Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2"

Transcript

1 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Version 2 1

2 Άλλοι τύποι νευρωνικών δικτύων Αυτοοργανούμενοι χάρτες (Self-organizing maps - SOMs) Αναδρομικά νευρωνικά δίκτυα (Recurrent Neural Networks): γενικής δομής, δίκτυα Hopfield, δίκτυα Hamming) Long short-term memory (LSTM) networks Convolutional neural networks (CNNs)

3 Θεωρητικά αποτελέσματα - Έστω ένα ΝΔ δύο επιπέδων (ένα «κρυμμένο» επίπεδο νευρώνων και το επίπεδο εξόδου με ένα νευρώνα γραμμικής συνάρτησης εξόδου) K ˆ ( ) = T x θ K + 1, i f ( θi x) + θ K + 1,0 i= 1 g K νευρ. 1ου επιπέδου 1 γραμ. νευρ. εξόδου (K+1) Θεώρημα (Cybenko,1989): Παρόμοιο αποτέλεσμα Έστω ισχύει για τα δίκτυα RBF. (a) g(x) μια συνεχής συνάρτηση πάνω σε συμπαγές σύνολο S R l και (b) ε>0. Τότε υπάρχει Κ(ε) και δίκτυο δύο επιπέδων ώστε g( x ) gˆ( x) < ε, x S Δεν εμφανίζεται το l Παρατηρήσεις: Το σφάλμα προσέγγισης μειώνεται με ρυθμό O(1/K). Το θεώρημα δε λέει πόσο μεγάλο πρέπει να είναι το K. Μπορεί να απαιτείται πολύ μεγάλος αριθμός νευρώνων K (ρηχό (shallow) ή παχύ ( fat ) δίκτυο). Μία λύση: Η χρήση δικτύων περισσότερων επιπέδων με λιγότερους κόμβους

4 Η λογική πίσω από τη χρήση πολλαπλών επιπέδων νευρώνων: Τα διαδοχικά επίπεδα παράγουν όλο και πιο αφηρημένες αναπαραστάσεις του προτύπου εισόδου. 1 ο επ.: Υπερεπιπεδα 2 ο επ.: περιοχές 3 ο επ.: κλάσεις Γιατί η προσέγγιση αυτή είναι λογική? Διότι μιμείται τον τρόπο με τον οποίο είναι δομημένος ο εγκέφαλος των θηλαστικών. Έχει κάθε «βαθιά» αρχιτεκτονική μια ισοδύναμη «ρηχή» αρχιτεκτονική (με <3 επίπεδα)? Ναι, αλλά μια «ρηχή» αρχ. μπορεί να περιλαμβάνει υπερβολικά μεγαλύτερο αριθμό νευρώνων στα (συνολικά λιγότερα) επίπεδά του, σε σχέση με την αντίστοιχη «βαθιά» αρχιτεκτονική Ένα δίκτυο είναι συμπαγές αν περιλαμβάνει σχετικά λίγες παραμέτρους, προς εκπαίδευση. Οι «βαθιές» αρχ. περιλαμβάνουν σημαντικά λιγότερες παραμέτρους από τις ατίστοιχες «ρηχές» Αναμένεται οι «βαθιές» αρχ. να έχουν καλύτερη ικανότητα γενίκευσης. (δεδομένου ότι θα είναι αρκετά μεγάλες ώστε να δύνανται να λύσουν το πρόβλημα)

5 Σχόλια πάνω στην εκπαίδευση των νευρωνικών δικτύων Η εκπαίδευσή τους μπορεί να γίνει δύσκολη, ειδικά για 2 επίπεδα. Για αρκετό καιρό υπήρχε η πεποίθηση ότι η δυσκολία ήταν συνέπεια της σύγκλισης σε ένα «ρηχό» τοπικό ελάχιστο. Νέα αποτελέσματα δείχνουν ότι το πρόβλημα είναι τα saddle points. Σε χώρους υψηλής διάστασης ο αριθμός των saddle points πολ/ζεται. Αυτό μπορεί να επιβραδύνει δραματικά τη σύγκλιση. Υπό προϋποθέσεις, σε δίκτυα μεγάλου μεγέθους, τα περισσότερα τοπικά ελάχιστα δίνουν μικρές τιμές για τη συνάρτηση κόστους Σε δίκτυο με ένα κρυφό επίπεδο νευρώνων, με ReLU συν. εξόδου, το σφάλμα γενίκευσης φράσσεται από O(ε+1/ N) Περισσότερα σημεία οδηγούν σε αυξημένη ικανότητα γενίκευσης. ε: bound of the sq. norm of the gradient mat. Η επιτυχία των νευρ. δικτ. «βαθίας» αρχ. οφείλεται: (a) στη διαθεσιμότητα συν. δεδομένων μεγ. μεγέθους (b) στη διαθεσιμότητα αυξημένης υπολογιστικής ισχύος.

6 Πολύ αποδοτικές τεχνικές σε προβλήματα αναγνώρισης και ταξινόμησης εικόνας. Τα συστατικά μέρη τους είναι (a) Ο τελεστής συνέλιξης (convolution operation) (b) Μη γραμμικότητα (συνάρτηση ReLU) (c) Ο τελεστής «συγκέντρωσης» (pooling - downsampling) Περιγράφουμε πρώτα τα συστατικά και μετά τα συνδυάζουμε ώστε να πάρουμε ένα CNN. (*)Most of the material for CNNs is from the data science blog

7 (a) Ο τελεστής συνέλιξης Πρόκειται για ένα είδος φιλτραρίσματος, που αναδεικνύει τοπικές σχέσεις μεταξύ εικονοστοιχείων. Διαφορετικά φίλτρα αποκαλύπτουν διαφορετικά είδη πληροφορίων. Ένα φίλτρο ή πυρήνας (kernel) ή ανιχνευτής χαρακτ. (feature detector), είναι ένας μικρός πίνακας (συνήθως 3x3). Παράγει μια νέα εικόνα που ονομάζεται χάρτης χαρακτηριστικού (feature map) (convolved feature) Πώς δουλεύει: Ένα φίλτρο πίνακας «ολισθαίνει» πάνω στην υπό μελέτη εικόνα. Σε κάθε θέση, πραγματοποιείται ένας στοιχείο-προς-στοιχείο πολ/σμός ανάμεσα στο φίλτρο πίνακα και το τμήμα της εικόνας με το οποίο αυτό επικαλύπτεται. Τα αποτελέσματα του πολ/σμού αθροίζονται προκειμένου να υπολογιστεί η τιμή του εικονοστοιχείου στο χάρτη χαρακτηριστικού (convolved feature)

8 (a) Ο τελεστής συνέλιξης Παράδειγμα: Θεωρείστε την 5x5 πράσινη (δυαδική) εικόνα και το παρακάτω 3x3 φίλτρο. Πιο κάτω επιδεικνύεται γραφικά η διαδικασία συνέλιξης. Διαφορετικά φίλτρα, με την αντίστοιχη δράση τους εκτίθενται στα δεξιά.

9 (a) Ο τελεστής συνέλιξης Παράδειγμα: Διαφορετικά φίλτρα δίνουν διαφορετικούς χάρτες χαρακτηριστικών. Stride: Αριθμός εικονοστοιχείων που προσπέρνα ο πίνακας φίλτρου καθώς ολισθαίνει πάνω στην εικόνα (στο παραπάνω παράδειγμα stride=1) Όσο μεγαλύτερο είναι το stride, τόσο μικρότεροι είναι οι παραγόμενοι χάρτες χαρακτ. Γέμισμα με μηδενικά (Zero padding): Το γέμισμα της εικόνας εισόδου με 0 s γύρω από τα όριά της, επιτρέπει την εφαρμογή του φίλτρου και στα εικονοστοιχεία που βρίσκονται στα όρια της εικόνας.

10 (b) Μη γραμμικότητα (συνάρτηση ReLU) Εφαρμόζεται χωριστά σε κάθε εικονοστοιχείο του χάρτη χαράκτ. που παράχθηκε από το βήμα (a). Στην πραγματικότητα η ReLU θέτει όλες τις αρνητικές τιμές ίσες με 0. (επιδιορθώνει ( rectifies ) τον πίνακα χαρακτηριστικών). Μπορούν επίσης να χρησιμοποιηθούν και άλλοι τύποι μη γραμμικότητας (π.χ. σιγμοειδείς) παρότι αυτό δε γίνεται συχνά. Παράδειγμα: Η επίδραση της ReLU f(.): Rectified Linear Unit (ReLU) f(t)=t(0), if t (<)0

11 (c) Η λειτουργία συγκέντρωσης (pooling - downsampling) Εφαρμόζεται πάνω στους επιδιορθωμένους χάρτες χαρακτηριστικών. Μειώνει τη διάστασή τους διατηρώντας την πιο σημαντική πληροφορία. Οι τελεστές που εφαρμόζονται μπορεί να είναι άθροισμα (sum), μέγιστο (max), μέσος όρος (average), etc. Η λειτουργία αυτή φαίνεται μέσω του ακόλουθου παραδείγματος.

12 Στη συνέχεια συζητάμε πώς συνδυάζονται τα παραπάνω χαρακτηριστικά Το πρώτο στάδιο επεξεργασίας σε ένα CNN (a) εφαρμόζει έναν αριθμό διαφορετικών φίλτρων στην εικόνα εισόδου και παράγει τους αντίστοιχους χάρτες χαρακτηριστικών. (b) εφαρμόζει τη συνάρτηση ReLU στους παραγόμενους πίνακες χαρακτηριστικών (τις επιδιορθώνει ) (c) εφαρμόζει τη λειτουργία συγκέντρωσης σε καθένα από τους επιδιορθωμένους χάρτες χαρακτηριστικών, χωριστά.

13 Στη συνέχεια συζητάμε πώς συνδυάζονται τα παραπάνω χαρακτηριστικά Το πρώτο στάδιο επεξεργασίας σε ένα CNN: (a) εφαρμόζει έναν αριθμό διαφορετικών φίλτρων στην εικόνα εισόδου και παράγει τους αντίστοιχους χάρτες χαρακτηριστικών. (b) εφαρμόζει τη συνάρτηση ReLU στους παραγόμενους πίνακες χαρακτηριστικών (τις επιδιορθώνει ) (c) εφαρμόζει τη λειτουργία συγκέντρωσης σε καθένα από τους επιδιορθωμένους χάρτες χαρακτηριστικών, χωριστά.

14 Κατά τo δεύτερο στάδιο επεξεργασίας σ ένα CNN εφαρμόζεται ακριβώς η ίδια επεξεργασία πάνω στα αποτελέσματα του πρώτου σταδίου. Η μόνη διαφορά είναι ότι η συνέλιξη εφαρμόζεται τώρα πάνω σε όλους τους (μειωμένου μεγέθους) χάρτες χαρακτηριστικών που παρήχθησαν από το 1 ο στάδιο επεξεργασίας. Μπορούν να εισαχθούν και επιπλέον στάδια επεξεργασίας, καθένα από τα οποία εφαρμόζεται στα αποτελέσματα του προηγούμενου.

15 To τελικό στάδιο επεξεργασίας ενός CNN πραγματοποιείται από ένα δίκτυο 2 ή 3 επιπέδων, όπου κάθε νευρώνας εξόδου αντιστοιχεί σε μια κλάση. Παρατηρήσεις: Στην πράξη, οι συντελεστές του φίλτρου δεν προεπιλέγονται, αλλά εκτιμούνται κατά τη φάση της εκπαίδευσης. Η εκπαίδευση ακολουθεί τη στρατηγική οπίσθιας διάδοσης (Back propagation), λαμβάνοντας υπόψιν τα κοινά βάρη στα συνελικτικά επίπεδα. Οι νευρώνες εξόδου του δικτύου χρησιμοποιούν την softmax ως συνάρτηση εξόδου. Αυτό, εγγυάται ότι τα αποτελέσματα θα βρίσκονται στο διάστημα (0,1).

16 Συνάρτηση softmax: Έστω s=[s 1, s 2,,s M ] T οι έξοδοι της ReLU στο δίκτυο εξόδου. Το τελικό αποτέλεσμα των νευρώνων του επιπέδου αυτού θα είναι yˆ = [ yˆ 1, yˆ 2,..., yˆ M ] T = [ e s M s s M j M e,..., e / j= 1 j= 1 1 / e s j ] T Θυμηθείτε ότι κάθε επίπεδο ανιχνεύει χαρακτηριστικά υψηλότερου επιπέδου από το προηγούμενό του.

17 Example:

18 Εκπ/ση δικτύων «βαθιάς» αρχιτεκτονικής Γενική στρατηγική Προ-εκπαίδευσε τα βάρη που σχετίζονται με κάθε κρυφό επίπεδο ακολουθιακά με χρήση μη επιβλεπόμενων τεχνικών, ξεκινώντας από το πρώτο. Προ-εκπαίδευσε τα βάρη που σχετίζονται με επίπεδο εξόδου με χρήση επιβλεπόμενων τεχνικών. Χρησιμοποίησε τις παραπάνω τιμές των βαρών ως αρχικές τιμές και εφάρμοσε τον αλγόριθμο BP algorithm ώστε να προκύψουν οι τελικές εκτιμήσεις όλων των βαρών του δικτύου. Δημοφιλής επιλογή για προ-εκπαίδευση: Restricted Boltzmann Machines (RBMs).

Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου

Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων Δρ. Ε. Χάρου Πρόγραμμα υπολογιστικής ευφυίας Ινστιτούτο Πληροφορικής & Τηλεπικοινωνιών ΕΚΕΦΕ ΔΗΜΟΚΡΙΤΟΣ exarou@iit.demokritos.gr Μηχανική

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Η παραπάνω ανάλυση ήταν χρήσιμη προκειμένου να κατανοήσουμε τη λογική των δικτύων perceptrons πολλών επιπέδων

Διαβάστε περισσότερα

Το Πολυεπίπεδο Perceptron. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Το Πολυεπίπεδο Perceptron. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Το Πολυ Perceptron Δίκτυα Πρόσθιας Τροφοδότησης (feedforward) Tο αντίστοιχο γράφημα του δικτύου δεν περιλαμβάνει κύκλους: δεν υπάρχει δηλαδή ανατροφοδότηση της εξόδου ενός νευρώνα προς τους νευρώνες από

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΟΥ ΧΩΡΟΥ ΤΩΝ ΤΑΞΙΝΟΜΗΤΩΝ Ταξινομητές Ταξινομητές συναρτ. διάκρισης Ταξινομητές επιφανειών απόφ. Παραμετρικοί ταξινομητές Μη παραμετρικοί

Διαβάστε περισσότερα

ΔΙΚΤΥO RBF. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

ΔΙΚΤΥO RBF. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων ΔΙΚΤΥO RBF Αρχιτεκτονική δικτύου RBF Δίκτυα RBF: δίκτυα συναρτήσεων πυρήνα (radial basis function networks). Πρόσθιας τροφοδότησης (feedforward) για προβλήματα μάθησης με επίβλεψη. Εναλλακτικό του MLP.

Διαβάστε περισσότερα

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το

Διαβάστε περισσότερα

ΣΥΝΕΛΙΚΤΙΚΑ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

ΣΥΝΕΛΙΚΤΙΚΑ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΜΑ ΦΥΣΙΚΗΣ - Δ.Π.Μ.Σ. «Ηλεκτρονική και Επεξεργασία της Πληροφορίας» ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΣΥΝΕΛΙΚΤΙΚΑ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΣΤΗΝ ΥΠΟΛΟΓΙΣΤΙΚΗ ΌΡΑΣΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ : ΠΑΠΑΔΟΠΟΥΛΟΣ ΑΘΑΝΑΣΙΟΣ

Διαβάστε περισσότερα

Μοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP)

Μοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP) Μοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP) x -0,5 a x x 2 0 0 0 0 - -0,5 y y 0 0 x 2 -,5 a 2 θ η τιμή κατωφλίου Μία λύση του προβλήματος XOR Multi Layer Perceptron (MLP) x -0,5 Μία

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Νευρώνας Perceptron Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος Τζώρτζης Γρηγόρης Περιεχόμενα Εισαγωγή

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα ΙΙ

Τηλεπικοινωνιακά Συστήματα ΙΙ Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 13: Συνελικτικοί Κώδικες Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Κώδικες: Εισαγωγή Συνελικτικοί κώδικες Ατζέντα Ιστορική αναδρομή Μαθηματικό υπόβαθρο Αναπαράσταση

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη. Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks

Υπολογιστική Νοημοσύνη. Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks Υπολογιστική Νοημοσύνη Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks Γενικά Ένα νευρωνικό δίκτυο λέγεται αναδρομικό, εάν υπάρχει έστω και μια σύνδεση από έναν νευρώνα επιπέδου i προς έναν νευρώνα επιπέδου

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΟΥ ΧΩΡΟΥ ΤΩΝ ΤΑΞΙΝΟΜΗΤΩΝ Ταξινομητές Ταξινομητές συναρτ. διάκρισης Ταξινομητές επιφανειών απόφ. Παραμετρικοί ταξινομητές Μη παραμετρικοί

Διαβάστε περισσότερα

Τεχνητά Νευρωνικά Δίκτυα. Τσιριγώτης Γεώργιος Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Ανατολικής Μακεδονίας & Θράκης

Τεχνητά Νευρωνικά Δίκτυα. Τσιριγώτης Γεώργιος Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Ανατολικής Μακεδονίας & Θράκης Τεχνητά Τσιριγώτης Γεώργιος Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Ανατολικής Μακεδονίας & Θράκης Ο Βιολογικός Νευρώνας Δενδρίτες Συνάψεις Πυρήνας (Σώμα) Άξονας 2 Ο Βιολογικός Νευρώνας 3 Βασικά Χαρακτηριστικά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 26 Ιανουαρίου 2004 ιάρκεια: 2 ώρες (9:00-:00) Στην παρακάτω

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

6-Aνίχνευση. Ακμών - Περιγράμματος

6-Aνίχνευση. Ακμών - Περιγράμματος 6-Aνίχνευση Ακμών - Περιγράμματος Ανίχνευση ακμών Μετατροπή 2 εικόνας σε σύνολο ακμών Εξαγωγή βασικών χαρακτηριστικών της εικόνας Πιο «συμπαγής» αναπαράσταση Ανίχνευση ακμών Στόχος: ανίχνευση ασυνεχειών

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 19η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 19η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 19η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτές βασίζονται σε ύλη των βιβλίων: Artificia Inteigence A Modern Approach των S. Russe και P.

Διαβάστε περισσότερα

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση

Διαβάστε περισσότερα

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Χωρικά φίλτρα Χωρικά φίλτρα Γενικά Σε αντίθεση με τις σημειακές πράξεις και μετασχηματισμούς, στα

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Version 2 1 ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΔΕΝΔΡΑ ΑΠΟΦΑΣΗΣ Πρόκειται για μια οικογένεια μη γραμμικών ταξινομητών Είναι συστήματα απόφασης πολλών σταδίων (multistage),

Διαβάστε περισσότερα

Ε ΘΝΙΚΟ Μ ΕΤΣΟΒΙΟ Π ΟΛΥΤΕΧΝΕΙΟ

Ε ΘΝΙΚΟ Μ ΕΤΣΟΒΙΟ Π ΟΛΥΤΕΧΝΕΙΟ Ε ΘΝΙΚΟ Μ ΕΤΣΟΒΙΟ Π ΟΛΥΤΕΧΝΕΙΟ Σ ΧΟΛΗ Η ΛΕΚΤΡΟΛΟΓΩΝ Μ ΗΧΑΝΙΚΩΝ Κ ΑΙ Μ ΗΧΑΝΙΚΩΝ Υ ΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Χρήση Τεχνικών Βαθιάς Μηχανικής Μάθησης για την Αυτόματη Δημιουργία

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδηµαϊκό έτος 2010-11 Χειµερινό Εξάµηνο Τελική εξέταση Τρίτη, 21 εκεµβρίου 2010,

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 15-16

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 15-16 HMY 795: Αναγνώριση Προτύπων Διαλέξεις 15-16 Νευρωνικά Δίκτυα(Neural Networks) Fisher s linear discriminant: Μείωση διαστάσεων (dimensionality reduction) y Τ =w x s + s =w S w 2 2 Τ 1 2 W ( ) 2 2 ( ) m2

Διαβάστε περισσότερα

Νευρωνικά ίκτυα και Εξελικτικός

Νευρωνικά ίκτυα και Εξελικτικός Νευρωνικά ίκτυα και Εξελικτικός Προγραµµατισµός Σηµερινό Μάθηµα Μη επιβλεπόµενη Μάθηση Ανταγωνιστική Μάθηση Αλγόριθµος Leader-follower clusterng Αυτοοργανούµενοι χάρτες Kohonen Ανταγωνισµός Συνεργασία

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο Πρόβλημα ο Ασκήσεις Φροντιστηρίου 5 o Φροντιστήριο Δίνεται το παρακάτω σύνολο εκπαίδευσης: # Είσοδος Κατηγορία 0 0 0 Α 2 0 0 Α 0 Β 4 0 0 Α 5 0 Β 6 0 0 Α 7 0 Β 8 Β α) Στον παρακάτω κύβο τοποθετείστε τα

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΜΙΑ ΣΥΜΒΑΣΗ: Προκειμένου να καταστήσουμε πιο συμπαγή το συμβολισμό H : ορίζουμε Ετσι έχουμε *=[ ] an *=[ ]. H : * * ΣΗΜΕΙΩΣΗ: Στη συνέχεια εκτός αν ορίζεται

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2 B MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η Bayesan περίπτωση - Διαθέσιμα δεδομένα: X=X X 2 X M. Κάθε X αντιστοιχεί στην κλάση

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη. Μάθημα 4: Μάθηση στον απλό τεχνητό νευρώνα (2)

Υπολογιστική Νοημοσύνη. Μάθημα 4: Μάθηση στον απλό τεχνητό νευρώνα (2) Υπολογιστική Νοημοσύνη Μάθημα 4: Μάθηση στον απλό τεχνητό νευρώνα (2) Ο κανόνας Δέλτα για συνεχείς συναρτήσεις ενεργοποίησης (1/2) Για συνεχείς συναρτήσεις ενεργοποίησης, θα θέλαμε να αλλάξουμε περισσότερο

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα & Περιβάλλον

Πληροφοριακά Συστήματα & Περιβάλλον ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Πληροφοριακά Συστήματα & Περιβάλλον Ενότητα 8: Τεχνητά Νευρωνικά Δίκτυα Παναγιώτης Λεφάκης Δασολογίας & Φυσικού Περιβάλλοντος Άδειες Χρήσης

Διαβάστε περισσότερα

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ. Καραγιώργου Σοφία

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ. Καραγιώργου Σοφία ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Καραγιώργου Σοφία Εισαγωγή Προσομοιώνει βιολογικές διεργασίες (π.χ. λειτουργία του εγκεφάλου, διαδικασία

Διαβάστε περισσότερα

Μάθηση και Γενίκευση. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Μάθηση και Γενίκευση. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Μάθηση και Γενίκευση Το Πολυεπίπεδο Perceptron (MultiLayer Perceptron (MLP)) Έστω σύνολο εκπαίδευσης D={(x n,t n )}, n=1,,n. x n =(x n1,, x nd ) T, t n =(t n1,, t np ) T Θα πρέπει το MLP να έχει d νευρώνες

Διαβάστε περισσότερα

Εισαγωγικά για την αναγνώριση έκφρασης προσώπου (Facial Expression Recognition)

Εισαγωγικά για την αναγνώριση έκφρασης προσώπου (Facial Expression Recognition) Ο στόχος της διπλωματικής είναι η αναγνώριση του συναισθήματος ενός συγκεκριμένου ανθρώπου από μια αλληλουχία εικόνων στις οποίες παίρνει διάφορες εκφράσεις. Αυτό θα γίνει κάνοντας χρήση τεχνικών βαθιάς

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 4: Νευρωνικά Δίκτυα στην Ταξιμόμηση Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου Ανάλυση αλγορίθμων Παράμετροι απόδοσης ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, επικοινωνία (π.χ. σε κατανεμημένα συστήματα) Προσπάθεια υλοποίησης Ανάλυση της απόδοσης Θεωρητική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις Παρασκευή 9 Ιανουαρίου 2007 5:00-8:00 εδοµένου ότι η

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson Σχεδιαζόντας ταξινομητές: Τα δεδομένα Στην πράξη η γνώση σχετικά διαδικασία γέννεσης των δεδομένων είναι πολύ σπάνια γνωστή. Το μόνο που έχουμε στη διάθεσή

Διαβάστε περισσότερα

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης Μάθημα 1ο Δρ. Ανέστης Γ. Χατζημιχαηλίδης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Αξιολόγηση μαθήματος Εισαγωγή στην ΥΝ Τεχνητά Νευρωνικά Δίκτυα (ΤΝΔ) Προγραμματισμός

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σημάτων

Ψηφιακή Επεξεργασία Σημάτων Ψηφιακή Επεξεργασία Σημάτων Ενότητα 3: Συστήματα Διακριτού Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Συστήματα Διακριτού Χρόνου Εισαγωγή στα Συστήματα Διακριτού Χρόνου Ταξινόμηση Συστημάτων ΔΧ

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

Θεωρία Πληροφορίας. Διάλεξη 10: Κωδικοποίηση καναλιού με συνελικτικούς κώδικες. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Θεωρία Πληροφορίας. Διάλεξη 10: Κωδικοποίηση καναλιού με συνελικτικούς κώδικες. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Θεωρία Πληροφορίας Διάλεξη 10: Κωδικοποίηση καναλιού με συνελικτικούς κώδικες Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Κωδικοποίηση καναλιού: Σύντομη επανάληψη Συνελικτικοί κώδικες Ιστορική

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson Μέθοδοι ελαχίστων τετραγώνων Least square methos Αν οι κλάσεις είναι γραμμικώς διαχωρίσιμες το perceptron θα δώσει σαν έξοδο ± Αν οι κλάσεις ΔΕΝ είναι

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2 1 ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΟΥ ΧΩΡΟΥ ΤΩΝ ΤΑΞΙΝΟΜΗΤΩΝ Ταξινομητές Ταξινομητές συναρτ. διάκρισης Ταξινομητές επιφανειών απόφ. Παραμετρικοί ταξινομητές Μη παραμετρικοί

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διαλέξεις 17 18 Νευρωνικά Δίκτυα (Neural Networks) συνέχεια Minimum squared error procedure for classification 1 ( T T wls = X X) X b= X b Xw = b Logistic sigmoidal function

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2 1 C MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΕΠΙΦΑΝΕΙΕΣ ΑΠΟΦΑΣΗΣ Υπενθύμιση: είναι το σύνολο δεδομένων που περιέχει τα διαθέσιμα δεδομένα από όλες

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 13: Αλγόριθμοι-Μεγάλων ακεραίων- Εκθετοποίηση- Πολλαπλασιασμός πινάκων -Strassen Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron Βιολογικός Νευρώνας Δενδρίτες, που αποτελούν τις γραμμές εισόδου των ερεθισμάτων (βιολογικών σημάτων) Σώμα, στο οποίο γίνεται η συσσώρευση των ερεθισμάτων και

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 2 Σεπτεµβρίου 2005 5:00-8:00 Σχεδιάστε έναν αισθητήρα ercetro

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΗΛΕΚΤΡΟΝΙΚΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΟΜΑ Α Α Αριθµητική Λογική Μονάδα των 8-bit 1. Εισαγωγή Γενικά µια αριθµητική λογική µονάδα (ALU, Arithmetic Logic Unit)

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2 1 M = 1 N = N prob k N k { k n ω wrongly classfed} = (1 ) N k 2 Η συνάρτηση πιθανοφάνειας L(p) μεγιστοποιείται όταν =k/n. 3 Αφού τα s είναι άγνωστα,

Διαβάστε περισσότερα

Τσαντεκίδης Αβραάμ. Αρχιτεκτονικές και Εκπαίδευση Βαθιών Νευρωνικών Δικτύων. Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής

Τσαντεκίδης Αβραάμ. Αρχιτεκτονικές και Εκπαίδευση Βαθιών Νευρωνικών Δικτύων. Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Αρχιτεκτονικές και Εκπαίδευση Βαθιών Νευρωνικών Δικτύων Τσαντεκίδης Αβραάμ Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Ιούνιος 2016 Αυτή η πτυχιακή κατατέθηκε για

Διαβάστε περισσότερα

Η δυαδική σχέση M ( «παράγει σε ένα βήμα» ) ορίζεται ως εξής: (q, w) M (q, w ), αν και μόνο αν w = σw, για κάποιο σ Σ

Η δυαδική σχέση M ( «παράγει σε ένα βήμα» ) ορίζεται ως εξής: (q, w) M (q, w ), αν και μόνο αν w = σw, για κάποιο σ Σ Πεπερασμένα Αυτόματα (ΠΑ) Τα πεπερασμένα αυτόματα είναι οι απλούστερες «υπολογιστικές μηχανές». Δεν έχουν μνήμη, μόνο μία εσωτερική μονάδα με πεπερασμένο αριθμό καταστάσεων. Διαβάζουν τη συμβολοσειρά εισόδου

Διαβάστε περισσότερα

ΚΙΝΔΥΝΟΥ ΤΩΝ ΚΑΤΟΛΙΣΘΗΣΕΩΝ ΜΕ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΣΕ ΠΕΡΙΒΑΛΛΟΝ ΓΕΩΓΡΑΦΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΚΤΙΜΗΣΗ ΔΙΑΤΡΙΒΗ

ΚΙΝΔΥΝΟΥ ΤΩΝ ΚΑΤΟΛΙΣΘΗΣΕΩΝ ΜΕ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΣΕ ΠΕΡΙΒΑΛΛΟΝ ΓΕΩΓΡΑΦΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΚΤΙΜΗΣΗ ΔΙΑΤΡΙΒΗ ΕΚΤΙΜΗΣΗ ΚΙΝΔΥΝΟΥ ΤΩΝ ΚΑΤΟΛΙΣΘΗΣΕΩΝ ΜΕ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΣΕ ΠΕΡΙΒΑΛΛΟΝ ΓΕΩΓΡΑΦΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΔΙΑΤΡΙΒΗ ΓΙΑ ΤΟΝ ΕΠΙΣΤΗΜΟΝΙΚΟ ΤΙΤΛΟ ΤΗΣ ΔΙΔΑΚΤΟΡΟΣ ΤΟΥ Ε.Μ.Π ΥΠΟΒΛΗΘΕΙΣΑ ΣΤΗ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ

Διαβάστε περισσότερα

Τεχνικές Βαθιάς Μηχανικής Μάθησης και Γνώσης για Ανάλυση Συναισθήματος στην Αλληλεπίδραση Ανθρώπου Μηχανής ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Τεχνικές Βαθιάς Μηχανικής Μάθησης και Γνώσης για Ανάλυση Συναισθήματος στην Αλληλεπίδραση Ανθρώπου Μηχανής ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Τεχνικές Βαθιάς Μηχανικής Μάθησης και Γνώσης για Ανάλυση Συναισθήματος

Διαβάστε περισσότερα

ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ 1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Σημάτων, Ελέγχου και Ρομποτικής Εργαστήριο Όρασης Υπολογιστών, Επικοινωνίας Λόγου και Επεξεργασίας Σημάτων Αναγνώριση

Διαβάστε περισσότερα

Εισαγωγή στους Νευρώνες. Κυριακίδης Ιωάννης 2013

Εισαγωγή στους Νευρώνες. Κυριακίδης Ιωάννης 2013 Εισαγωγή στους Νευρώνες Κυριακίδης Ιωάννης 2013 Τι είναι τα Τεχνητά Νευρωνικά Δίκτυα; Είναι μια προσπάθεια μαθηματικής προσομοίωσης της λειτουργίας του ανθρώπινου εγκεφάλου. Είναι ένα υπολογιστικό μοντέλο

Διαβάστε περισσότερα

Ανδρέας Παπαζώης. Τμ. Διοίκησης Επιχειρήσεων

Ανδρέας Παπαζώης. Τμ. Διοίκησης Επιχειρήσεων Ανδρέας Παπαζώης Τμ. Διοίκησης Επιχειρήσεων Περιεχόμενα Εργ. Μαθήματος Βιολογικά Νευρωνικά Δίκτυα Η έννοια των Τεχνητών Νευρωνικών Δικτύων Η δομή ενός νευρώνα Διαδικασία εκπαίδευσης Παραδείγματα απλών

Διαβάστε περισσότερα

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 3: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΚΑΙ ΑΝΑΛΥΣΗ ΕΙΚΟΝΑΣ Ακαδημαϊκό Έτος 7 8, Χειμερινό Εξάμηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Το παρόν

Διαβάστε περισσότερα

Γενικά. PDF created with pdffactory trial version

Γενικά. PDF created with pdffactory trial version Γενικά Οι συναρτήσεις είναι προκαθορισμένοι τύποι, οι οποίοι εκτελούν υπολογισμούς με συγκεκριμένη σειρά ή δομή και μπορούν να χρησιμοποιηθούν για την εκτέλεση απλών ή πολύπλοκων υπολογισμών. Οι συναρτήσεις

Διαβάστε περισσότερα

Εκπαίδευση ΤΝΔ με ελαχιστοποίηση του τετραγωνικού σφάλματος εκπαίδευσης. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν.

Εκπαίδευση ΤΝΔ με ελαχιστοποίηση του τετραγωνικού σφάλματος εκπαίδευσης. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Εκπαίδευση ΤΝΔ με ελαχιστοποίηση του τετραγωνικού σφάλματος εκπαίδευσης Ελαχιστοποίηση συνάρτησης σφάλματος Εκπαίδευση ΤΝΔ: μπορεί να διατυπωθεί ως πρόβλημα ελαχιστοποίησης μιας συνάρτησης σφάλματος E(w)

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση

Διαβάστε περισσότερα

Σέργιου Καραγιαννάκου του Γεωργίου

Σέργιου Καραγιαννάκου του Γεωργίου ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Τηλεπικοινωνιών και Τεχνολογίας της Πληροφορίας Εργαστήριο Ενσύρματης Τηλεπικοινωνίας Διπλωματική Εργασία του φοιτητή

Διαβάστε περισσότερα

Στοιχειώδης προγραμματισμός σε C++

Στοιχειώδης προγραμματισμός σε C++ Στοιχειώδης προγραμματισμός σε C++ Σύντομο Ιστορικό. Το πρόγραμμα Hello World. Ο τελεστής εξόδου. Μεταβλητές και δηλώσεις τους. Αντικείμενα, μεταβλητές, σταθερές. Ο τελεστής εισόδου. Θεμελιώδεις τύποι.

Διαβάστε περισσότερα

Νευρωνικά ίκτυα και Εξελικτικός. Σηµερινό Μάθηµα. επανάληψη Γενετικών Αλγορίθµων 1 η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές

Νευρωνικά ίκτυα και Εξελικτικός. Σηµερινό Μάθηµα. επανάληψη Γενετικών Αλγορίθµων 1 η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές Νευρωνικά ίκτυα και Εξελικτικός Προγραµµατισµός Σηµερινό Μάθηµα επανάληψη Γενετικών Αλγορίθµων η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές Κωδικοποίηση Αντικειµενική Συνάρτ Αρχικοποίηση Αξιολόγηση

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2 B MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η Bayesan περίπτωση - Διαθέσιμα δεδομένα: XX X 2 X M. Κάθε X αντιστοιχεί στην κλάση

Διαβάστε περισσότερα

Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού

Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού Κινητά Δίκτυα Επικοινωνιών Συμπληρωματικό υλικό Προσαρμοστική Ισοστάθμιση Καναλιού Προσαρμοστικοί Ισοσταθμιστές Για να υπολογίσουμε τους συντελεστές του ισοσταθμιστή MMSE, απαιτείται να λύσουμε ένα γραμμικό

Διαβάστε περισσότερα

Το μοντέλο Perceptron

Το μοντέλο Perceptron Το μοντέλο Perceptron Αποτελείται από έναν μόνο νευρώνα McCulloch-Pitts w j x x 1, x2,..., w x T 1 1 x 2 w 2 Σ u x n f(u) Άνυσμα Εισόδου s i x j x n w n -θ w w 1, w2,..., w n T Άνυσμα Βαρών 1 Το μοντέλο

Διαβάστε περισσότερα

Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).

Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα). Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού Διδάσκων: Μανόλης Κουμπαράκης Εαρινό Εξάμηνο 2016-2017. Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).

Διαβάστε περισσότερα

Νευρωνικά ίκτυα. Σηµερινό Μάθηµα

Νευρωνικά ίκτυα. Σηµερινό Μάθηµα Νευρωνικά ίκτυα Σηµερινό Μάθηµα Perceptron (Αισθητήρας) Aλγόριθµος µάθησης του Perceptron Οι εξισώσεις των Wiener-Hopf Μέθοδος Ταχύτερης Καθόδου (Steepest Descent) Οαλγόριθµος Ελάχιστου Μέσου Τετραγωνικού

Διαβάστε περισσότερα

Πληροφορική 2. Αλγόριθμοι

Πληροφορική 2. Αλγόριθμοι Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται

Διαβάστε περισσότερα

(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις (Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση

Διαβάστε περισσότερα

HEAD INPUT. q0 q1 CONTROL UNIT

HEAD INPUT. q0 q1 CONTROL UNIT Πεπερασμένα Αυτόματα (ΠΑ) Τα πεπερασμένα αυτόματα είναι οι απλούστερες «υπολογιστικές μηχανές». Δεν έχουν μνήμη, μόνο μία εσωτερική μονάδα με πεπερασμένο αριθμό καταστάσεων. Διαβάζουν τη συμβολοσειρά εισόδου

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας

Διαβάστε περισσότερα

Περιεχόμενα ΕΝΟΤΗΤΑ I. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Πρόλογος 15

Περιεχόμενα ΕΝΟΤΗΤΑ I. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Πρόλογος 15 Περιεχόμενα Πρόλογος 15 ΕΝΟΤΗΤΑ I. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 1 Τεχνητή νοημοσύνη 21 1.1 Εισαγωγή 21 1.2 Ιστορική εξέλιξη 22 1.3 Εφαρμογές Τεχνητής Νοημοσύνης 25 2 Επίλυση Προβλημάτων 29 2.1 Διαμόρφωση

Διαβάστε περισσότερα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER 4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι

Διαβάστε περισσότερα

Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ

Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ 1 η Διάλεξη: Αναδρομή στον Μαθηματικό Προγραμματισμό 2019, Πολυτεχνική Σχολή Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Περιεχόμενα 1. Γραμμικός Προγραμματισμός

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 25 Αυγούστου 26 :-4: Κατασκευάστε έναν αισθητήρα (perceptron)

Διαβάστε περισσότερα

(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις (Γραμμικές) Αναδρομικές Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις

Διαβάστε περισσότερα

(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις (Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες:. Φωτάκης. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση

Διαβάστε περισσότερα

Εισαγωγή στα Συστήματα Ψηφιακής Επεξεργασίας Σήματος

Εισαγωγή στα Συστήματα Ψηφιακής Επεξεργασίας Σήματος ΕΣ 08 Επεξεργαστές Ψηφιακών Σημάτων Εισαγωγή στα Συστήματα Ψηφιακής Επεξεργασίας Σήματος Κλήμης Νταλιάνης Λέκτορας Π.Δ.407/80 Τμήμα Επιστήμη και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήμιο Πελοποννήσου Αρχιτεκτονική

Διαβάστε περισσότερα

Αριθμητική Ανάλυση & Εφαρμογές

Αριθμητική Ανάλυση & Εφαρμογές Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 21 Σεπτεµβρίου 2004 ιάρκεια: 3 ώρες Το παρακάτω σύνολο

Διαβάστε περισσότερα

Διακριτικές Συναρτήσεις

Διακριτικές Συναρτήσεις Διακριτικές Συναρτήσεις Δρ. Δηµήτριος Τσέλιος Επίκουρος Καθηγητής ΤΕΙ Θεσσαλίας Τµήµα Διοίκησης Επιχειρήσεων Θερµικός χάρτης των XYZ ξενοδοχείων σε σχέση µε τη γεωγραφική περιοχή τους P. Adamopoulos New

Διαβάστε περισσότερα

E[ (x- ) ]= trace[(x-x)(x- ) ]

E[ (x- ) ]= trace[(x-x)(x- ) ] 1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού

Διαβάστε περισσότερα

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες

Διαβάστε περισσότερα

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Άσκηση 1 α) Η δομή σταθμισμένης ένωσης με συμπίεση διαδρομής μπορεί να τροποποιηθεί πολύ εύκολα ώστε να υποστηρίζει τις

Διαβάστε περισσότερα

(Computed Tomography, CT)

(Computed Tomography, CT) Υπολογιστική Τοµογραφία (Computed Tomography, CT) Κωσταρίδου Ελένη Αναπληρώτρια Καθηγήτρια Ιατρικής Φυσικής Εργαστήριο Ιατρικής Φυσικής, Τµήµα Ιατρικής, Πανεπιστήµιο Πατρών Περιεχόµενα µαθήµατος Φυσικό

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ H O G feature descriptor global feature the most common algorithm associated with person detection Με τα Ιστογράμματα της Βάθμωσης (Gradient) μετράμε τον προσανατολισμό και την ένταση της βάθμωσης σε μία

Διαβάστε περισσότερα

Εφαρμογές μεθοδολογιών μηχανικής εκμάθησης στο χώρο της παραγωγής υδρογονανθράκων. Βασίλης Γαγάνης

Εφαρμογές μεθοδολογιών μηχανικής εκμάθησης στο χώρο της παραγωγής υδρογονανθράκων. Βασίλης Γαγάνης Εφαρμογές μεθοδολογιών μηχανικής εκμάθησης στο χώρο της παραγωγής υδρογονανθράκων Μέθοδοι μηχανικής εκμάθησης Εύρεση μαθηματικής έκφρασης μοντέλου (κανόνα) ο κανόνας διέπει το υπό μελέτη πρόβλημα ανάπτυξη

Διαβάστε περισσότερα

Κεφάλαιο 8. Αριθμητική Λογική μονάδα

Κεφάλαιο 8. Αριθμητική Λογική μονάδα Κεφάλαιο 8 Αριθμητική Λογική μονάδα 8.1 Εισαγωγή Στη μηχανική υπολογιστών η αριθμητική/λογική μονάδα (ALU) είναι ένα ψηφιακό κύκλωμα το οποίο εκτελεί αριθμητικούς και λογικούς υπολογισμούς. Η ALU είναι

Διαβάστε περισσότερα

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Επεξεργασίας Σημάτων και Τηλεπικοινωνιών Κινητά Δίκτυα Επικοινωνιών Μέρος Α: Τηλεπικοινωνιακά Θέματα: Τεχνικές Ισοστάθμισης Διαύλου Βασικές αρχές Ισοστάθμισης

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη. Μάθημα 6: Μάθηση με Οπισθοδιάδοση Σφάλματος Backpropagation Learning

Υπολογιστική Νοημοσύνη. Μάθημα 6: Μάθηση με Οπισθοδιάδοση Σφάλματος Backpropagation Learning Υπολογιστική Νοημοσύνη Μάθημα 6: Μάθηση με Οπισθοδιάδοση Σφάλματος Backpropagation Learning Κεντρική ιδέα Τα παραδείγματα μάθησης παρουσιάζονται στο μηεκπαιδευμένο δίκτυο και υπολογίζονται οι έξοδοι. Για

Διαβάστε περισσότερα

Προσομοίωση Νευρωνικού Δικτύου στο MATLAB. Κυριακίδης Ιωάννης 2013

Προσομοίωση Νευρωνικού Δικτύου στο MATLAB. Κυριακίδης Ιωάννης 2013 Προσομοίωση Νευρωνικού Δικτύου στο MATLAB Κυριακίδης Ιωάννης 2013 Εισαγωγή Ένα νευρωνικό δίκτυο αποτελεί μια πολύπλοκη δομή, όπου τα βασικά σημεία που περιλαμβάνει είναι τα εξής: Πίνακες με τα βάρη των

Διαβάστε περισσότερα

Συσχετιστικές Μνήμες Δίκτυο Hopfield. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Συσχετιστικές Μνήμες Δίκτυο Hopfield. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Συσχετιστικές Μνήμες Δίκτυο Hopfield Συσχετιστική Μνήμη Η ανάκληση ενός γεγονότος σε μία χρονική στιγμή προκαλείται από τη συσχέτιση αυτού του γεγονότος με κάποιο ερέθισμα. Πολλές φορές επίσης καλούμαστε

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Χωρικό φιλτράρισμα Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 008. Χωρικού Φιλτράρισμα Η μηχανική

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Version Εκφράζοντας τον ταξινομητή Bayes (a) Με χρήση συναρτήσεων διάκρισης (discriminant functions) - Έστω g q (x)=f(p(ω q )p(x ω q )), q=,,m, όπου f γνησίως

Διαβάστε περισσότερα

Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων

Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Π Π Τ Μ Τ Μ Η/Υ Π Δ Μ Π Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Φοιτητής: Ν. Χασιώτης (AM: 0000) Καθηγητής: Ι. Χατζηλυγερούδης 22 Οκτωβρίου 2010 ΑΣΚΗΣΗ 1. Δίνεται

Διαβάστε περισσότερα