Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
|
|
- Τιτάνια Παπάζογλου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson
2 ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Η παραπάνω ανάλυση ήταν χρήσιμη προκειμένου να κατανοήσουμε τη λογική των δικτύων perceptrons πολλών επιπέδων καθώς επίσης και τις δυνατότητές τους. Ωστόσο, στην πράξη το μόνο που έχουμε στη διάθεσή μας είναι ένα σύνολο δεδομένων X και το πρόβλημά μας είναι το ακόλουθο: Ορισμός προβλήματος:. Υιοθέτησε/καθόρισε δίκτυο perceptron πολλαπλών επιπέδων συγκεκριμένης δομής. Εκτίμησε το διάνυσμα παραμέτρων του το οποίο περιέχει όλες τις παραμέτρους των νευρώνων του δικτύου, ώστε να επιτευχθεί ο βέλτιστος δυνατός διαχωρισμός των κλάσεων, με βάση το X. Δύο κύριες κατευθύνσεις: Ανέπτυξε μια δομή η οποία ταξινομεί σωστά όλα τα διανύσματα εκπαίδευσης. Υιοθέτησε μια σταθερή δομή και υπολόγισε τις τιμές των παραμέτρων της μέσω της βελτιστοποίησης μιας κατάλληλα επιλεγμένης συνάρτησης κόστους.
3 Θεωρείστε το ακόλουθο δίκτυο δύο επιπέδων με - νευρώνες εισόδου διάσταση χώρου εισόδου - νευρώνες πρώτου επιπέδου - νευρώνας εξόδου δευτέρου επιπέδου. Το δίκτυο αυτό περιγράφεται από τη συνάρτηση όπου =[,, 0 ] T, =[,, 0 ] T, 3 =[ 3, 3, 30 ] T, x=[x, x, ] T και f. η συνάρτηση μοναδιαίου βήματος. Το διάνυσμα παραμέτρων του δικτύου είναι =[ T, T, 3T ] = [,, 0,,, 0, 3, 3, 30 ] T ˆ x f f x f f x x f x x f f y j T j j j ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ
4 ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Ο αλγόριθμος οπισθοδρομικής διάδοσης Backpropagaton BP Algorthm Είναι μια αλγοριθμική διαδικασία στη λογική της οξύτερης καθόδου gradent descent που υπολογίζει αναδρομικά τα συναπτικά βάρη παράμετροι του δικτύου, έτσι ώστε να επιτυγχάνεται η ελαχιστοποίηση της επιλεγμένης συνάρτησης κόστους. Σε ένα μεγάλο αριθμό διαδικασιών βελτιστοποίησης, απαιτείται ο υπολογισμός παραγώγων. Έτσι, ασυνεχείς συναρτήσεις ενεργοποίησης δημιουργούν προβλήματα δηλ., x 0 f x 0 x 0 Παρόλα αυτά, υπάρχουν δίοδοι διαφυγής!!! Η logstc συνάρτηση και η συνάρτηση υπερβολικής εφαπτομένης αποτελούν τέτοια παραδείγματα. f x exp ax f x exp ax exp ax
5 ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Ο αλγόριθμος οπισθοδρομικής διάδοσης BP Η συνάρτηση logstc
6 Ο αλγόριθμος οπισθοδρομικής διάδοσης BP Τα βήματα: ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Υιοθέτησε μία κατάλληλη συνάρτηση κόστους J, π.χ., Σφάλμα ελαχίστων τετραγώνων Least Squares Error, Σχετική εντροπία Relatve Entropy που ορίζεται λαμβάνοντας υπ όψιν τις επιθυμητές αποκρίσεις και τις πραγματικές αποκρίσεις του δικτύου για τα διαθέσιμα διανύσματα εκπαίδευσης. Αυτό υπονοεί ότι από εδώ και στο εξής αποδεχόμαστε την ύπαρξη λαθών. Προσπαθούμε μόνο να τα ελαχιστοποιήσουμε, χρησιμοποιώντας συγκεκριμένα κριτήρια. Υιοθέτησε έναν αλγόριθμο για τη βελτιστοποίηση της συνάρτησης κόστους ως προς τα συναπτικά βάρη π.χ., Αλγόριθμος οξύτερης καθόδου Gradent descent Αλγόριθμος Neton Αλγόριθμος συζυγών διευθύνσεων Conjugate gradent
7 Ο αλγόριθμος οπισθοδρομικής διάδοσης BP Για την περίπτωση της οξύτερης καθόδου έχουμε Για τα διανύσματα όλων των νευρώνων του δικτύου. Παράδειγμα: Η συν. κόστους ελαχίστων τετραγώνων για το παραπάνω δίκτυο είναι t t t J t t N n nj j j n N n n T n N n n n x f f d x f f d y d J ˆ 30 3 ˆ x f f d y d J n j T n n n Batch mode Pattern onlne mode ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ
8 ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Ο αλγόριθμος οπισθοδρομικής διάδοσης BP Η διαδικασία:. Αρχικοποίησε τα άγνωστα βάρη σε τυχαίες μικρές τιμές.. Υπολόγισε τους όρους βαθμίδας gradent terms προς τα πίσω, ξεκινώντας με τα βάρη των νευρώνων του τελευταίου επιπέδου και κινούμενος προς αυτά των νευρώνων του πρώτου 3. Ενημέρωσε τα βάρη 4. Επανέλαβε τα βήματα και 3 μέχρις ότου ικανοποιηθεί ένα κριτήριο τερματισμού. Δύο κύριες φιλοσοφίες: Επεξεργασία κατά συρροή Batch mode: Οι όροι βαθμίδας του τελευταίου επιπέδου υπολογίζονται αφού πρώτα υποστούν επεξεργασία ΌΛΑ τα διανύσματα εκπαίδευσης δηλ.,, θεωρώντας το άθροισμα των λαθών για όλα τα διανύσματα. Επεξεργασία κατά μόνας Pattern mode: Οι όροι βαθμίδα υπολογίζονται για κάθε νέο διάνυσμα εκπαίδευσης. Έτσι, οι όροι αυτοί βασίζονται σε διαδοχικά μεμονωμένα λάθη.
9 ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Ο αλγόριθμος οπισθοδρομικής διάδοσης BP Ένα σημαντικό πρόβλημα: Ο αλγόριθμος μπορεί να συγκλίνει σε ένα τοπικό ελάχιστο.
10 ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Ο αλγόριθμος οπισθοδρομικής διάδοσης BP Επιλογή συνάρτησης κόστους Παραδείγματα: Η συνάρτηση ελαχίστων τετραγώνων Least Squares y m ˆ y m για το διάστημα J N E E e,,..., N Επιθυμητή απόκριση του m-στου νευρώνα εξόδου or 0 Πραγματική απόκριση του m-στου νευρώνα εξόδου, στο [0, ], για είσοδο k k m m m x y m yˆ m x
11 ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Ο αλγόριθμος οπισθοδρομικής διάδοσης BP Επιλογή συνάρτησης κόστους Η συνάρτηση cross-entropy J N E E k ym ln yˆ m ym ln yˆ m m Αυτή προϋποθέτει την ερμηνεία των y and ŷ ως πιθανότητες. Σφάλμα ταξινόμησης Classfcaton error rate. Οι περισσότερες από τις σχετικές τεχνικές χρησιμοποιούν μία εξομαλυσμένη έκδοση του σφάλματος ταξινόμησης και όλες μαζί αποτελούν την κατηγορία αλγορίθμων διακριτικής μάθησης dscrmnatve learnng.
12 ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Ο αλγόριθμος οπισθοδρομικής διάδοσης BP Επιλογή συνάρτησης κόστους Σχόλιο : Ένα κοινό χαρακτηριστικό των παραπάνω συναρτήσεων είναι ο κίνδυνος σύγκλισης σε κάποιο τοπικό ελάχιστο. Οι καλώς ορισμένες Well formed συναρτήσεις κόστους εγγυώνται σύγκλιση σε μία καλή λύση, δηλαδή σε μία λύση που να ταξινομεί σωστά ΟΛΑ τα δεδομένα εκπαίδευσης, υπό την προϋπόθεση ότι υπάρχει μία τέτοια λύση. Η cross-entropy συνάρτηση κόστους είναι καλώς ορισμένη. Η συνάρτηση ελαχίστων τετραγώνων δεν είναι. Σχόλιο : Αμφότερες οι συναρτήσεις κόστους ελαχίστων τετραγώνων και cross entropy οδηγούν σε τιμές εξόδου yˆ m που προσεγγίζουν κατά βέλτιστο τρόπο τις εκ των υστέρων πιθανότητες για κάθε κλάση Optmally class a- posteror probabltes!!! yˆ m P x Δηλ., την πιθανότητα της κλάσης δοθέντος του. m Πρόκειται για ένα πολύ ενδιαφέρον αποτέλεσμα. Δεν εξαρτάται από τις κατανομές των κλάσεων. Είναι ένα χαρακτηριστικό ορισμένων συναρτήσεων κόστους. Η ποιότητα της προσέγγισης εξαρτάται από το μοντέλο που υιοθετήθηκε. Επιπλέον, ισχύει μόνο στο ολικό ελάχιστο. m x
13 Αλγόριθμος backpropagaton με όρο ορμής momentum term Προστατεύει τον αλγόριθμο από περιπτώσεις ταλάντωσης γύρω από το ελάχιστο και, κατά συνέπεια, αργής σύγκλισης Εξισώσεις Παραλλαγές του αλγόριθμου οπισθοδρομικής διάδοσης BP ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ t t t r r r r r r r r J t a t t
14 ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Παραλλαγές του αλγόριθμου οπισθοδρομικής διάδοσης BP Προσαρμοστικός adaptve αλγόριθμος backpropagaton Επιταχύνει ή επιβραδύνει ανάλογα με το είδος της περιοχής του landscape της συνάρτησης κόστους που βρίσκεται η τρέχουσα εκτίμηση Εξισώσεις
15 ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Μέγεθος αρχιτεκτονική δικτύου Ένα σημαντικό ζήτημα: Πώς αποφασίζουμε για το μέγεθος και τη δομή του δικτύου; Δύο κύριες κατευθύνσεις: - Σταθερή δομή δικτύου: Υιοθέτησε ένα δίκτυο συγκεκριμένης σταθερής δομής και εφάρμοσε το αλγόριθμο BP. Αν ή απόδοση του δικτύου μετά την εκπαίδευση δεν είναι ικανοποιητική, υιοθέτησε μια άλλη αρχιτεκτονική και επανέλαβε την εκπαίδευση. - Μεταβλητή δομή δικτύου: Στην περίπτωση αυτή η δομή του δικτύου μεταβάλλεται κατά την διάρκεια της εκπαίδευσης του δικτύου. Υπάρχουν δύο βασικές φιλοσοφίες: Φιλοσοφία κλαδέματος prunng: Ξεκίνα με ένα δίκτυο μεγάλου μεγέθους και «κλάδευέ το» σταδιακά αφαιρώντας συναπτικά βάρη και/ή νευρώνες σύμφωνα με κάποια κρίτήρια. Φιλοσοφία κατασκευής Constructve phlosophy: Ξεκίνα με ένα δίκτυο μικρού μεγέθους ανίκανο να λύσει το υπό μελέτη πρόβλημα και σταδιακά πρόσθετε νευρώνες έως ότου το δίκτυο μάθει τη διαδικασία ταξινόμησης.
16 ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Μέγεθος αρχιτεκτονική δικτύου Παράδειγμα φιλοσοφίας κλαδέματος: Μέθοδοι που βασίζονται στην κανονικοποίηση συνάρτησης functon regularzaton N J E ae p Ο δεύτερος όρος ευνοεί μικρές τιμές για τα βάρη, π.χ., 0 E p h k k h k 0 k k όπου Μετά από μερικά βήματα εκπαίδευσης, τα βάρη με μικρές τιμές απομακρύνονται.
17 ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Ο αλγόριθμος Backpropagaton θέματα ικανότητας γενίκευσης Generalzaton Γιατί να μην ξεκινήσουμε με ένα δίκτυο μεγάλου μεγέθους και να αφήσουμε τον αλγόριθμο να αποφασίσει ποια βάρη είναι μικρά;; Η προσέγγιση αυτή είναι απλοϊκή. Παραβλέπει το γεγονός ότι οι ταξινομητές πρέπει να έχουν καλή δυνατότητα γενίκευσης generalzaton. Ένα μεγάλο δίκτυο μπορεί να δώσει μικρά σφάλματα για το σύνολο εκπαίδευσης, αφού μπορεί να μάθει τις συγκεκριμένες λεπτομέρειές του. Από την άλλη μεριά, δεν αναμένεται να παρουσιάζει καλή απόδοση για δεδομένα στα οποία δεν εκπαιδεύτηκε. Γενικά, το μέγεθος του δικτύου πρέπει να είναι: Αρκούντως μεγάλο για να μπορεί να μάθει τι κάνει όμοια τα δεδομένα της ίδιας κλάσης και τι κάνει ανόμοια τα δεδομένα διαφορετικών κλάσεων. Αρκούντως μικρό για να μην μπορεί να μάθει τις διαφορές μεταξύ δεδομένων της ίδιας κλάσης. Το τελευταίο οδηγεί στο λεγόμενο υπερ-ταίριασμα overfttng. 7
18 ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Ο αλγόριθμος Backpropagaton θέματα ικανότητας γενίκευσης Παράδειγμα:
19 ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Ο αλγόριθμος Backpropagaton Υπερεκπαίδευση Overtranng είναι μία άλλη όψη του ίδιου νομίσματος. Εμφανίζεται όταν ένα μεγάλου μεγέθους δίκτυο αρχίζει να προσαρμόζεται στις ιδιαιτερότητες του συνόλου δεδομένων. Αντιμετώπιση: Διακοπή εκπαίδευσης όταν το λάθος ταξινόμησης αρχίζει να αυξάνει για το σύνολο δοκιμής.
20 ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Ένα παράδειγμα: Όπως αναμενόταν, η επιφάνεια απόφασης δεν ορίζεται μέσω υπερεπιπέδων.
21 ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΓΕΝΙΚΕΥΜΕΝΟΙ ΓΡΑΜ. ΤΑΞΙΝΟΜΗΤΕΣ Στο πρόβλημα XOR προηγουμένως, ουσιαστικά μετασχηματίσαμε τον αρχικό χώρο όπου η διαδικασία ταξινόμησης ήταν μη γραμμική σε ένα νέο χώρο όπου η ταξινόμηση έγινε γραμμική. Διατύπωση προβλήματος: Έστω ένα μη γραμμικώς διαχωρίσιμο πρόβλημα ταξινόμησης στο χώρο R l. Υπάρχουν k συναρτήσεις f. μέσω των οποίων ο αρχικός χώρος μπορεί να απεικονιστεί σε ένα νέο k-διάστατο χώρο, όπου το πρόβλημα να είναι γραμμικώς διαχωρίσιμο; x f x y... f x k Αν συμβαίνει αυτό, η μη γραμμική επιφάνεια-σύνορο στον αρχικό χώρο x μπορεί να γραφεί ως γραμμική στο μετασχηματισμένο χώρο y. g x k 0 f x 0
22 ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΓΕΝΙΚΕΥΜΕΝΟΙ ΓΡΑΜ. ΤΑΞΙΝΟΜΗΤΕΣ ΣΗΜ.: Η παραπάνω απεικόνιση xy μπορεί να υλοποιηθεί από ένα δίκτυο δύο επιπέδων, όπου οι νευρώνες του πρώτου επιπέδου υλοποιούν τις συναρτήσεις f. ενώ ο νευρώνας του δευτέρου επιπέδου πραγματοποιεί γραμμικό διαχωρισμό στο μετασχηματισμένο χώρο.
23 ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΓΕΝΙΚΕΥΜΕΝΟΙ ΓΡΑΜ. ΤΑΞΙΝΟΜΗΤΕΣ Παράδειγμα : Έστω x =,, x =,, x 3 =0,, x 4 =,0, x 5 =3,, x 6 =,3, x 7 =-,, x 8 =,-. Τα πρώτα 4 διανύσματα ανήκουν στην κλάση + ενώ τα υπόλοιπα στην κλάση -. x x Έστω ο μετασχηματισμός x Στο νέο χώρο η διαδικασία x xx ταξινόμησης γίνεται γραμμική
24 ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΓΕΝΙΚΕΥΜΕΝΟΙ ΓΡΑΜ. ΤΑΞΙΝΟΜΗΤΕΣ Παράδειγμα : Έστω x =,0, x =0,, x 3 =-,0, x 4 =0,-, x 5 =,0, x 6 =0,, x 7 =-,0, x 8 =0,-. Τα πρώτα 4 διανύσματα ανήκουν στην κλάση + ενώ τα υπόλοιπα στην κλάση -. x x Έστω ο μετασχηματισμός x Στο νέο χώρο η διαδικασία x xx ταξινόμησης γίνεται γραμμική
25 ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΓΕΝΙΚΕΥΜΕΝΟΙ ΓΡΑΜ. ΤΑΞΙΝΟΜΗΤΕΣ Χωρητικότητα του l-διάστατου χώρου σε γραμμικές διχοτομήσεις Έστω N σημεία στον δηλαδή: R l χώρο που υποθέτουμε ότι βρίσκονται σε γενική θέση, Καμία ομάδα τέτοιων σημείων δεν βρίσκεται σε έναν διάστατο χώρο.
26 Χωρητικότητα του l-διάστατου χώρου σε γραμμικές διχοτομήσεις Θεώρημα Cover: Ο αριθμός των ομαδοποιήσεων που μπορούν να υλοποιηθούν από l--διάστατα υπερεπίπεδα προκειμένου να διαχωριστούν N σημεία σε δύο κλάσεις είναι,, 0 l N l N O!!! N N N ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΓΕΝΙΚΕΥΜΕΝΟΙ ΓΡΑΜ. ΤΑΞΙΝΟΜΗΤΕΣ
27 ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΓΕΝΙΚΕΥΜΕΝΟΙ ΓΡΑΜ. ΤΑΞΙΝΟΜΗΤΕΣ Παράδειγμα: Για N=4, l=, είναι O4,=4 Σημείωση:Ο συνολικός αριθμός δυνατών ομαδοποιήσεων είναι 4 = Α Β C D X X
28 ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΓΕΝΙΚΕΥΜΕΝΟΙ ΓΡΑΜ. ΤΑΞΙΝΟΜΗΤΕΣ Χωρητικότητα του l-διάστατου χώρου σε γραμμικές διχοτομήσεις Η πιθανότητα ομαδοποίησης N σημείων σε δύο γραμμικώς διαχωρίσιμες κλάσεις είναι O N, l l P N N N r l 8
29 ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΓΕΝΙΚΕΥΜΕΝΟΙ ΓΡΑΜ. ΤΑΞΙΝΟΜΗΤΕΣ Χωρητικότητα του l-διάστατου χώρου σε γραμμικές διχοτομήσεις Έτσι, η πιθανότητα να έχουμε N σημεία σε γραμμικώς διαχωρίσιμες κλάσεις τείνει στο, για μεγάλο l, υπό την προϋπόθεση ότι N<l + Συνεπώς, απεικονίζοντας σε χώρο υψηλότερης διάστασης, αυξάνουμε την πιθανότητα γραμμικού διαχωρισμού, υπό την προϋπόθεση ότι ο χώρος δεν παρουσιάζει μεγάλη πυκνότητα σε σημεία δεδομένων. 9
30 ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΓΕΝΙΚΕΥΜΕΝΟΙ ΓΡΑΜ. ΤΑΞΙΝΟΜΗΤΕΣ Συναρτήσεις ακτινωτής βάσης Radal bass functons -RBFs Στην περίπτωση αυτή, οι f. επιλέγονται ως Έχουν σχήμα «καμπάνας», είναι κεντραρισμένες στο c και το πλάτος τους εξαρτάται από το σ. f x exp x c Η παραπάνω απεικόνιση xy μπορεί να υλοποιηθεί από ένα δίκτυο δύο επιπέδων, όπου οι νευρώνες του πρώτου επιπέδου υλοποιούν τις συναρτήσεις f. ενώ ο νευρώνας του δευτέρου επιπέδου πραγματοποιεί γραμμικό διαχωρισμό στο μετασχηματισμένο χώρο.
31 Συναρτήσεις ακτινωτής βάσης Radal bass functons-rbfs Παράδειγμα: Το πρόβλημα XOR. Έστω Χρησιμοποιώντας συναρτήσεις RBF με τις παραπάνω παραμέτρους επιτυγχάνουμε την απεικόνιση του αρχικού -διάστατου χώρου σε ένα νέο μετασχηματισμένο χώρο ἰδιας διάστασης. Μέσω αυτού του μετασχηματισμού έχουμε, 0 0, c c exp exp c x c x y x , , 0.35, ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΓΕΝΙΚΕΥΜΕΝΟΙ ΓΡΑΜ. ΤΑΞΙΝΟΜΗΤΕΣ
32 Συναρτήσεις ακτινωτής βάσης Radal bass functons-rbfs Παράδειγμα: Το πρόβλημα XOR. 0 exp exp c x c x x g 0 y y y g ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΓΕΝΙΚΕΥΜΕΝΟΙ ΓΡΑΜ. ΤΑΞΙΝΟΜΗΤΕΣ
33 ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΓΕΝΙΚΕΥΜΕΝΟΙ ΓΡΑΜ. ΤΑΞΙΝΟΜΗΤΕΣ Συναρτήσεις ακτινωτής βάσης - ζητήματα εκπαίδευσης Οι εμπλεκόμενες παράμετροι είναι τα c, τα σ και τα. -σ : Συνήθως τίθενται εκ των προτέρων σε σταθερές τιμές υπάρχουν όμως και άλλες εναλλακτικές. -c : Μπορεί είτε να τεθούν ίσα με τυχαία επιλεγμένα διανύσματα εκπαίδευσης ή είτε να τεθούν ίσα με τα κέντρα των ομάδων clusters που παράγονται μετά την εφαρμογή ενός αλγόριθμου ομαδοποίησης στα σημεία κάθε κλάσης. - : Υπό την προϋπόθεση ότι τα c και σ έχουν εκτιμηθεί, η εκτίμηση των είναι μία γραμμική διαδικασία μπορεί π.χ. να χρησιμοποιηθεί μια μέθοδος ελαχίστων τετραγώνων.
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΟΥ ΧΩΡΟΥ ΤΩΝ ΤΑΞΙΝΟΜΗΤΩΝ Ταξινομητές Ταξινομητές συναρτ. διάκρισης Ταξινομητές επιφανειών απόφ. Παραμετρικοί ταξινομητές Μη παραμετρικοί
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΟΥ ΧΩΡΟΥ ΤΩΝ ΤΑΞΙΝΟΜΗΤΩΝ Ταξινομητές Ταξινομητές συναρτ. διάκρισης Ταξινομητές επιφανειών απόφ. Παραμετρικοί ταξινομητές Μη παραμετρικοί
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΟΥ ΧΩΡΟΥ ΤΩΝ ΤΑΞΙΝΟΜΗΤΩΝ Ταξινομητές Ταξινομητές συναρτ. διάκρισης Ταξινομητές επιφανειών απόφ. Παραμετρικοί ταξινομητές Μη παραμετρικοί
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΜΙΑ ΣΥΜΒΑΣΗ: Προκειμένου να καταστήσουμε πιο συμπαγή το συμβολισμό H : ορίζουμε Ετσι έχουμε *=[ ] an *=[ ]. H : * * ΣΗΜΕΙΩΣΗ: Στη συνέχεια εκτός αν ορίζεται
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2 1 ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΟΥ ΧΩΡΟΥ ΤΩΝ ΤΑΞΙΝΟΜΗΤΩΝ Ταξινομητές Ταξινομητές συναρτ. διάκρισης Ταξινομητές επιφανειών απόφ. Παραμετρικοί ταξινομητές Μη παραμετρικοί
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2 1 C MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΕΠΙΦΑΝΕΙΕΣ ΑΠΟΦΑΣΗΣ Υπενθύμιση: είναι το σύνολο δεδομένων που περιέχει τα διαθέσιμα δεδομένα από όλες
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson Σχεδιαζόντας ταξινομητές: Τα δεδομένα Στην πράξη η γνώση σχετικά διαδικασία γέννεσης των δεδομένων είναι πολύ σπάνια γνωστή. Το μόνο που έχουμε στη διάθεσή
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Versio A ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η περίπτωση του ταξινομητή Bayes Εκτίμηση μέγιστης εκ των υστέρων πιθανότητας Maimum Aoseriori
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson Μέθοδοι ελαχίστων τετραγώνων Least square methos Αν οι κλάσεις είναι γραμμικώς διαχωρίσιμες το perceptron θα δώσει σαν έξοδο ± Αν οι κλάσεις ΔΕΝ είναι
Το μοντέλο Perceptron
Το μοντέλο Perceptron Αποτελείται από έναν μόνο νευρώνα McCulloch-Pitts w j x x 1, x2,..., w x T 1 1 x 2 w 2 Σ u x n f(u) Άνυσμα Εισόδου s i x j x n w n -θ w w 1, w2,..., w n T Άνυσμα Βαρών 1 Το μοντέλο
Εκπαίδευση ΤΝΔ με ελαχιστοποίηση του τετραγωνικού σφάλματος εκπαίδευσης. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν.
Εκπαίδευση ΤΝΔ με ελαχιστοποίηση του τετραγωνικού σφάλματος εκπαίδευσης Ελαχιστοποίηση συνάρτησης σφάλματος Εκπαίδευση ΤΝΔ: μπορεί να διατυπωθεί ως πρόβλημα ελαχιστοποίησης μιας συνάρτησης σφάλματος E(w)
Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή
Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδημαϊκό έτος 2010-11 Χειμερινό Εξάμηνο Practice final exam 1. Έστω ότι για
Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron Βιολογικός Νευρώνας Δενδρίτες, που αποτελούν τις γραμμές εισόδου των ερεθισμάτων (βιολογικών σημάτων) Σώμα, στο οποίο γίνεται η συσσώρευση των ερεθισμάτων και
Αναγνώριση Προτύπων (Pattern Recognition) Μπεϋζιανή Θεωρία Αποφάσεων (Bayesian Decision Theory) Π. Τσακαλίδης
Αναγνώριση Προτύπων (Pattern Recognton Μπεϋζιανή Θεωρία Αποφάσεων (Bayesan Decson Theory Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Μπεϋζιανή Θεωρία Αποφάσεων (Bayes Decson theory Στατιστικά
ΔΙΚΤΥO RBF. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
ΔΙΚΤΥO RBF Αρχιτεκτονική δικτύου RBF Δίκτυα RBF: δίκτυα συναρτήσεων πυρήνα (radial basis function networks). Πρόσθιας τροφοδότησης (feedforward) για προβλήματα μάθησης με επίβλεψη. Εναλλακτικό του MLP.
Μη γραµµικοί ταξινοµητές Νευρωνικά ίκτυα
KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Μη γραµµικοί ταξινοµητές Νευρωνικά ίκτυα ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Εισαγωγή Πολυεπίπεδες Perceptron Οαλγόριθµος
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2 1 M = 1 N = N prob k N k { k n ω wrongly classfed} = (1 ) N k 2 Η συνάρτηση πιθανοφάνειας L(p) μεγιστοποιείται όταν =k/n. 3 Αφού τα s είναι άγνωστα,
Γραµµικοί Ταξινοµητές
ΚΕΣ 3: Αναγνώριση Προτύπων και Ανάλυση Εικόνας KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Γραµµικοί Ταξινοµητές ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου 7 Ncolas sapatsouls
Αναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 2: Δομικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2 B MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η Bayesan περίπτωση - Διαθέσιμα δεδομένα: XX X 2 X M. Κάθε X αντιστοιχεί στην κλάση
ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ. ΕΝΟΤΗΤΑ: Γραμμικές Συναρτήσεις Διάκρισης. ΔΙΔΑΣΚΟΝΤΕΣ: Βλάμος Π. Αυλωνίτης Μ. ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΕΝΟΤΗΤΑ: Γραμμικές Συναρτήσεις Διάκρισης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΟΝΤΕΣ: Βλάμος Π. Αυλωνίτης Μ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Μοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP)
Μοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP) x -0,5 a x x 2 0 0 0 0 - -0,5 y y 0 0 x 2 -,5 a 2 θ η τιμή κατωφλίου Μία λύση του προβλήματος XOR Multi Layer Perceptron (MLP) x -0,5 Μία
Το Πολυεπίπεδο Perceptron. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
Το Πολυ Perceptron Δίκτυα Πρόσθιας Τροφοδότησης (feedforward) Tο αντίστοιχο γράφημα του δικτύου δεν περιλαμβάνει κύκλους: δεν υπάρχει δηλαδή ανατροφοδότηση της εξόδου ενός νευρώνα προς τους νευρώνες από
HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 15-16
HMY 795: Αναγνώριση Προτύπων Διαλέξεις 15-16 Νευρωνικά Δίκτυα(Neural Networks) Fisher s linear discriminant: Μείωση διαστάσεων (dimensionality reduction) y Τ =w x s + s =w S w 2 2 Τ 1 2 W ( ) 2 2 ( ) m2
ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Νευρώνας Perceptron Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος Τζώρτζης Γρηγόρης Περιεχόμενα Εισαγωγή
Υπολογιστική Νοημοσύνη. Μάθημα 4: Μάθηση στον απλό τεχνητό νευρώνα (2)
Υπολογιστική Νοημοσύνη Μάθημα 4: Μάθηση στον απλό τεχνητό νευρώνα (2) Ο κανόνας Δέλτα για συνεχείς συναρτήσεις ενεργοποίησης (1/2) Για συνεχείς συναρτήσεις ενεργοποίησης, θα θέλαμε να αλλάξουμε περισσότερο
Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο
Ασκήσεις Φροντιστηρίου 4 o Φροντιστήριο Πρόβλημα 1 ο Ο πίνακας συσχέτισης R x του διανύσματος εισόδου x( στον LMS αλγόριθμο 1 0.5 R x = ορίζεται ως: 0.5 1. Ορίστε το διάστημα των τιμών της παραμέτρου μάθησης
Ασκήσεις μελέτης της 19 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 19 ης διάλεξης 19.1. Δείξτε ότι το Perceptron με (α) συνάρτηση ενεργοποίησης
4.3. Γραµµικοί ταξινοµητές
Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων
Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης
Μάθημα 4 ο Δρ. Ανέστης Γ. Χατζημιχαηλίδης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Διευρυμένη Υπολογιστική Νοημοσύνη (ΥΝ) Επεκτάσεις της Κλασικής ΥΝ. Μεθοδολογίες
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2 B MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η Bayesan περίπτωση - Διαθέσιμα δεδομένα: X=X X 2 X M. Κάθε X αντιστοιχεί στην κλάση
Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού
Κινητά Δίκτυα Επικοινωνιών Συμπληρωματικό υλικό Προσαρμοστική Ισοστάθμιση Καναλιού Προσαρμοστικοί Ισοσταθμιστές Για να υπολογίσουμε τους συντελεστές του ισοσταθμιστή MMSE, απαιτείται να λύσουμε ένα γραμμικό
Αναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPTRON
3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPRON 3. ΕΙΣΑΓΩΓΗ: Το Perceptron είναι η απλούστερη μορφή Νευρωνικού δικτύου, το οποίο χρησιμοποιείται για την ταξινόμηση ενός ειδικού τύπου προτύπων, που είναι γραμμικά διαχωριζόμενα.
ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012
ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η (3 μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάση το συντελεστή συσχέτισης. (γράψτε ποιο
Μάθηση και Γενίκευση. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
Μάθηση και Γενίκευση Το Πολυεπίπεδο Perceptron (MultiLayer Perceptron (MLP)) Έστω σύνολο εκπαίδευσης D={(x n,t n )}, n=1,,n. x n =(x n1,, x nd ) T, t n =(t n1,, t np ) T Θα πρέπει το MLP να έχει d νευρώνες
ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΔΕ. 11 ΙΟΥΝΙΟΥ 2012
ΔΕ. ΙΟΥΝΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η ( μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάσει το συντελεστή συσχέτισης. (γράψτε ποιο χαρακτηριστικό
Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 11
Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 11 Πάτρα 2008 Προσαρμοστικός LQ έλεγχος για μη ελαχίστης
Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 3: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΚΑΙ ΑΝΑΛΥΣΗ ΕΙΚΟΝΑΣ Ακαδημαϊκό Έτος 7 8, Χειμερινό Εξάμηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Το παρόν
Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο
Πρόβλημα ο Ασκήσεις Φροντιστηρίου 5 o Φροντιστήριο Δίνεται το παρακάτω σύνολο εκπαίδευσης: # Είσοδος Κατηγορία 0 0 0 Α 2 0 0 Α 0 Β 4 0 0 Α 5 0 Β 6 0 0 Α 7 0 Β 8 Β α) Στον παρακάτω κύβο τοποθετείστε τα
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Version 2 1 Άλλοι τύποι νευρωνικών δικτύων Αυτοοργανούμενοι χάρτες (Self-organizing maps - SOMs) Αναδρομικά νευρωνικά δίκτυα (Recurrent Neural Networks): γενικής
Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 3ο Φροντιστήριο
Ασκήσεις Φροντιστηρίου 3ο Φροντιστήριο Πρόβλημα 1 ο Το perceptron ενός επιπέδου είναι ένας γραμμικός ταξινομητής προτύπων. Δικαιολογήστε αυτή την πρόταση. x 1 x 2 Έξοδος y x p θ Κατώφλι Perceptron (στοιχειώδης
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διάλεξη 4 Διαχωριστικές συναρτήσεις Ταξινόμηση Γκαουσιανών μεταβλητών Bayesan decson Mnmum msclassfcaton rate decson: διαλέγουμε την κατηγορίαck για την οποία η εκ των υστέρων
Τεχνητή Νοημοσύνη. 17η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 17η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται: στο βιβλίο Artificia Inteigence A Modern Approach των S. Russe και
ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ
ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΑΣΚΗΣΗ Σύμφωνα με στοιχεία από το Πανεπιστήμιο της Οξφόρδης η πιθανότητα ένας φοιτητής να αποφοιτήσει μέσα σε 5 χρόνια από την ημέρα εγγραφής του στο
ΚΑΤΗΓΟΡΙΕΣ ΤΑΞΙΝΟΜΗΣΗΣ
ΚΑΤΗΓΟΡΙΕΣ ΤΑΞΙΝΟΜΗΣΗΣ Κατευθυνόμενη ταξινόμηση (supervsed cassfcaton) Μη-κατευθυνόμενη ταξινόμηση (unsupervsed cassfcaton) Γραμμική: Lnear Dscrmnant Anayss Μη- Γραμμική: Νευρωνικά δίκτυα κλπ. Ιεραρχική
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Bayesian decision Minimum misclassificaxon rate decision: διαλέγουμε την κατηγορία Ck για
Τεχνητή Νοημοσύνη. 18η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 18η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται: στο βιβλίο Machine Learning του T. Mitchell, McGraw- Hill, 1997,
ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ
1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Version 2 1 ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΔΕΝΔΡΑ ΑΠΟΦΑΣΗΣ Πρόκειται για μια οικογένεια μη γραμμικών ταξινομητών Είναι συστήματα απόφασης πολλών σταδίων (multistage),
Θεωρία Λήψης Αποφάσεων
Θεωρία Λήψης Αποφάσεων Ενότητα 2: Θεωρία Απόφασης του Bayes Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Θεωρία
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
Θ.Ε. ΠΛΗ31 (2004-5) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #3 Στόχος Στόχος αυτής της εργασίας είναι η απόκτηση δεξιοτήτων σε θέματα που αφορούν τα Τεχνητά Νευρωνικά Δίκτυα και ποιο συγκεκριμένα θέματα εκπαίδευσης και υλοποίησης.
Παρεμβολή & πρόγνωση άγνωστης συνάρτησης μέσω σημειακής προσαρμογής
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2018-2019 Παρεμβολή & πρόγνωση άγνωστης συνάρτησης μέσω σημειακής προσαρμογής (Least squares collocation) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.
ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος
ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το
ΔΙΑΧΩΡΙΣΜΟΣ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΚΡΗΤΙΚΟΥ ΚΑΤΕΡΙΝΑ NΙΚΑΚΗ ΚΑΤΕΡΙΝΑ NΙΚΟΛΑΪΔΟΥ ΧΡΥΣΑ
ΔΙΑΧΩΡΙΣΜΟΣ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΚΡΗΤΙΚΟΥ ΚΑΤΕΡΙΝΑ NΙΚΑΚΗ ΚΑΤΕΡΙΝΑ NΙΚΟΛΑΪΔΟΥ ΧΡΥΣΑ ΔΙΑΧΩΡΙΣΜΟΣ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ Είναι τεχνικές που έχουν σκοπό: τον εντοπισμό χαρακτηριστικών των οποίων οι αριθμητικές τιμές επιτυγχάνουν
Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής (Least squares collocation) Χριστόφορος
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Version Εκφράζοντας τον ταξινομητή Bayes (a) Με χρήση συναρτήσεων διάκρισης (discriminant functions) - Έστω g q (x)=f(p(ω q )p(x ω q )), q=,,m, όπου f γνησίως
E[ (x- ) ]= trace[(x-x)(x- ) ]
1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού
Ψηφιακός Έλεγχος. 6 η διάλεξη Σχεδίαση στο χώρο κατάστασης. Ψηφιακός Έλεγχος 1
Ψηφιακός Έλεγχος 6 η διάλεξη Σχεδίαση στο χώρο κατάστασης Ψηφιακός Έλεγχος Μέθοδος μετατόπισης ιδιοτιμών Έστω γραμμικό χρονικά αμετάβλητο σύστημα διακριτού χρόνου: ( + ) = + x k Ax k Bu k Εφαρμόζουμε γραμμικό
Αναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ
Αναγνώριση Προτύπων Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ Χριστόδουλος Χαμζάς Τα περιεχόμενο της παρουσίασης βασίζεται στο βιβλίο: Introduction to Pattern Recognition A Matlab Approach, S. Theodoridis,
Βιομηχανικοί Ελεγκτές
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #12: Παραδείγματα Αναλογικών Συστημάτων Ελέγχου Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017 Αντικειμενικοί στόχοι Η μελέτη των βασικών στοιχείων που συνθέτουν ένα πρόβλημα βελτιστοποίησης
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδηµαϊκό έτος 2010-11 Χειµερινό Εξάµηνο Τελική εξέταση Τρίτη, 21 εκεµβρίου 2010,
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Διαχωριστικές συναρτήσεις Ταξινόμηση κανονικών
ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ
ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ
ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε
Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων
Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση
6. Στατιστικές μέθοδοι εκπαίδευσης
6. Στατιστικές μέθοδοι εκπαίδευσης Μία διαφορετική μέθοδος εκπαίδευσης των νευρωνικών δικτύων χρησιμοποιεί ιδέες από την Στατιστική Φυσική για να φέρει τελικά το ίδιο αποτέλεσμα όπως οι άλλες μέθοδοι,
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Επανάληψη Expectatio maximizatio for Gaussia mixtures. Αρχικοποιούμε τις άγνωστες παραμέτρους µ k, Σ k και π k 2. Υπολογίσμος των resposibilitiesγ(z k : γ ( z = k π ( x µ ˆ,
ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες
ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ. Καραγιώργου Σοφία
ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Καραγιώργου Σοφία Εισαγωγή Προσομοιώνει βιολογικές διεργασίες (π.χ. λειτουργία του εγκεφάλου, διαδικασία
Τεχνητή Νοημοσύνη. 19η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 19η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτές βασίζονται σε ύλη των βιβλίων: Artificia Inteigence A Modern Approach των S. Russe και P.
Παρουσίαση 2 η : Αρχές εκτίμησης παραμέτρων Μέρος 1 ο
Εφαρμογές Ανάλυσης Σήματος στη Γεωδαισία Παρουσίαση η : Αρχές εκτίμησης παραμέτρων Μέρος ο Βασίλειος Δ. Ανδριτσάνος Αναπληρωτής Καθηγητής Γεώργιος Χλούπης Επίκουρος Καθηγητής Τμήμα Μηχανικών Τοπογραφίας
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε
Κεφάλαιο 5: Γραμμικές Διακρίνουσες Συναρτήσεις 5.1 Εισαγωγή
Κεφάλαιο 5: Γραμμικές Διακρίνουσες Συναρτήσεις 5. Εισαγωγή Στο τρίτο κεφάλαιο θεωρήθηκε ότι η μορφή των συναρτήσεων πυκνότητας πιθανότητας είναι γνωστή και ότι τα δείγματα εκπαίδευσης χρησιμοποιούνται
Υπολογιστική Νοημοσύνη. Μάθημα 12: Παραδείγματα Ασκήσεων 2
Υπολογιστική Νοημοσύνη Μάθημα 12: Παραδείγματα Ασκήσεων 2 Δίκτυα Πολλών Επιπέδων Με μη γραμμικούς νευρώνες Έστω ένα πρόβλημα κατηγοριοποίησης, με δύο βαθμούς ελευθερίας (x, y) και δύο κατηγορίες (A, B).
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ
ΘΕΜΑ ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις Παρασκευή 9 Ιανουαρίου 2007 5:00-8:00 εδοµένου ότι η
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Επίλυση ασκήσεων - Αλγόριθμοι αναζήτησης - Επαναληπτική κάθοδος ΕΠΙΛΥΣΗ ΑΣΚΗΣΕΩΝ ΠΡΑΞΗΣ Θα επιλυθούν
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διαλέξεις 2-22 Support vector machies (συνέχεια) Support vector machies (συνέχεια) Usupervised learig: Clusterig ad Gaussia mixtures Kerel fuctios: k( xx, ') = ϕ ( x) ϕ( x
Project 1: Principle Component Analysis
Project 1: Principle Component Analysis Μια από τις πιο σημαντικές παραγοντοποιήσεις πινάκων είναι η Singular Value Decomposition ή συντετμημένα SVD. Η SVD έχει πολλές χρήσιμες ιδιότητες, επιθυμητές σε
Αναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 4: Νευρωνικά Δίκτυα στην Ταξιμόμηση Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διαλέξεις 11-12 Γραμμική παλινδρόμηση συνέχεια Γραμμική παλινδρόμηση συνέχεια Γραμμικές διαχωριστικές συναρτήσεις Γραμμική παλινδρόμηση (Linear regression) y = w + wx + + w
ΕΡΩΤΗΜΑΤΑ σε ΝΕΥΡΩΝΙΚΑ
ηµήτρης Ψούνης ΠΛΗ3, Απαντήσεις Quiz σε ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΕΡΩΤΗΜΑΤΑ σε ΝΕΥΡΩΝΙΚΑ Μάθηµα 3. ΕΡΩΤΗΜΑ Ένας αισθητήρας µπορεί να µάθει: a. εδοµένα που ανήκουν σε 5 διαφορετικές κλάσεις. b. εδοµένα που ανήκουν
HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 13-14
HMY 795: Αναγνώριση Προτύπων Διαλέξεις 13-14 Γραμμικές διαχωριστικές συναρτήσεις(συνέχεια) Επιλογή μοντέλου Δεδομένα επικύρωσης Κανονικοποίηση Bayes Model evidence(τεκμήριο): Η πιθανότητα να παρατηρήσουμε
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ
Ονοματεπώνυμο:......... Α.Μ....... Ετος... ΑΙΘΟΥΣΑ:....... I. (περί τις 55μ. = ++5++. Σωστό ή Λάθος: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - //8 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ (αʹ Αν AB = BA όπου A, B τετραγωνικά και
Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων
Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Version Στη συνέεια θα μιλήσουμε μόνο για στατιστικές μεθόδους ταξινόμησης προτύπων statistical attern classification. Υπόθεση: Σε μια μεγάλη αίθουσα γυμναστηρίου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ
ΘΕΜΑ ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 26 Ιανουαρίου 2004 ιάρκεια: 2 ώρες (9:00-:00) Στην παρακάτω
Υπολογιστική Νοημοσύνη. Μάθημα 9: Γενίκευση
Υπολογιστική Νοημοσύνη Μάθημα 9: Γενίκευση Υπερπροσαρμογή (Overfitting) Ένα από τα βασικά προβλήματα που μπορεί να εμφανιστεί κατά την εκπαίδευση νευρωνικών δικτύων είναι αυτό της υπερβολικής εκπαίδευσης.
ΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ
ΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ 6. Εισαγωγή 6. Μονομεταβλητές προβλέψεις Βέλτιστη πρόβλεψη και Θεώρημα βέλτιστης πρόβλεψης Διαστήματα εμπιστοσύνης 6.3 Εφαρμογές A. MILIONIS KEF. 6 08 BEA
A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου
A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Εξεταστική περίοδος Ιουνίου 6, Διδάσκων: Κώστας Χουσιάδας Διάρκεια εξέτασης: ώρες (Σε παρένθεση δίνεται η βαθμολογική αξία κάθε υπο-ερωτήματος. Σύνολο
Μέθοδοι πολυδιάστατης ελαχιστοποίησης
Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo
Επαναληπτικές μέθοδοι
Επαναληπτικές μέθοδοι Η μέθοδος της διχοτόμησης και η μέθοδος Regula Fals που αναφέραμε αξιοποιούσαν το κριτήριο του Bolzano, πραγματοποιώντας διαδοχικές υποδιαιρέσεις του διαστήματος [α, b] στο οποίο,
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ATTERN RECOGNITION Τυπικές περιοχές εφαρμογής Μηχανική όραση Machne vson Αναγνώριση χαρακτήρων Character recognton OCR Ιατρική διάγνωση
3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της
Υπολογιστική Νοημοσύνη. Μάθημα 6: Μάθηση με Οπισθοδιάδοση Σφάλματος Backpropagation Learning
Υπολογιστική Νοημοσύνη Μάθημα 6: Μάθηση με Οπισθοδιάδοση Σφάλματος Backpropagation Learning Κεντρική ιδέα Τα παραδείγματα μάθησης παρουσιάζονται στο μηεκπαιδευμένο δίκτυο και υπολογίζονται οι έξοδοι. Για