,
Σχηματίζοντας Γραφικές Παραστάσεις για Ημίτονο και Συνημίτονο και Ελέγχοντας Περιορισμούς σε Συστάδες Καρτών Τόμπολας
ΕΡΓΑΣΙΑ 2 Σχηματίζοντας Γραφικές Παραστάσεις για Ημίτονο και Συνημίτονο και Ελέγχοντας Περιορισμούς σε Συστάδες Καρτών Τόμπολας Εισαγωγή Ημερομηνία Ανάρτησης: 16/02/2017 Ημερομηνία Παράδοσης: 06/03/2017,
Κεφάλαιο Τρία: Ψηφιακά Ηλεκτρονικά
Κεφάλαιο Τρία: 3.1 Τι είναι αναλογικό και τι ψηφιακό µέγεθος Αναλογικό ονοµάζεται το µέγεθος που µπορεί να πάρει οποιαδήποτε τιµή σε µια συγκεκριµένη περιοχή τιµών π.χ. η ταχύτητα ενός αυτοκινήτου. Ψηφιακό
ΠΕΚ ΠΕΙΡΑΙΑ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠ/ΚΩΝ ΠΕ19,20 ΗΜ/ΝΙΑ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ
ΠΕΚ ΠΕΙΡΑΙΑ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠ/ΚΩΝ ΠΕ19,20 ΗΜ/ΝΙΑ 4-11-07 ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ ΚΕΦ. 2 ο -7 ο : Γ Γενικού Λυκείου (τεχνολογική κατεύθυνση) ΒΑΣΙΚΕΣ
Κατανεμημένα Συστήματα
Κατανεμημένα Συστήματα Σημειώσεις εργαστηρίου Lab#7 - Διεργασίες, Nήματα, Πολυνημάτωση στη Python Νεβράντζας Βάιος-Γερμανός Λάρισα, Φεβρουάριος 2013 Lab#7 - Διεργασιές, Νη ματα, Πολυνημα τωση στη Python,
Βασικές έννοιες προγραμματισμού
Κεφάλαιο 7 Βασικές έννοιες προγραμματισμού 7.1 Γενικός διδακτικός σκοπός Ο γενικός σκοπός του κεφαλαίου είναι να καταστούν ικανοί οι μαθητές να συντάσσουν και να εκτελούν σε δομημένη γλώσσα προγραμματισμού
ΜΑΣ 473: Μέθοδοι Πεπερασμένων Στοιχείων Χειμερινό Εξάμηνο 2017
ΜΑΣ 473: Μέθοδοι Πεπερασμένων Στοιχείων Χειμερινό Εξάμηνο 207 ΟΜΑΔΙΚΗ ΕΡΓΑΣΙΑ Γενικές πληροφορίες: Η εργασία θα πρέπει να έχει γίνει από εσάς αντιγραφή από οποιαδήποτε πηγή θα έχει σαν αποτέλεσμα τον μηδενισμό
PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ"
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ" ΜΕΡΟΣ ΤΡΙΤΟ Υπεύθυνος Καθηγητής Λυκοθανάσης Σπυρίδων Ακαδημαικό Έτος: 2011-2012
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΒΕΣ 04: ΣΥΜΠΙΕΣΗ ΚΑΙ ΜΕΤΑ ΟΣΗ ΠΟΛΥΜΕΣΩΝ Ακαδηµαϊκό Έτος 2007 2008, Χειµερινό Εξάµηνο 13 Νοεµβρίου 2007 Φροντιστηριακή Άσκηση 3: (I) Συµπίεση
Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι
Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος. Δείξτε ότι ο V R εφοδιασμένος με τις ακόλουθες πράξεις (, a b) + (, d) ( a+, b+ d) και k ( ab, ) ( kakb,
Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E0: Μαθηµατική διατύπωση µοντέλου επίλυσης απλού δικτύου διανοµής
Υπολογιστική Νοημοσύνη. Μάθημα 10: Ομαδοποίηση με Ανταγωνιστική Μάθηση - Δίκτυα Kohonen
Υπολογιστική Νοημοσύνη Μάθημα 10: Ομαδοποίηση με Ανταγωνιστική Μάθηση - Δίκτυα Kohonen Ανταγωνιστικοί Νευρώνες Ένα στρώμα με ανταγωνιστικούς νευρώνες λειτουργεί ως εξής: Όλοι οι νευρώνες δέχονται το σήμα
Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 3ο Φροντιστήριο
Ασκήσεις Φροντιστηρίου 3ο Φροντιστήριο Πρόβλημα 1 ο Το perceptron ενός επιπέδου είναι ένας γραμμικός ταξινομητής προτύπων. Δικαιολογήστε αυτή την πρόταση. x 1 x 2 Έξοδος y x p θ Κατώφλι Perceptron (στοιχειώδης
ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012
ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η (3 μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάση το συντελεστή συσχέτισης. (γράψτε ποιο
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ 1. ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΕΦ.
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ Καράκιζα Τσαμπίκα 1. ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΕΦ. 2ο-8ο:ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ Εισαγωγή στην εντολή «για» (2.4.5, 8.2.3) 2. ΤΑΞΗ: Γ Γενικού Λυκείου (τεχνολογική
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ και Τεχνικές Προγραμματισμού
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ και Τεχνικές Προγραμματισμού http://eclass.di.uoa.gr/d419/ Τμήμα Αρτίων ΑΜ Αίθουσα A2 Τετάρτη 11-13 και Πέμπτη 11-13 Γιάννης Κοτρώνης domes@di.uoa.gr Περίγραμμα Διαδικαστικά (Εργασίες,
Τμήμα Πληροφορικής & Τηλεπικοινωνιών Μεταπτυχιακό Πρόγραμμα Σπουδών Ακαδημαϊκό Έτος 2013-14. ΠΜΣ ΚΑΤΕΥΘΥΝΣΗ 6 η
Τμήμα Πληροφορικής & Τηλεπικοινωνιών Μεταπτυχιακό Πρόγραμμα Σπουδών Ακαδημαϊκό Έτος 2013-14 ΠΜΣ ΚΑΤΕΥΘΥΝΣΗ 6 η Νέες Τεχνολογίες Πληροφορικής και Τηλεπικοινωνιών Εργασία στο Μαθήμα Σχεδίαση Εκπαιδευτικού
Τι θα απαντούσατε αλήθεια στην ίδια ερώτηση για την περίπτωση της επόμενης εικόνας;
Κίνηση με συντεταγμένες Στην προηγούμενη υποενότητα είδαμε πως μπορούμε να κάνουμε το χαρακτήρα σας να κινηθεί με την εντολή κινήσου...βήματα που αποτελεί και την απλούστερη εντολή της αντίστοιχης παλέτας
Ανδρέας Παπαζώης. Τμ. Διοίκησης Επιχειρήσεων
Ανδρέας Παπαζώης Τμ. Διοίκησης Επιχειρήσεων Περιεχόμενα Εργ. Μαθήματος Βιολογικά Νευρωνικά Δίκτυα Η έννοια των Τεχνητών Νευρωνικών Δικτύων Η δομή ενός νευρώνα Διαδικασία εκπαίδευσης Παραδείγματα απλών