Οδική ασφάλεια. Ενότητα 1: Εισαγωγή Διάλεξη 1.2: Εισαγωγή στη μεθοδολογία εκτίμησης συχνότητας συγκρούσεων
|
|
- Βλάσιος Χατζηιωάννου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Οδική ασφάλεια Ενότητα 1: Εισαγωγή Διάλεξη 1.2: Εισαγωγή στη μεθοδολογία εκτίμησης συχνότητας συγκρούσεων Ευτυχία Ναθαναήλ Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών
2 Στόχος Αναδρομή Ανασκόπηση του εγχειριδίου Μεθοδολογία πρόβλεψης για την οδική ασφάλεια 2
3 Περιεχόμενα Τι σημαίνει ασφάλεια Πλαίσια ανάλυσης ασφάλειας Προσέγγιση ανάλυσης ασφάλειας Η σπουδαιότητα της ανάλυσης της ασφάλειας στο σχεδιασμό οδικής υποδομής Αναπτύσσοντας το εγχειρίδιο οδικής ασφάλειας 3
4 Υποκειμενική και αντικειμενική ασφάλεια Υποκειμενική: Πως αισθάνεται ο χρήστης Υποκειμενική: Πόσο ασφαλής πιστεύουμε ότι είναι ο σχεδιασμός, σύμφωνα με τις προδιαγραφές Αντικειμενικός δείκτης: Αναμενόμενος αριθμός ατυχημάτων ανά τύπο και σοβαρότητα 4
5 Υποκειμενική και αντικειμενική ασφάλεια (συνέχεια) Εικόνα 1.2.1: Υποκειμενική και αντικειμενική ασφάλεια 5
6 Αντικειμενικός δείκτης ασφάλειας Τα ατυχήματα είναι τυχαία γεγονότα Υπάρχει τυχαιότητα του μέσου για δεδομένο χρόνο και κατάσταση Η τυχαιότητα διαμορφώνει «παλινδρόμηση περί το μέσο» Η πιο σταθερή τιμή είναι η «αναμενόμενη τιμή» βάσει ιστορικών στοιχείων και πρόβλεψης 6
7 Συχνότητα Τυχαία μεταβλητότητα ετήσιων μετρήσεων Συχνότητα ατυχημάτων σε κόμβο Μέση τιμή Έτος Εικόνα 1.2.2: Τυχαία μεταβλητότητα ετήσιων μετρήσεων 7
8 Συχνότητα Παλινδρόμηση περί το μέσο Συχνότητα ατυχημάτων σε κόμβο Εφαρμογή επέμβασης Μέση τιμή Έτος Εικόνα 1.2.3: Παλινδρόμηση περί το μέσο 8
9 Η προσέγγιση BAYES στην αναμενόμενη τιμή της ασφάλειας Χρησιμοποίηση 2 πηγών για την αναμενόμενη τιμή Αναφορές ατυχημάτων στη θέση Αναμενόμενη συχνότητα ατυχημάτων σε αντίστοιχες θέσεις χρησιμοποιώντας εξίσωση απόδοσης ασφάλειας (safety performance function) Αναμενόμενη τιμή = σταθμισμένη μέση τιμή των δύο πηγών 9
10 Η προσέγγιση BAYES στην αναμενόμενη τιμή της ασφάλειας (συνέχεια) Αναμενόμενος αριθμός ατυχημάτων σε μία θέση A E W A (1 W ) ES A C Όπου: W = βάρος (0 W 1) A ES = αναμενόμενα ατυχήματα σε παρόμοιες θέσεις Α C = μετρημένα ατυχήματα στη θέση 10
11 Εξίσωση απόδοσης ασφάλειας Εξίσωση εκτίμησης μέσου αριθμού ατυχημάτων ανά χλμ ανά έτος Εξίσωση χαρακτηριστικών της υποδομής (μέση ημερήσια κυκλοφορία (MHK), πλάτος λωρίδας, ) Παράδειγμα: όπου: Α ES = X MHK ΜΗΚ = Μέση Ημερήσια Κυκλοφορία 11
12 Γενικευμένο πλαίσιο ανάλυσης οδικής ασφάλειας Τοπικό Συστηματικό Όχημα Χρήστης Οδός Περιεχόμενο Πριν Ατύχημα Μετά Εικόνα 1.2.4: Γενικευμένο πλαίσιο ανάλυσης οδικής ασφάλειας 12
13 Αστοχίες συστήματος Σοβαρότητα γεγονότων Εικόνα 1.2.5: Αστοχίες συστήματος 13
14 Το ατύχημα είναι σειρά γεγονότων Σε περισσότερες από μία θέσεις Για κάποια χρονική διάρκεια 14
15 Ανάλυση ασφάλειας Σχεδιασμός υποδομής Βελτιώσεις σε υφιστάμενη υποδομή Νέες υποδομές Στρατηγικές που αφορούν το χρήστη ή το όχημα (εξίσου σημαντικές) 15
16 Μη ποσοτικές μέθοδοι Βαθμός συμβατότητας με πολιτική Σύγκριση με προδιαγραφές Συμβατότητα σχεδιασμού Φόρτος οδηγού Σωστή καθοδήγηση Άλλοι ανθρώπινοι παράγοντες Πιθανά με τη μορφή ελέγχου οδικής ασφάλειας 16
17 Ποσοτικές μέθοδοι Συντελεστές μείωσης συγκρούσεων (crash reduction factors CRF) Στατιστικά μοντέλα (safety performance functions SPF) Προσομοίωση Προσομοιωτές οδήγησης 17
18 Συντελεστές μείωσης συγκρούσεων Πίνακας 1.2.1: Παραδείγματα συντελεστών μείωσης συγκρούσεων Κόμβοι χαμηλών ταχυτήτων Επέμβαση % μείωσης Φωτισμός Βελτίωση μήκους ορατότητας Ευθυγράμμιση και σήμανση
19 Μαθηματικά μοντέλα Εξίσωση απόδοσης ασφάλειας Επαρχιακή οδός 2 λωρίδων Διασταύρωση 4 κλάδων STOP στη δευτερεύουσα οδό Γραμμική παλινδρόμηση Άλλες μέθοδοι (νευρωνικά δίκτυα, γενετικοί αλγόριθμοι κλπ) 19
20 Ο ρόλος της ασφάλειας στο σχεδιασμό Σημερινή κατάσταση Σημερινή κατάσταση Εικόνα 1.2.6: Ο ρόλος της ασφάλειας στο σχεδιασμό 22
21 Ο ρόλος της ασφάλειας στο σχεδιασμό Συμβολή του Εγχειριδίου Η συμβολή του εγχειριδίου Εικόνα 1.2.7: Ο ρόλος της ασφάλειας στο σχεδιασμό και η συμβολή του Εγχειριδίου 23
22 Περιεχόμενα Μέρος Ι Εισαγωγή και βασικές αρχές Μέρος ΙΙ Γνώση Μέρος ΙΙΙ Μέθοδοι πρόβλεψης Μέρος ΙV Διαχείριση ασφάλειας οδικού δικτύου Μέρος V Αξιολόγηση ασφάλειας 24
23 Μέρος ΙΙΙ-Μέθοδοι πρόβλεψης Επαρχιακές οδοί 2 λωρίδων κυκλοφορίας Αστικές και περιαστικές οδοί Επαρχιακές οδοί περισσότερων λωρίδων Εφαρμογή σε τμήματα υφιστάμενα και υπό σχεδιασμό 25
24 Μέθοδος πρόβλεψης Εφαρμογή βασικού μοντέλου Επιλογή τμήματος ή κόμβου Εφαρμογή βασικού μοντέλου Εφαρμογή συντελεστών μεταβολής ατυχημάτων (AMF) Εφαρμογή συντελεστή προσαρμογής Συχνότητα και κατανομή κατά τύπο και σοβαρότητα Εικόνα 1.2.8: Μέθοδος πρόβλεψης Εφαρμογή βασικού μοντέλου 26
25 Βασικό μοντέλο Συσχέτιση μεταβλητής με γεωμετρικά και λειτουργικά χαρακτηριστικά Εφαρμογή γραμμικής παλινδρόμησης Χρήση βάσεων δεδομένων Η βασική κατάσταση περιγράφεται από την παλινδρόμηση Το αποτέλεσμα αποτελεί το βασικό μοντέλο 27
26 Βασικές συνθήκες Πίνακας 1.2.2: Παραδείγματα συντελεστών μείωσης συγκρούσεων Μεταβλητή Πλάτος λωρίδας (LW) Βάση 12 ft Πλάτος ερείσματος (SW) 6 ft Δείκτης πλευρικού κινδύνου (RHR) 3 Πυκνότητα διασταυρώσεων (DD) 5/mi Οριζόντια καμπυλότητα (DEGi) Όχι Κατακόρυφη καμπυλότητα (Κj) Όχι Κλίση (GRi) επίπεδο 29
27 Βασικό μοντέλο για επαρχιακή οδό 2 λωρίδων - SPF Εικόνα : SPF βασικού μοντέλου για επαρχιακή οδό 2 λωρίδων 31
28 Παράδειγμα SPF Εικόνα : Παράδειγμα SPF 32
29 Παράδειγμα SPF-σηματοδοτούμενος κόμβος Εικόνα : Παράδειγμα SPF για σηματοδοτούμενο κόμβο 33
30 Περιορισμοί της παλινδρόμησης Γενικές εκτιμήσεις, αλλά όχι για τις αλληλεπιδράσεις μεταξύ των μεταβλητών Οι συντελεστές δίνουν ομοιόμορφη αυξητική επίδραση των γεωμετρικών και λειτουργικών χαρακτηριστικών Συντελεστές μεταβολής των ατυχημάτων (AMF) είναι απαραίτητοι 34
31 Μέθοδος πρόβλεψης Επιλογή τμήματος ή κόμβου Εφαρμογή βασικού μοντέλου Εφαρμογή συντελεστών μεταβολής ατυχημάτων (AMF) Εφαρμογή συντελεστή προσαρμογής Συχνότητα και κατανομή κατά τύπο και σοβαρότητα Εικόνα : Μέθοδος πρόβλεψης 35
32 Μέθοδος πρόβλεψης (συνέχεια) Επιλογή τμήματος ή κόμβου Εφαρμογή βασικού μοντέλου Εφαρμογή συντελεστών μεταβολής ατυχημάτων (AMF) Εφαρμογή συντελεστή προσαρμογής Συχνότητα και κατανομή κατά τύπο και σοβαρότητα Εικόνα : Μέθοδος πρόβλεψης (συνέχεια) 36
33 Εφαρμογή των AMF Nrs = Nbr Cr (AMF1r, AMF2r,.. AMFnr) Όπου: Nrs = εκτίμηση αριθμού ατυχημάτων ανά έτος Nbr = εκτίμηση ατυχημάτων για τις βασικές συνθήκες Cr = συντελεστής προσαρμογής για εφαρμογή σε συγκεκριμένη γεωγραφική περιοχή AMF1r,.. AMFnr = συντελεστές μεταβολής ατυχημάτων για κάθε γεωμετρικό και λειτουργικό χαρακτηριστικό 37
34 Παράδειγμα AMF τμήμα 2 λωρίδων Εικόνα : Παράδειγμα AMF για οδικό τμήμα 2 λωρίδων 38
35 AMF για επικλίσεις AMF = 1.00 για SD (SD-0.01); για 0.01<SD< (SD-0.02); για SD 0.02 Βασική συνθήκη: SD = 0 Αφορούν όλα τα οδικά τμήματα που βρίσκονται σε οριζόντιες καμπύλες 39
36 AMF παράδειγμα 1 Εφαρμογή SPF σε επαρχιακή οδό 2 λωρίδων 10 συγκρούσεις/έτος Βασική συνθήκη: απουσία ραντάρ ταχύτητας AMF για ραντάρ ταχύτητας =
37 AMF παράδειγμα 1-απάντηση Εφαρμογή SPF σε επαρχιακή οδό 2 λωρίδων 10 συγκρούσεις με τραυματισμούς /έτος Βασική συνθήκη: απουσία ραντάρ ταχύτητας AMF για ραντάρ ταχύτητας = 0.83 Αναμενόμενες συγκρούσεις = 10 x 0.83 = 8.3 συγκρούσεις/έτος 41
38 AMF παράδειγμα 2 Εφαρμογή εμπειρικής μεθόδου Bayes σε σηματοδοτούμενο κόμβο 20 συγκρούσεις/έτος Μετατροπή κόμβου σε κυκλικό κόμβο Δεν υπάρχει SPF για κυκλικό κόμβο AMF για μετατροπή κόμβου σε κυκλικό κόμβο =
39 AMF παράδειγμα 2-απάντηση Εφαρμογή εμπειρικής μεθόδου Bayes σε σηματοδοτούμενο κόμβο 20 συγκρούσεις/έτος Μετατροπή κόμβου σε κυκλικό κόμβο Δεν υπάρχει SPF για κυκλικό κόμβο AMF για μετατροπή κόμβου σε κυκλικό κόμβο = 0.52 Αναμενόμενες συγκρούσεις = 20 x 0.52 = 10.4 συγκρούσεις/έτος 43
40 Υπολογισμός μείωσης συγκρούσεων % μείωση = 100 x (1.00 ΑMF) Εάν AMF = 0.90: 100 x ( ) = 10%: μείωση συγκρούσεων κατά 10% Εάν AMF = 1.20: 100 x ( ) = -20%: αύξηση συγκρούσεων κατά 20% 44
41 Εφαρμογή AMF Εξίσωση SPF (για βασικές συνθήκες) x AMF Υπάρχουσες συνθήκες Εναλλακτικές συνθήκες Νέες συνθήκες Αναμενόμενος ρυθμός συγκρούσεων x AMF (συνθηκών επέμβασης) Εφαρμογή επέμβασης Παρατηρημένος αριθμός συγκρούσεων x AMF (συνθηκών επέμβασης) Εφαρμογή επέμβασης 45
42 Εφαρμογή πολλαπλών AMF - παράδειγμα Επέμβαση x = προσθήκη λωρίδας αριστερής στροφής στις δύο κύριες προσβάσεις διασταύρωσης με 4 σκέλη (AMF = 0.81) Επέμβαση y = δεξιά στροφή σε κόκκινη ένδειξη (AMF = 1.07) Ανεξάρτητες επιπτώσεις των δύο επεμβάσεων Αναμενόμενος ετήσιος αριθμός συγκρούσεων
43 Εφαρμογή πολλαπλών AMF λύση Επέμβαση x = προσθήκη λωρίδας αριστερής στροφής στις δύο κύριες προσβάσεις διασταύρωσης με 4 σκέλη (AMF = 0.81) Επέμβαση y = δεξιά στροφή σε κόκκινη ένδειξη (AMF = 1.07) Ανεξάρτητες επιπτώσεις των δύο επεμβάσεων Αναμενόμενος ετήσιος αριθμός συγκρούσεων 7.9 Αναμενόμενες συγκρούσεις = 7.9 x 0.81 x 1.07 = 6.8 συγκρούσεις/έτος 47
44 Εφαρμογή πολλαπλών AMF παράδειγμα 2 Αύξηση κλίσης κατά 1% AMF = 1.04 Ποια είναι η επίπτωση αυξημένης κλίσης από 2% σε 4% σε οδικό τμήμα? 48
45 Εφαρμογή πολλαπλών AMF λύση Αύξηση κλίσης κατά 1% AMF = 1.04 Ποια είναι η επίπτωση αυξημένης κλίσης από 2% σε 4% σε οδικό τμήμα? 1.04 (4-2) = 1.08 άρα 8% αύξηση στις συγκρούσεις 49
46 Διάστημα εμπιστοσύνης AMF παράδειγμα Κυκλικοί κόμβοι: AMF (μέση τιμή, τυπικό σφάλμα) = (0.22, 0.07) 100 x (1-0.22) = 78% Για επίπεδο εμπιστοσύνης 65-70%: 78±1 x 100 x 0.07 = μεταξύ 71% και 85% Για επίπεδο εμπιστοσύνης 99.9%: 78±3 x 100 x 0.07 = μεταξύ 57% και 99% 50
47 Εφαρμογή πολλαπλών AMF λύση Αύξηση κλίσης κατά 1% AMF = 1.04 Ποια είναι η επίπτωση αυξημένης κλίσης από 2% σε 4% σε οδικό τμήμα? 1.04 (4-2) = 1.08 άρα 8% αύξηση στις συγκρούσεις 51
48 Μέθοδος πρόβλεψης επόμενο βήμα Επιλογή τμήματος ή κόμβου Εφαρμογή βασικού μοντέλου Εφαρμογή συντελεστών μεταβολής ατυχημάτων (AMF) Εφαρμογή συντελεστή προσαρμογής Συχνότητα και κατανομή κατά τύπο και σοβαρότητα Εικόνα : Μέθοδος πρόβλεψης Συχνότητα και κατανομή κατά τύπο και σοβαρότητα 52
49 Κατανομή κατά τύπο και σοβαρότητα Χρήση αρχικών ή τοπικών κατανομών Εφαρμογή αυτών στην προβλεπόμενη συχνότητα 53
50 Παράδειγμα κατανομής κατά σοβαρότητα Εικόνα : Παράδειγμα κατανομής κατά σοβαρότητα 54
51 Εφαρμογή των αποτελεσμάτων Άθροισμα εκτιμήσεων για κάθε τμήμα και κόμβο Αν είναι διαθέσιμα ιστορικά στοιχεία υπολογίζεται σταθμισμένος μέσος όρος Το αποτέλεσμα χρησιμοποιείται για την αξιολόγηση του σχεδιασμού και τη διαδικασία λήψης αποφάσεων 55
52 Τέλος 2 ης Διάλεξης της Ενότητας 1 56
53 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στο πλαίσιο του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Θεσσαλίας» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 57
54 Σημειώματα 58
55 Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση
56 Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Θεσσαλίας, Ευτυχία Ναθαναήλ «Οδική ασφάλεια. Ενότητα 1, Διάλεξη 1.2». Έκδοση: 1.0. Βόλος Διαθέσιμο από τη δικτυακή διεύθυνση: 60
57 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [1] Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. 61
58 Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: Το Σημείωμα Αναφοράς Το Σημείωμα Αδειοδότησης Τη Δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους. 62
59 Σημείωμα Χρήσης Έργων Τρίτων (1/2) Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Εικόνες Εικόνα 1.2.1: Hauer, E. (1997). Observational Before-After Studies in Road Safety, Pergamon/Elsevier Science, Inc., Tarrytown, NY. Εικόνα : Highway Safety Manual, First Edition, with 2014 Supplement. American Association of State Highway and Transportation Officials, Washington DC, USA. 63
60 Σημείωμα Χρήσης Έργων Τρίτων (2/2) Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Πίνακες Πίνακες : Highway Safety Manual, First Edition, with 2014 Supplement. American Association of State Highway and Transportation Officials, Washington DC, USA. 64
Οδική ασφάλεια. Ενότητα 7: Εκτίμηση επιπτώσεων επεμβάσεων στον αριθμό των συγκρούσεων: Διασταυρώσεις Ασκήσεις Ενότητας 7
Οδική ασφάλεια Ενότητα 7: Εκτίμηση επιπτώσεων επεμβάσεων στον αριθμό των συγκρούσεων: Διασταυρώσεις Ασκήσεις Ενότητας 7 Ευτυχία Ναθαναήλ Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών 1 η Άσκηση Ενότητας
Οδική ασφάλεια. Ενότητα 4: Πρόβλεψη συγκρούσεων σε επαρχιακές οδούς πολλαπλών λωρίδων Διάλεξη 4.1: Μεθοδολογία
Οδική ασφάλεια Ενότητα 4: Πρόβλεψη συγκρούσεων σε επαρχιακές οδούς πολλαπλών λωρίδων Διάλεξη 4.1: Μεθοδολογία Ευτυχία Ναθαναήλ Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών Εισαγωγή Η μέθοδος πρόβλεψης παρέχει
Οδική ασφάλεια. Ενότητα 6: Εκτίμηση επιπτώσεων επεμβάσεων στον αριθμό των συγκρούσεων: Οδικά τμήματα Ασκήσεις Διάλεξης 6.2
Οδική ασφάλεια Ενότητα 6: Εκτίμηση επιπτώσεων επεμβάσεων στον αριθμό των συγκρούσεων: Οδικά τμήματα Ασκήσεις Διάλεξης 6.2 Ευτυχία Ναθαναήλ Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών 3 η Άσκηση Ενότητας
Οδική ασφάλεια. Ενότητα 1: Εισαγωγή Διάλεξη 1.1: Εισαγωγή στην οδική ασφάλεια. Ευτυχία Ναθαναήλ Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών
Οδική ασφάλεια Ενότητα 1: Εισαγωγή Διάλεξη 1.1: Εισαγωγή στην οδική ασφάλεια Ευτυχία Ναθαναήλ Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών Στόχος - Αντικείμενα Στόχος: παροχή γνώσεων πάνω στην ανάλυση και
Οδική ασφάλεια. Ευτυχία Ναθαναήλ Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών
Οδική ασφάλεια Ενότητα 4: Πρόβλεψη συγκρούσεων σε επαρχιακές οδούς πολλαπλών λωρίδων Διάλεξη 4.2: Εξισώσεις απόδοσης ασφάλειας Συντελεστές μεταβολής ατυχημάτων Ευτυχία Ναθαναήλ Πολυτεχνική Σχολή Τμήμα
Οδική ασφάλεια. Ενότητα 8: Αξιολόγηση επεμβάσεων Ασκήσεις Ενότητας 8. Ευτυχία Ναθαναήλ Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών
Οδική ασφάλεια Ενότητα 8: Αξιολόγηση επεμβάσεων Ασκήσεις Ενότητας 8 Ευτυχία Ναθαναήλ Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών Παράδειγμα #1 «Πριν» 10 ατυχήματα «Μετά» 5 ατυχήματα Επέμβαση: τοποθέτηση
Οδική ασφάλεια. Ενότητα 5: Πρόβλεψη συγκρούσεων σε αστικές και περιαστικές αρτηρίες Διάλεξη 5.1: Μεθοδολογία
Οδική ασφάλεια Ενότητα 5: Πρόβλεψη συγκρούσεων σε αστικές και περιαστικές αρτηρίες Διάλεξη 5.1: Μεθοδολογία Ευτυχία Ναθαναήλ Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών Επεξηγήσεις Αστικές περιοχές: μέσα
Διοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 6: Μέθοδοι ς Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο
Μηχανολογικό Σχέδιο Ι
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 8: Άτρακτοι και σφήνες Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού Υπέρθερμου Ατμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Εισαγωγή στους Αλγορίθμους Ενότητα 10η Άσκηση Αλγόριθμος Dijkstra
Εισαγωγή στους Αλγορίθμους Ενότητα 1η Άσκηση Αλγόριθμος Dijkra Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upara.gr Άδειες Χρήσης Το παρόν
Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας
Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας 1 Περιεχόμενα 1 η Άσκηση... 4 2 η Άσκηση... 7 3 η Άσκηση... 10 Χρηματοδότηση... 12 Σημείωμα Αναφοράς... 13 Σημείωμα Αδειοδότησης...
ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 12: Ιδιοτιμές και Ιδιοδιανύσματα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Ιδιοτιμές και Ιδιοδιανύσματα
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 9: ΑΣΚΗΣΕΙΣ ΕΠΙΛΟΓΗΣ ΤΟΠΟΥ ΕΓΚΑΤΑΣΤΑΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων
1 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 3 4 η Άσκηση... 3 5 η Άσκηση... 4 6 η Άσκηση... 4 7 η Άσκηση... 4 8 η Άσκηση... 5 9 η Άσκηση... 5 10
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΗΥ2, Ενότητα : Ασκήσεις και Λύσεις Άσκηση 1 Ενότητα : Υλοποίηση Λεξικών µε
Βάσεις Περιβαλλοντικών Δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Περιβαλλοντικών Δεδομένων Ενότητα 3: Μοντέλα βάσεων δεδομένων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται
Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών
Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα
Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας
Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας Ενότητα 8: Αξιολόγηση και επιλογή αγορών στόχων από ελληνική εταιρία στον κλάδο παραγωγής και εμπορίας έτοιμου γυναικείου Καθ. Αλεξανδρίδης Αναστάσιος Δρ. Αντωνιάδης
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 11 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Τεχνικό Σχέδιο - CAD
Τεχνικό Σχέδιο - CAD Προσθήκη Διαστάσεων & Κειμένου ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Εντολές προσθήκης διαστάσεων & κειμένου Στο βασική (Home)
Ψηφιακή Επεξεργασία Εικόνων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 14: Τμηματοποίηση με χρήση τυχαίων πεδίων Markov Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Τμηματοποίηση εικόνων
Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση
Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση Αγροτικής Οικονομίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ISO 17025 5.9. ΔΙΑΣΦΑΛΙΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΟΚΙΜΩΝ (1) 5.9.1 Το Εργαστήριο
Ενότητα. Εισαγωγή στις βάσεις δεδομένων
Ενότητα 1 Εισαγωγή στις βάσεις δεδομένων 2 1.1 Βάσεις Δεδομένων Ένα βασικό στοιχείο των υπολογιστών είναι ότι έχουν τη δυνατότητα να επεξεργάζονται εύκολα και γρήγορα μεγάλο πλήθος δεδομένων και πληροφοριών.
Οδική ασφάλεια. Ευτυχία Ναθαναήλ Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών
Οδική ασφάλεια Ενότητα 5: Πρόβλεψη συγκρούσεων σε αστικές και περιαστικές αρτηρίες Διάλεξη 5.2: Εξισώσεις απόδοσης ασφάλειας Συντελεστές μεταβολής ατυχημάτων Ευτυχία Ναθαναήλ Πολυτεχνική Σχολή Τμήμα Πολιτικών
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 4: Στρατηγικοί προσανατολισμοί Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διοίκηση Επιχειρήσεων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Η λήψη των αποφάσεων Ευγενία Πετρίδου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 8: Εφαρμογές παραγώγων Μελέτη και βελτιστοποίηση συναρτήσεων μιας μεταβλητής (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων
Μηχανές Πλοίου ΙΙ (Ε)
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυµα Αθήνας Μηχανές Πλοίου ΙΙ (Ε) Άσκηση 5 Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,
Τεχνικό Σχέδιο - CAD
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Τεχνικό Σχέδιο - CAD Ενότητα 7: SketchUp Αντικείμενα Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης
Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης για τη Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Αλέξανδρος Σπυριδωνίδης Σχολή Επιστημών Υγείας Τμήμα
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης
Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Κριτήρια Σύγκλισης Σειρών Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΣΥΜΠΕΡΙΦΟΡΑ ΚΑΤΑΝΑΛΩΤΗ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΣΥΜΠΕΡΙΦΟΡΑ ΚΑΤΑΝΑΛΩΤΗ Ενότητα 8: ΘΕΩΡΙΑ ΚΑΙ ΜΕΘΟΔΟΙ ΚΑΤΑΤΜΗΣΗΣ ΚΑΤΑΝΑΛΩΤΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskal
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskl Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν
Ιστορία της μετάφρασης
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Μεταφραστές και πρωτότυπα. Ελένη Κασάπη ΤΜΗΜΑ ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΦΙΛΟΛΟΓΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Ψηφιακή Επεξεργασία Εικόνων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 8: Ορθομοναδιαίοι μετασχηματισμοί Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Ορθομοναδιαίοι μετασχηματισμοί ισοδύναμη
Διδακτική Πληροφορικής
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διδακτική Πληροφορικής Ενότητα 4: Διδακτικός μετασχηματισμός βασικών εννοιών πληροφορικής Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons
Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Λογιστική Κόστους Ενότητα 10: Ασκήσεις Προτύπου Κόστους Αποκλίσεων.
Λογιστική Κόστους Ενότητα 10: Ασκήσεις Προτύπου Κόστους Αποκλίσεων. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6: 1η εργαστηριακή άσκηση και προσομοίωση με το SPICE Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και
Εφαρμογές πληροφορικής σε θέματα πολιτικού μηχανικού
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμογές πληροφορικής σε θέματα πολιτικού μηχανικού Ενότητα 4: Εφαρμογές λογιστικών φύλλων στη Στατική: Γεωμετρικά μεγέθη πολυγωνικά
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 1 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5 2.
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 11: Είδη και μετασχηματισμοί πινάκων Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Είδη και μετασχηματισμοί
Διδακτική των εικαστικών τεχνών Ενότητα 1
Διδακτική των εικαστικών τεχνών Ενότητα 1 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 1. Ιστορική αναδρομή της διδακτικής της
Διδακτική Πληροφορικής
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διδακτική Πληροφορικής Ενότητα 6: Διαδικασίες Μάθησης Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Γενική Φυσική Ενότητα: Ταλαντώσεις
Γενική Φυσική Ενότητα: Ταλαντώσεις Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ερωτήσεις Ταλαντώσεων... 4 1.1 Ερώτηση 1... 4 2. Ασκήσεις Ταλαντώσεων... 4 2.1 Άσκηση 1... 4 2.2 Άσκηση
Αρχιτεκτονική και Οπτική Επικοινωνία 1 - Αναπαραστάσεις
Αρχιτεκτονική και Οπτική Επικοινωνία 1 - Αναπαραστάσεις Ενότητα: ΜΕΘΟΔΟΣ MONGE Διδάσκων: Γεώργιος Ε. Λευκαδίτης Τμήμα: Αρχιτεκτόνων Μηχανικών ΜΕΘΟΔΟΣ MONGE ΚΕΦΑΛΑΙΟ 1 ΠΑΡΑΣΤAΣΗ ΘΕΜΕΛΙΩΔΩΝ ΓΕΩΜΕΤΡΙΚΩΝ ΣΤΟΙΧΕΙΩΝ
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1)
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Αερισμός. Ενότητα 1: Αερισμός και αιμάτωση. Κωνσταντίνος Σπυρόπουλος, Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής
Αερισμός Ενότητα 1: Αερισμός και αιμάτωση Κωνσταντίνος Σπυρόπουλος, Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής Ολικός και κυψελιδικός αερισμός Η κύρια λειτουργία του αναπνευστικού συστήματος είναι
ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 6
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 6: Ανάδραση Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 3: Κλασικά Υποδείγματα της Διεθνούς Οικονομικής Θεωρίας (Heckscher-Ohlin model) Γρηγόριος
Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων
Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Ενότητα 1: E-L Συστήματα Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης
Εισαγωγή στις Επιστήμες της Αγωγής
Εισαγωγή στις Επιστήμες της Αγωγής Αλεξάνδρα Ανδρούσου - Βασίλης Τσάφος Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία (ΤΕΑΠΗ) Επίπεδα Κοινωνιολογίας της Εκπαίδευσης Αναλύει τη θέση και τη λειτουργία
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 23: Υπολογισμοί σε Κβαντικά Κυκλώματα ΙΙ Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Υπολογισμοί
Εννοιες και Παράγοντες της Ψηφιακής Επεξεργασίας Εικόνας
Εννοιες και Παράγοντες της Ψηφιακής Επεξεργασίας Εικόνας Δειγματοληψία Βάθος χρώματος Ψηφιακή φωτογραφική μηχανή CCD Δυναμικό Εύρος Αναπαραγωγή εικόνας Χρωματικά μοντέλα και Χρωματικοί Χώροι Το ορατό φως,
Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση
Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 7: Κανονικότητες, συμμετρίες και μετασχηματισμοί στο χώρο Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία
Λειτουργία και εφαρμογές της πολιτιστικής διαχείρισης
Λειτουργία και εφαρμογές της πολιτιστικής διαχείρισης Ενότητα 7: Πολιτιστικός τουρισμός και τοπικό πολιτιστικό προϊόν Δρ. Θεοκλής-Πέτρος Ζούνης Σχολή : ΟΠΕ Τμήμα : Ε.Μ.Μ.Ε. Περιεχόμενα ενότητας Ο Πολιτιστικός
Προγραμματισμός Η/Υ. Βασικές Προγραμματιστικές Δομές. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος
Προγραμματισμός Η/Υ Βασικές Προγραμματιστικές Δομές ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Δομή Ελέγχου Ροής (IF) Η εντολή IF χρησιμοποιείται όταν
Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση
Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση Ενότητα: Εργασίες Διδάσκων: Βασίλης Κόμης, Καθηγητής komis@upatras.gr www.ecedu.upatras.gr/komis/ Τμήμα Επιστημών
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 2: Οργάνωση και Διοίκηση Εισαγωγή Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 6: ΕΦΑΡΜΟΓΕΣ ΑΠΛΟΣ ΤΟΚΟΣ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 6: Διαπεριφερειακές διαφορές Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό
Τεχνικό Σχέδιο - CAD. Τόξο Κύκλου. Τόξο Κύκλου - Έλλειψη. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος
Τεχνικό Σχέδιο - CAD Τόξο Κύκλου - Έλλειψη ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Τόξο Κύκλου Τόξο κύκλου Στην ορολογία του Autocad: Arc Εντολή: arc
Διαχείριση Πολιτισμικών Δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διαχείριση Πολιτισμικών Δεδομένων Ενότητα 9: Μετατροπή μοντέλου οντοτήτων σχέσεων σε βάση δεδομένων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 6: ΜΕΓΕΘΟΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 11: Θεωρία Οργάνωσης & Διοίκησης Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Εισαγωγή στην Πληροφορική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 7: Τεχνολογία Λογισμικού Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Διοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 6: Συστήματα Κοστολόγησης Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Οικονομετρία Ι. Ενότητα 3: Θεώρημα των Gauss Markov. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 3: Θεώρημα των Gauss Markov Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων
Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Ενότητα 4: Παραδείγματα Περιγραφής Δυναμικών Συστημάτων II Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας
Εισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Εργαστήριο 2 Καθηγητές: Αβούρης Νικόλαος, Παλιουράς Βασίλης, Κουκιάς Μιχαήλ, Σγάρμπας Κυριάκος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άσκηση 2 ου εργαστηρίου
ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Έλεγχος Ποιότητας Φαρμάκων
Έλεγχος Ποιότητας Φαρμάκων Ενότητα 6: Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας Συσκευές Αποσάθρωση Δισκίων (ενός καλαθιού (δεξιά) και δύο καλαθιών (αριστερά) 2 Συσκευή Αποσάθρωσης 4
ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 7: ΕΦΑΡΜΟΓΕΣ ΣΥΝΑΛΛΑΓΜΑΤΙΚΕΣ ΙΣΟΔΥΝΑΜΕΣ ΣΥΝΑΛΛΑΓΜΑΤΙΚΕΣ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons
Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Οικονομετρία Ι. Ενότητα 5: Ανάλυση της Διακύμανσης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 5: Ανάλυση της Διακύμανσης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό