ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
|
|
- Ξάνθη Ζέρβας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2
3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3
4 Σκοποί ενότητας Αλγόριθμος βελτιστοποίησης με τη μέθοδο GD (Gradient Descent) Ασαφές σύστημα ως νευρωνικό δίκτυο Βελτιστοποίηση των παραμέτρων του ασαφούς συστήματος- Αλγόριθμος Μέθοδος υπολογισμού αρχικών τιμών των παραμέτρων 4
5 Περιεχόμενα ενότητας Εισαγωγή Αλγόριθμος βελτιστοποίησης με τη μέθοδο GD (Gradient Descent) Ασαφές σύστημα ως νευρωνικό δίκτυο Βελτιστοποίηση των παραμέτρων του ασαφούς συστήματος- Αλγόριθμος Μέθοδος υπολογισμού αρχικών τιμών των παραμέτρων Ασκήσεις 5
6 Εισαγωγή
7 Εισαγωγή (1) Τα νευρωνικά δίκτυα επιχειρούν να μιμηθούν τους μηχανισμούς του ανθρώπινου μυαλού σε βιολογικό επίπεδο, ενώ τα ασαφή συστήματα επιδιώκουν να αναπαραστήσουν τους μηχανισμούς της ανθρώπινης σκέψης. Ένα εκπαιδευμένο νευρωνικό δίκτυο ενσωματώνει τη γνώση στη δομή και στα βάρη των συνδέσεων, ενώ σ ένα ασαφές σύστημα η γνώση αναπαρίσταται με γλωσσικούς κανόνες. Η επεξεργασία των δεδομένων στα ασαφή συστήματα επιτυγχάνεται με συνεπαγωγές, ενώ στα νευρωνικά δίκτυα με αριθμητικές τεχνικές. Η γνώση στα ασαφή συστήματα δημιουργείται από εμπειρογνώμονες, ενώ η γνώση στα νευρωνικά δίκτυα προέρχεται μέσω αριθμητικών παραδειγμάτων και κωδικοποιείται στα βάρη του δικτύου. 7
8 Εισαγωγή (2) Ο μηχανισμός συμπεράσματος στα ασαφή συστήματα είναι πλήρως κατανοητός και διάφανος, ενώ αντίθετα στο νευρωνικό ελεγκτή ο μηχανισμός αυτός λειτουργεί χωρίς διαφάνεια σαν ένα μαύρο κουτί. Ο συνδυασμός ασαφούς λογικής και νευρωνικών δικτύων δημιουργεί τα νευρο-ασαφή συστήματα. Στα συστήματα αυτά ενσωματώνονται οι τεχνικές μάθησης των νευρωνικών δικτύων και οι τεχνικές συλλογισμού της ασαφούς λογικής. Τα νευρο-ασαφή συστήματα χρησιμοποιούν συνδυαστικά γνώση και αριθμητικά δεδομένα με στόχο έναν ευέλικτο εύκαμπτο σύστημα. 8
9 Αλγόριθμος βελτιστοποίησης με τη μέθοδο GD (Gradient Descent)
10 Περιγραφή του αλγορίθμου βελτιστοποίησης με τη μέθοδο της μείωσης της κλίσης (1) Η μείωση της κλίσης Gradient Descent) είναι ένας αλγόριθμος βελτιστοποίησης. Για να υπολογίσουμε το τοπικό ελάχιστο μιας συνάρτησης χρησιμοποιούμε τον αλγόριθμο GD Η μέθοδος GD είναι επίσης γνωστή και ως μέθοδος της απότομης κλίσης (steepest descent). Η GD βελτιστοποίηση έχει οδηγήσει σε έναν από τους περισσότερο γνωστούς αλγόριθμους μάθησης, τον αλγόριθμο της οπισθοδρομικής διάδοσης (back propagation) 10
11 Περιγραφή του αλγορίθμου βελτιστοποίησης με τη μέθοδο της μείωσης της κλίσης (2) Η μέθοδος GD βασίζεται στην παρατήρηση ότι εάν μια πραγματική συνάρτηση είναι διαφορίσημη σε ένα σημεία α τότε η τιμή της f(x) μειώνεται γρήγορα εάν απομακρυνόμαστε από το σημείο α στην κατεύθυνση της αρνητικής κλίσης της f(x) στο α, ff(αα). Δηλαδή, bb = aa λλ ff(aa) Όπου λ ένα αρκετά μικρός θετικός αριθμός και ff(αα) ff(bb). Με αυτό το δεδομένο μπορούμε να ξεκινήσουμε από το σημείο xx 0 για να υπολογίσουμε το τοπικό ελάχιστο της f. Δηλαδή, xx nn+1 = xx nn λλ nn ff(xx nn ) 11
12 Περιγραφή του αλγορίθμου βελτιστοποίησης με τη μέθοδο της μείωσης της κλίσης (3) Και ff(xx 0 ) ff(xx 1 ) ff(xx 2 ) Έτσι ευελπιστούμε η ακολουθία xx nn να συγκλίνει στο επιθυμητό τοπικό ελάχιστο. Η τιμή του μεγέθους του βήματος λ, που ονομάζεται και ρυθμός μάθησης στη θεωρία των νευρωνικών δικτύων, μπορεί να αλλάζει σε κάθε επανάληψη (iteration). Μια επανάληψη μάθησης ονομάζεται εποχή (epoch). 12
13 Περιγραφή του αλγορίθμου βελτιστοποίησης με τη μέθοδο της μείωσης της κλίσης (4) Ας υποθέσουμε ότι επιλέγουμε για ελαχιστοποίηση το τετραγωνικό σφάλμα E με παράμετρο βελτιστοποίησης την w. Αυτό μπορεί να επιτευχθεί χρησιμοποιώντας τη μέθοδο GD, δηλαδή σε κάθε επανάληψη το σφάλμα να μειώνεται γρήγορα όσο το δυνατόν μετακινούμενο προς την κατεύθυνση της αρνητικής κλίσης της Ε. Η αυξητική αλλαγή της μεταβλητής w δίνεται από τον τύπο: ΔΔww(nn) = ww(nn + 1) ww(nn) = λλ ww(nn) Στο σχήμα 1, που ακολουθεί, φαίνεται η λειτουργία του αλγόριθμου GD για την ελαχιστοποίηση της συνάρτηση του σφάλματος Ε. 13
14 Περιγραφή του αλγορίθμου βελτιστοποίησης με τη μέθοδο της μείωσης της κλίσης (5) Σχήμα 1. Επιφάνεια σφάλματος. Μέθοδος GD για τον εντοπισμό του ελαχίστου της συνάρτηση σφάλματος. 14
15 Επιλογή της δομής του συστήματος ασαφούς λογικής
16 Επιλογή της δομής του συστήματος ασαφούς λογικής (1) Για τη δομή του ασαφούς συστήματος επιλέγεται ο μηχανισμός συμπεράσματος με γινόμενο, μονότιμο ασαφοποιητή, αποασαφοποιητή COA και γκαουσιανές συναρτήσεις συμμετοχής. Η μαθηματική έκφραση του ασαφούς συστήματος είναι: με ff(xx) = MM nn ll=1 zz ll ( ii=1 μμ ll ΑΑii (xx ii )) MM nn ( μμ ll ΑΑii (xx ii ) ll=1 ii=1 ) μμ ll ΑΑii (xx ii ) = exp [ 1 2 (xx ii xx ii ll ll ) 2 ] σσ ii 16
17 Επιλογή της δομής του συστήματος ασαφούς λογικής (2) όπου Μ εκφράζει τον αριθμό των ασαφών κανόνων, το n είναι ο αριθμός των εισόδων του ελεγκτή, το μμ ΑΑ είναι η συνάρτηση συμμετοχής των γλωσσικών μεταβλητών των εισόδων και το z είναι το κέντρο του ασαφούς συνόλου του συμπεράσματος του κανόνα δηλαδή το σημείο στο οποίο η συνάρτηση συμμετοχής έχει βαθμό συμμετοχής μονάδα. Ο αριθμός των κανόνων είναι προκαθορισμένος και zz ll, xx ii ll και σσ ii ll είναι οι ελεύθερες παράμετροι προς βελτιστοποίηση. Ο σχεδιασμός του ασαφούς συστήματος τώρα ουσιαστικά είναι ο καθορισμός αυτών των παραμέτρων. 17
18 Επιλογή της δομής του συστήματος ασαφούς λογικής (3) Εάν συμβολίσουμε την πυροδότηση του κάθε κανόνα με τον nn τύπο ww ll = μμ ΑΑii ll (xxii ) τότε σε πιο απλοποιημένη μαθηματική μορφή το σύστημα ασαφούς λογικής γράφεται: ff = MM ll=1 zzll ww ll MM = aa bb ii=1 ll=1 ww ll Παρατηρώντας τον τελευταίο συναρτησιακό τύπο διαπιστώνουμε ότι αυτό μπορεί να παρουσιαστεί με ένα πρόσθιο δίκτυο τριών στρωμάτων, όπως φαίνεται στο Σχήμα 2. 18
19 Επιλογή της δομής του συστήματος ασαφούς λογικής (4) Σχήμα 2. Παρουσίαση του ασαφούς συστήματος με μορφή νευρωνικού δικτύου. 19
20 Βελτιστοποίηση των παραμέτρων με τη μέθοδο GD
21 Βελτιστοποίηση των παραμέτρων με τη μέθοδο GD (1) Το ασαφές σύστημα είναι εφοδιασμένο με τους κανόνες που έχουν προκύψει από τα δεδομένα εισόδου/εξόδου. Για να ρυθμίσουμε τις παραμέτρους zz ll, xx ll ll ii, σσ ii ορίζουμε μια συνάρτηση κόστους του σφάλματος e με στόχο την ελαχιστοποίησή της για κάθε ζευγάρι δεδομένων. ee = 1 [ff dd]2 2 Με την εφαρμογή της μεθόδου GD οι παράμετροι υπολογίζονται από τους παρακάτω τύπους: zz ll (kk + 1) = zz ll (kk) λλ zz ll kk xx ii ll (kk + 1) = xx ii ll (kk) λλ xx ii ll kk σσ ii ll (kk + 1) = σσ ii ll (kk) λλ σσ ii ll kk 21
22 Βελτιστοποίηση των παραμέτρων με τη μέθοδο GD (2) Για να υπολογίσουμε τις παραγώγους της συνάρτησης του σφάλματος e πρέπει να γνωρίζουμε την παρακάτω βασική ιδιότητα των παραγώγων. Έστω η παρακάτω συνάρτηση: ff(zz, ww) = MM ll=1 zzll ww ll MM ll=1 ww ll = zz1 ww 1 + zz 2 ww zz MM ww MM ww 1 + ww ww MM = (zzll ) TT ww ll MM ll=1 ww ll τότε Ιδιότητα 1: (zz, ww) zz ll = wwll MM ll=1 ww ll 22
23 Υπολογισμός μερικών παραγώγων
24 Υπολογισμός μερικών παραγώγων (1) 1. Υπολογισμός της μερικής παραγώγου και βάσει της ιδιότητας 1 έχουμε: Τελικά 1 ee ( = 2 [ff dd]2 ) zzll zz ll = (ff dd) zz ll ee wwll = (ff dd) = (ff dd) zzll zzll bb ee zz ll zz ll (κκ + 1) = zz ll (ff dd) (κκ) λλ ww ll (1) bb 24
25 Υπολογισμός μερικών παραγώγων (2) 2. Υπολογισμός της μερικής παραγώγου ee ll xx = ( 1 2 [ff dd]2 ) ll ii xx ii = (ff dd) xx ii ll Εφαρμόζοντας τον κανόνα της αλυσίδας υπολογίζουμε την ποσότητα ll xx = ww ll ii ww ll ll xx ii ee xx ii ll ww ll = (zzll ) TT ww ll MM ll=1 ww ll ww ll = = zzll MM ll=1 ww ll (zz ll ) TT ww ll MM ( ww ll [(zz ll ) TT ww ll ] ww ll ww ll ll=1 ) 2 MM ll=1 (zz ll ) TT ww ll ( MM ll=1 wwll ) ww ll MM ( ll=1 ww ll ) 2 25
26 Υπολογισμός μερικών παραγώγων (3) Οπότε ww ll = zzll (zzll ) TT ww ll MM ll=1 ww ll 1 MM ll=1 ww ll = (zz ll ff) 1 MM ll=1 ww ll = zzll ff bb 26
27 Υπολογισμός μερικών παραγώγων (4) Επομένως Οπότε nn ww ll ll = ee xx ii ii=1 ff xx ii ll = (zzll ff) ll 1 2 (xx ii xx ii ) 2 σσ ii ll 1 MM ll=1 ww ll (xx ii xx ii ll ) σσ ii ll ww ll (xx ii xx ii ll ) (σσ ii ll ) 2 1 σσll = (xxii xx ii wwll (σσ ll ii ii ) 2 ll ) Άρα Τελικά ee xx ii ll = (ff dd)(zzll ff) = ff dd bb xx ll ii (κκ + 1) = xx ll (ff dd) ii (κκ) λλ bb 1 MM ll=1 ww ll (zz ll ff)ww ll (xx ii xx ii ll ) σσ ii ll 2 ww ll (xx ii xx ii ll ) σσ ii ll 2 (zz ll (kk) ff) ww ll (xx ii xx ii ll (kk)) σσ ii ll (kk) 2 (2) 27
28 Υπολογισμός μερικών παραγώγων (5) 3. Υπολογισμός της μερικής παραγώγου ee σσ ii ll = (ff dd) ff σσ ii ll Εφαρμόζουμε τον κανόνα της αλυσίδας και έχουμε ee σσ ii ll ww ll σσ ii ll ff σσ ii ll = ff ww ll ww ll σσ ii ll ff ww ll = zzll ff bb nn = ee ii=1 ll 1 2 (xx ii xx ii ) 2 σσ ii ll (xx ii xx ii ll ) σσ ii ll (xxii xx ii (σσ ll ii ) 2 ll ) = wwll (xx ii xx ii (σσ ll ii ) 3 ll ) 2 28
29 Υπολογισμός μερικών παραγώγων (6) Τελικά σσ ii ll (κκ + 1) = σσ ii ll (κκ) λλ(ff dd) zzll (kk) ff bb ww ll (xx ii xx ll ii (kk)) 2 σσ ll 3 (3) ii (kk) 29
30 Αλγόριθμος εκπαίδευσης του ασαφούς συστήματος
31 Αλγόριθμος εκπαίδευσης του ασαφούς συστήματος (1) 1 ο βήμα: Καθορισμός της δομής και τω αρχικών τιμών των παραμέτρων. Οι αρχικές τιμές των παραμέτρων μπορούν να καθοριστούν σύμφωνα με γλωσσικούς κανόνες από εμπειρογνώμονες ή η επιλογή να γίνει με τέτοιο τρόπο ώστε οι συναρτήσεις συμμετοχής να καλύπτουν ομοιόμορφα τους χώρους της εισόδου και της εξόδου. Ο τρόπος επιλογής των αρχικών τιμών εξαρτάται κυρίως από το πρόβλημα που αντιμετωπίζεται. 31
32 Αλγόριθμος εκπαίδευσης του ασαφούς συστήματος (2) 2 ο βήμα: Εφαρμόζεται τα πρώτο δεδομένο στην είσοδο του ασαφούς συστήματος και υπολογίζεται η έξοδος από τα τρία επίπεδα (Σχήμα 2). Δηλαδή υπολογίζονται οι ποσότητες: nn ww ll = μμ ll ΑΑii(xxii ) = ee 1 2 ii=1 MM aa = zz ll (kk)ww ll ll=1 nn ii=1 ; ; ff = aa bb ll (xx ii xx ii (κκ)) 2 σσ ll ii (κκ) MM bb = ww ll ll=1 32
33 Αλγόριθμος εκπαίδευσης του ασαφούς συστήματος (3) 3 ο βήμα. Ενημέρωση των παραμέτρων. Χρησιμοποιώντας τον αλγόριθμο εκπαίδευσης (εξισώσεις 1,2,3) ενημερώνονται οι παράμετροι zz ll (kk + 1), xx ll ii (kk + 1) κκκκκκ σσ ll ii (kk + 1) 4 ο βήμα. Επαναλαμβάνονται τα βήματα 2 και 3 με k=k+1 μέχρι το σφάλμα ff dd να γίνει μικρότερο από ένα προκαθορισμένο μικρό αριθμό ή έναν προκαθορισμένο αριθμό επαναλήψεων κ. 33
34 Αλγόριθμος εκπαίδευσης του ασαφούς συστήματος (4) 5 ο βήμα. Επαναλαμβάνονται τα βήματα 2 έως 4 με το επόμενο ζευγάρι δεδομένων. 6 ο βήμα. Επαναλαμβάνονται τα βήματα 2 έως 5 μέχρι το ασαφές σύστημα να δουλεύει ικανοποιητικά. Για προβλήματα αναγνώρισης προτύπων όπου το σύνολο των δεδομένων εισόδου/εξόδου είναι γνωστά το 6 ο βήμα είναι εφικτό. Για on-line προβλήματα ελέγχου και δυναμική αναγνώριση συστημάτων το βήμα αυτό δεν είναι εφικτό επειδή το ζεύγος εισόδου/εξόδου σε πραγματικό χρόνο παρέχεται ένα-ένα. 34
35 Αλγόριθμος εκπαίδευσης του ασαφούς συστήματος (5) Για τον αλγόριθμο βελτιστοποίησης GD η επιλογή των αρχικών τιμών των παραμέτρων είναι κρίσιμη για τη σύγκλιση του αλγορίθμου στη βέλτιστη λύση. Διαφορετικά ο αλγόριθμος μπορεί να δώσει μια μη βέλτιστη λύση (τοπικό ελάχιστο) ή μπορεί και να αποκλίνει. Επειδή οι παράμετροι έχουν σαφώς φυσικό περιεχόμενο μπορεί να γίνει μια καλή επιλογή αρχικών τιμών. Η παράμετρος zz ll είναι το κέντρο των ασαφών συνόλων στο συμπερασματικό μέρος τω ασαφών κανόνων. Οι παράμετροι xx ii ll και σσ ii ll είναι τα κέντρα και τα εύροι των γκαουσιανών ασαφών συνόλων στο υποθετικό μέρος των ασαφών κανόνων. 35
36 Μέθοδος υπολογισμού αρχικών τιμών των παραμέτρων z, x, σ
37 Μέθοδος υπολογισμού αρχικών τιμών των παραμέτρων z, x, σ (1) Ας υποθέσουμε ότι διαθέτουμε Ν ζεύγη εσόδων/εξόδων (xx pp, dd pp ) όπου pp = 1,2,, NN και xx RR nn.. Έστω ότι επιλέγουμε ένα κλάσμα των δεδομένων για να δημιουργήσουμε τους Κ (Κ=N/m) κανόνες του ασαφούς συστήματος. Ταξινομούμε τα δεδομένα κατά αύξουσα σειρά dd ii dd ii+1, ii = 1,2,, NN 1, δηλαδή [ xx 1, dd 1, xx 2, dd 2,, xx NN, dd NN ]. Τότε η επιλογή των αρχικών τιμών των παραμέτρων mm των Κ κανόνων γίνεται ως εξής: zz ll (0) = 1 mm ddrr+(ll 1)mm, ll = 1,2,, KK rr=1 mm xx ii ll (0) = 1 mm xx iirr+(ll 1)mm, ll = 1,2,, nn rr=1 37
38 Μέθοδος υπολογισμού αρχικών τιμών των παραμέτρων z, x, σ (2) Επιλέγουμε οπότε και xx ii (mmmmmm) = max (xx 1 ii, xx 2 ii,, xx NN ii ) xx ii (mmmmmm) = min (xx 1 ii, xx 2 ii,, xx NN ii ) σσ ll ii (0) = xx ii(mmmmmm) xx ii (mmmmmm), ll = 1,2,, KK κκκκκκ ii = 1,2,, nn ΚΚ 38
39 Αριθμητικό παράδειγμα
40 Αριθμητικό παράδειγμα (1) Έστω τέσσερα αριθμητικά δεδομένα εισόδου-εξόδου τα οποία είναι ταξινομημένα κατά αύξουσα σειρά. Επιλέγουμε το m=2 και έτσι δημιουργούμε 2 κανόνες. Εάν xx 1 1 είναι AA 1 1 και xx 2 1 είναι AA 2 1 Τότε y είναι zz 1 Εάν xx 1 2 είναι AA 1 2 και xx 2 2 είναι AA 2 2 Τότε y είναι zz 2 Επομένως πρέπει να καθοριστούν οι αρχικές τιμές των παραμέτρων των ασαφών συνόλων. Δεδομένα 1o (2,3;1.5), 2o (1,4;17), 3o (5,2;27), 4o (0.5, 6;37) 40
41 Αριθμητικό παράδειγμα (2) Για όλους τους κανόνες ισχύουν: xx 1 (mmmmmm) = (2,1,5,0.5) = 5, xx 1 (mmmmmm) = (2,1,5,0.5) = 0.5 Και xx 2 (mmmmmm) = (3,4,2,6) = 6, xx 2 (mmmmmm) = (3,4,2,6) = 2 Αρχικές τιμές του 1ου κανόνα zz 1 (0) = dd1 + dd 2 2 xx 1 1 (0) = xx xx = = 16 2 = = 1.5, xx (0) = xx xx 2 2 Αρχικές τιμές του 2ου κανόνα = zz 2 (0) = dd3 + dd 4 = = 32 xx 2 1 (0) = xx xx 1 = = 2.75, xx (0) = xx xx 2 2 = 3.5 = = 4 41
42 Ασκήσεις
43 Ασκήσεις (1) 1. Η διαφορική πληροφορία των παραμετροποιημένων συναρτήσεων συμμετοχής παίζει σημαντικό ρόλο στη διαδικασία εκπαίδευσης των ασαφών συστημάτων. Να βρεθούν οι παράγωγοι,,, για την τριγωνική συνάρτηση συμμετοχής με τύπο AA xx = 1 2 xx aa όπου α το κέντρο του bb τριγώνου με βαθμό συμμετοχής «1» και b είναι το εύρος της βάσης του τριγώνου. Να βρεθούν οι παράγωγοι,,, για τη συνάρτηση 1 συμμετοχής bell με τύπο bbbbbbbb xx, aa, bb, cc = 1+ xx cc aa Να βρεθούν οι παράγωγοι,,, για τη γκαουσιανή συνάρτηση συμμετοχής με τύπο gggggggggggggggg xx, σσ, cc = exp ( 1 2 [xx cc 2bb σσ ]2 ) 43
44 Ασκήσεις (2) 2. Εάν θεωρήσουμε ότι τα σαφή σύνολα εκφράζονται από τριγωνικές συναρτήσεις (Άσκηση 1.α) να εφαρμοστεί η μέθοδος GD και να βρεθούν οι αναδρομικοί τύποι ενημέρωσης των παραμέτρων α και b. 44
45 Τέλος Ενότητας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #7: Σύστημα Ασαφούς Λογικής Μαθηματικές Εκφράσεις
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #7: Σύστημα Ασαφούς Λογικής Μαθηματικές Εκφράσεις Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
Διαβάστε περισσότεραΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #3: Αρχή της Επέκτασης - Ασαφείς Σχέσεις. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #3: Αρχή της Επέκτασης - Ασαφείς Σχέσεις Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #6: Συστήματα Ασαφούς Λογικής Ασαφοποιητές - Αποασαφοποιητές Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού
Διαβάστε περισσότεραΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #11: Ασαφής Αριθμητική. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #11: Ασαφής Αριθμητική Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #5: Ασαφής Συλλογισμός. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #5: Ασαφής Συλλογισμός Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ι Ενότητα #7: Άλγεβρα Βαθμίδων (μπλόκ) Ολική Συνάρτηση Μεταφοράς Δημήτριος Δημογιαννόπουλος Τμήματος
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ι Ενότητα #9: Σύστημα ης τάξης: Χρονική Απόκριση και Χαρακτηριστικά Μεγέθη (Φυσικοί Συντελεστές) Δημήτριος
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 3: Αριθμητικά Περιγραφικά Μέτρα Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ
Διαβάστε περισσότεραΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το
Διαβάστε περισσότεραΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος
Διαβάστε περισσότεραΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #2: Ασαφή Σύνολα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #2: Ασαφή Σύνολα Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΒιομηχανικοί Ελεγκτές
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #7: Ευφυής Ελεγκτής Μέρος Α Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν
Διαβάστε περισσότερα3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΒιομηχανικοί Ελεγκτές
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #9: Αναλογικά Συστήματα Ελέγχου Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΑναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ι Ενότητα #4: Μαθηματική εξομοίωση συστημάτων στο επίπεδο της συχνότητας Μετασχηματισμός Laplace και
Διαβάστε περισσότεραΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #13: Εξαγωγή Γνώσης από Δεδομένα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #13: Εξαγωγή Γνώσης από Δεδομένα Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ι Ενότητα #10: Σύστηματα και Απόκριση Συχνότητας - Λογαριθμικά Διαγράμματα BODE Δημήτριος Δημογιαννόπουλος
Διαβάστε περισσότεραΜέθοδοι Βελτιστοποίησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 5: Ασκήσεις Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΔυναμική Μηχανών Ι. Διδάσκων: Αντωνιάδης Ιωάννης. Απόκριση Συστημάτων 1 ου Βαθμού Ελευθερίας, που περιγράφονται από Σ.Δ.Ε.
Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Απόκριση Συστημάτων 1 ου Βαθμού Ελευθερίας, που περιγράφονται από Σ.Δ.Ε. 1 ης τάξης Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Απόκριση Συστημάτων
Διαβάστε περισσότεραΠοσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου II Ενότητα #10: Λύση Εξισώσεων Εσωτερικής Κατάστασης με Χρήση Μεθόδου Ιδιοτιμών Δημήτριος Δημογιαννόπουλος
Διαβάστε περισσότεραΒιομηχανικοί Ελεγκτές
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #10: Μοντέρνες Μέθοδοι Αναλογικού Ελέγχου Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 8: Πιθανότητες ΙΙ Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ Το
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #16: Βασικά Θεωρήματα του Διαφορικού Λογισμού Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής
Διαβάστε περισσότεραΑρχές Τηλεπικοινωνιών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχές Τηλεπικοινωνιών Ενότητα #6: Ορισμός και χαρακτηριστικά σήματος ΑΜ Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες
Διαβάστε περισσότεραΛογιστικές Εφαρμογές Εργαστήριο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Λογιστικές Εφαρμογές Εργαστήριο Ενότητα #7: Αναλυτικό Ημερολόγιο Διαφόρων Πράξεων Μαρία Ροδοσθένους Τμήμα Λογιστικής και Χρηματοοικονομικής
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #7: Μονοτονία- Ακρότατα-Αντιγραφή Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 3: Αποκατάσταση Εικόνας.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ενότητα 3: Αποκατάσταση Εικόνας Ιωάννης Έλληνας Τμήμα Υπολογιστικών Συστημάτων Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 4: Αριθμητικά Περιγραφικά Μέτρα II Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής
Διαβάστε περισσότεραΕπιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 9: Δυϊκή Θεωρία Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 6: Κωδικοποίηση & Συμπίεση Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ενότητα 6: Κωδικοποίηση & Συμπίεση Εικόνας Ιωάννης Έλληνας Τμήμα Υπολογιστικών Συστημάτων Άδειες Χρήσης Το
Διαβάστε περισσότεραΈλεγχος Κίνησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1501 - Έλεγχος Κίνησης Ενότητα: Συστήματα Ελέγχου Κίνησης Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΘεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα η : Τυχαίες Μεταβλητές, Συναρτήσεις Κατανομής Πιθανότητας. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΜαθηματικά. Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΥπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 5: Αναδρομικές σχέσεις - Υπολογισμός Αθροισμάτων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Διαβάστε περισσότεραΒιομηχανικοί Ελεγκτές
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #13: Ψηφιακός Έλεγχος Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΈλεγχος Κίνησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1501 - Έλεγχος Κίνησης Ενότητα: Αυτόματος Έλεγχος Συστημάτων Κίνησης Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου II Ενότητα #2: Ποιοτικά Χαρακτηριστικά Συστημάτων Κλειστού Βρόχου - Μόνιμα Σφάλματα Δημήτριος Δημογιαννόπουλος
Διαβάστε περισσότεραΘερμοδυναμική - Εργαστήριο
Θερμοδυναμική - Εργαστήριο Ενότητα 4: Σφάλματα περικοπής (truncation) και η σειρά Taylor Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΆδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 14: Γραμματικές Χωρίς Συμφραζόμενα Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Διαβάστε περισσότεραΑριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Λογισμός 3 Ασκήσεις. Μιχάλης Μαριάς Τμήμα Α.Π.Θ.
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Λογισμός 3 Μιχάλης Μαριάς Τμήμα Α.Π.Θ. Θεσσαλονίκη, 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Διαβάστε περισσότερα5o Εργαστήριο Σ.Α.Ε Ενότητα : Ελεγκτές PID
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 5o Εργαστήριο Σ.Α.Ε Ενότητα : Ελεγκτές PID Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Διαβάστε περισσότεραΜαθηματικά. Ενότητα 7: Μη Πεπερασμένα Όρια. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 7: Μη Πεπερασμένα Όρια Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 19: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 12: Ασυνεχείς Κατανομές Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ
Διαβάστε περισσότεραΒιομηχανικοί Ελεγκτές
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #12: Παραδείγματα Αναλογικών Συστημάτων Ελέγχου Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες
Διαβάστε περισσότεραΣυστήματα Αυτόματου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Χαρακτηριστικά των Συστημάτων Ελέγχου Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΕπιχειρησιακή Έρευνα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #: Δυναμικός Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons
Διαβάστε περισσότεραΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 4: Μετασχηματισμοί Ισοδυναμίας Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΆδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 1 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΥδραυλικά & Πνευματικά ΣΑΕ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Υδραυλικά & Πνευματικά ΣΑΕ Ενότητα # 6: Υδραυλικά Κυκλώματα Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #8: Όριο και Συνέχεια Συνάρτησης Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής
Διαβάστε περισσότεραΤίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 5: Ασκήσεις Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 22: Ανάπτυξη Κώδικα σε Matlab για την επίλυση Γραμμικών Προβλημάτων με τον Αναθεωρημένο Αλγόριθμο Simplex Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΜέθοδοι Βελτιστοποίησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 4: Το Πρόβλημα Ανάθεσης Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου ΙΙ Ενότητα #6: Σχεδιασμός Ελεγκτών με Χρήση Αναλυτικής Μεθόδου Υπολογισμού Παραμέτρων Δημήτριος Δημογιαννόπουλος
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 5: Χρήση μετασχηματισμού Laplace για επίλυση ηλεκτρικών κυκλωμάτων Μέθοδοι εντάσεων βρόχων και τάσεων κόμβων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 5: Χρήση μετασχηματισμού Laplace για επίλυση ηλεκτρικών κυκλωμάτων Μέθοδοι εντάσεων βρόχων και τάσεων
Διαβάστε περισσότεραΒέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 10: Δυναμικός προγραμματισμός Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν
Διαβάστε περισσότεραΕφαρμοσμένη Βελτιστοποίηση
Εφαρμοσμένη Βελτιστοποίηση Ενότητα 1: Το πρόβλημα της βελτιστοποίησης Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το
Διαβάστε περισσότεραΑυτοματοποιημένη χαρτογραφία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραφία Ενότητα # 9: Σύγκριση ντετερμινιστικών / στοχαστικών μοντέλων Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων
Διαβάστε περισσότεραΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ. ΕΝΟΤΗΤΑ: Γραμμικές Συναρτήσεις Διάκρισης. ΔΙΔΑΣΚΟΝΤΕΣ: Βλάμος Π. Αυλωνίτης Μ. ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΕΝΟΤΗΤΑ: Γραμμικές Συναρτήσεις Διάκρισης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΟΝΤΕΣ: Βλάμος Π. Αυλωνίτης Μ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΘεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα # 2: Συναρτήσεις Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ
Διαβάστε περισσότεραΕισαγωγή στις Τηλεπικοινωνίες
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες Ενότητα : Εισαγωγή στη Διαμόρφωση Συχνότητας (FΜ) Όνομα Καθηγητή: Δρ. Ηρακλής Σίμος Τμήμα: Ηλεκτρονικών
Διαβάστε περισσότεραΠληροφορική. Εργαστηριακή Ενότητα 5 η : Μαθηματικοί Τύποι. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Εργαστηριακή Ενότητα 5 η : Μαθηματικοί Τύποι Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το
Διαβάστε περισσότεραΣτατιστική Επιχειρήσεων Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 2: Τυχαίες Μεταβλητές Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το
Διαβάστε περισσότεραΑπόκριση σε Αρμονική Διέγερση
Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Απόκριση σε Αρμονική Διέγερση Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Απόκριση σε Αρμονική Διέγερση του καθ. Ιωάννη Αντωνιάδη και υπόκειται
Διαβάστε περισσότεραΒιομηχανικοί Ελεγκτές
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #11: Ελεγκτές PID & Συντονισμός Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν
Διαβάστε περισσότερα7 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 7 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 18: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΣυστήματα Υποστήριξης Αποφάσεων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Υποστήριξης Αποφάσεων Ενότητα # 6: Συναρτησιακά Μοντέλα Αποφάσεων Διονύσης Γιαννακόπουλος Τμήμα Διοίκησης Επιχειρήσεων
Διαβάστε περισσότεραΠαναγιώτης Ψαρράκος Αν. Καθηγητής
Ανάλυση Πινάκων Κεφάλαιο 2: Παραγοντοποίηση LU Παναγιώτης Ψαρράκος Αν Καθηγητής ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Εθνικό Μετσόβιο
Διαβάστε περισσότεραΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 21: Δυϊκή Θεωρία, Θεώρημα Συμπληρωματικής Χαλαρότητας και τρόποι χρήσης του Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Συστήματα Αυτομάτου Ελέγχου Ενότητα #5: Σχεδιασμός ελεγκτών με τη μέθοδο του Τόπου Ριζών 2 Δ. Δημογιαννόπουλος, dimogian@teipir.gr Επ. Καθηγητής
Διαβάστε περισσότεραΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 1: Δυϊκή Θεωρία, Οικονομική Ερμηνεία Δυϊκού Προβλήματος Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΛογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών
Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης 1. Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ
ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Ενότητα 11: Επιλογή μεταβλητών στην παλινδρόμηση Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Διαβάστε περισσότεραΘερμοδυναμική - Εργαστήριο
Θερμοδυναμική - Εργαστήριο Ενότητα 2: Εισαγωγή σε έννοιες προγραμματισμού με υπολογιστή Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΈλεγχος Ποιότητας και Τεχνολογία Δομικών Υλικών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Έλεγχος Ποιότητας και Τεχνολογία Δομικών Υλικών Εργαστηριακό Μέρος Ενότητα 3: Θεριμκή Ανάλυση - Διαγράμματα Φάσεων Κραμάτων Ευάγγελος
Διαβάστε περισσότεραΚινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού
Κινητά Δίκτυα Επικοινωνιών Συμπληρωματικό υλικό Προσαρμοστική Ισοστάθμιση Καναλιού Προσαρμοστικοί Ισοσταθμιστές Για να υπολογίσουμε τους συντελεστές του ισοσταθμιστή MMSE, απαιτείται να λύσουμε ένα γραμμικό
Διαβάστε περισσότεραΛογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΜαθηματικά και Φυσική με Υπολογιστές
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά και Φυσική με Υπολογιστές Σύνθετοι αναλυτικοί - αριθμητικοί υπολογισμοί Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΛογιστικές Εφαρμογές Εργαστήριο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Λογιστικές Εφαρμογές Εργαστήριο Ενότητα #5: Αναλυτικά Καθολικά Μαρία Ροδοσθένους Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ 1 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ Προβλήματα Αδιαστατοποίησης - Δυναμικής Πληθυσμών Άσκηση 3.3, σελίδα 32 από
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Συστήματα Αυτομάτου Ελέγχου Ενότητα #6: Σχεδιασμός ελεγκτών με χρήση αναλυτικής μεθόδου υπολογισμού παραμέτρων 2 Δ. Δημογιαννόπουλος, dimogian@teipir.gr
Διαβάστε περισσότεραΥπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 4: Διατάξεις Μεταθέσεις Συνδυασμοί Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΒέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 1: Εισαγωγή Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΑ, ΚΑΙΝΟΤΟΜΙΑ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ 9 Ο εξάμηνο Χημικών Μηχανικών
ΤΕΧΝΟΛΟΓΙΑ, ΚΑΙΝΟΤΟΜΙΑ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ 9 Ο εξάμηνο Χημικών Μηχανικών Γιώργος Μαυρωτάς, Αν.Καθηγητής ΕΜΠ mavrotas@chemeng.ntua.gr ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ ΑΝΑΛΥΣΗ ΡΙΣΚΟΥ Άδεια Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΘερμοδυναμική - Εργαστήριο
Θερμοδυναμική - Εργαστήριο Ενότητα 1: Αριθμητικές μέθοδοι στα φαινόμενα μεταφοράς και στη θερμοδυναμική Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΣτατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 1: ΑΣΚΗΣΕΙΣ Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ Το παρόν
Διαβάστε περισσότεραΛογική Δημήτρης Πλεξουσάκης Ασκήσεις στον Κατηγορηματικό Λογισμό Τμήμα Επιστήμης Υπολογιστών
Λογική Δημήτρης Πλεξουσάκης Ασκήσεις στον Κατηγορηματικό Λογισμό Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και ειδικότερα Αναφορά
Διαβάστε περισσότερα