ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
|
|
- Ἰάειρος Ηλιόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τεχνητή Νοημοσύνη Νευρώνας Perceptron Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος Τζώρτζης Γρηγόρης
2 Περιεχόμενα Εισαγωγή Αρχική Ιδέα Βασικές Αρχές Ιστορικά Στοιχεία Νευρώνας Perceptron Ορισμός Τεχνητός Νευρώνας Γραμμικά Διαχωρίσιμο Πρόβλημα Ιδιότητες Αρχιτεκτονική Εκπαίδευση
3 Αρχική Ιδέα Οι αρχές και λειτουργίες τους βασίζονται στο νευρικό σύστημα των ζώντων οργανισμών Έχουν ως στόχο να προσομοιώσουν τους νευρώνες του ανθρώπινου εγκεφάλου Οι βιολογικοί νευρώνες έχουν ρυθμιζόμενες παραμέτρους Μεγάλο πλήθος νευρώνων: Κάθε νευρώνας έχει περίπου 1000 συνάψεις
4
5 Βασικές Αρχές Η λειτουργία τους προσπαθεί να συνδυάσει τον τρόπο σκέψης του ανθρώπινου εγκεφάλου με τον αφηρημένο μαθηματικό τρόπο σκέψης Τα τεχνητά νευρωνικά δίκτυα (artfcal neural networks) χρησιμοποιούνται για να λύσουν προβλήματα με ηλεκτρονικό υπολογιστή Κάθε νευρωνικό δίκτυο αποτελείται από ένα μεγάλο αριθμό μονάδων, που λέγονται νευρώνες (neurons) Ο νευρώνας είναι η πιο μικρή ανεξάρτητη μονάδα του δικτύου
6 Ορισμός Αρχιτεκτονική δομή αποτελούμενη από ένα πλήθος διασυνδεδεμένων μονάδων. Κάθε μονάδα χαρακτηρίζεται από εισόδους και εξόδους και υλοποιεί τοπικά κάποιον απλό υπολογισμό Κάθε σύνδεση μεταξύ μονάδων χαρακτηρίζεται από μία τιμή βάρους. Οι τιμές των βαρών αποτελούν την γνώση που είναι αποθηκευμένη στο δίκτυο Η έξοδος κάθε μονάδας καθορίζεται από τις εισόδους της, τον τρόπο διασύνδεσης με τις άλλες μονάδες και τον τύπο της
7 Ιστορικά Στοιχεία [1] 1943 McCulloch & Ptts: πρώτο μοντέλο νευρωνικού δικτύου προτείνει ότι οι νευρώνες είναι η βασική μονάδα 1947 McCulloch & Ptts: εξελιγμένο πρότυπο για την αναγνώριση σχημάτων Ο νευρώνας μπορεί να έχει δύο μόνον καταστάσεις λειτουργία μνήμης: ύπαρξη κλειστών διαδρομών του σήματος μέσα στο δίκτυο
8 Ιστορικά Στοιχεία [2] 1949 D. Hebb: κανόνας μάθησης του Hebb κάθε φορά που το δίκτυο χρησιμοποιεί τις νευρωνικές του συνδέσεις, οι συνδέσεις αυτές ενισχύονται και το δίκτυο πλησιάζει περισσότερο στο να μάθει το πρότυπο το οποίο παρουσιάζεται όταν ο νευρώνας επανειλημμένα διεγείρει τον νευρώνα j, τότε συμβαίνει να αναπτύσσεται μια μεταβολική σύνδεση στον ένα ή και στους δύο νευρώνες, έτσι ώστε η απόδοση του φαινομένου (το διεγείρει το j) να αυξάνεται 50 J. von Neumann: παράδειγμα για υπολογιστικές μηχανές και πρώτα τεχνητά δίκτυα
9 Ιστορικά Στοιχεία [3] 1957 F. Rosenblatt: μοντέλο perceptron απλό μοντέλο δύο επιπέδων (είσοδος έξοδος) 1959 Wdrow & Hoff: μοντέλα Adalne και Madalne, τα πρώτα μοντέλα που χρησιμοποιήθηκαν επιτυχώς για πρακτικά προβλήματα (φίλτρα για εξάλειψη της ηχούς σε τηλεφωνικές γραμμές) 1969 Mnsky και Papert: βιβλίο «Perceptrons» συνολική εκτίμηση της χρησιμότητας του perceptron
10 Ιστορικά Στοιχεία [4] 1982 J. Hopfeld: νευρωνικό δίκτυο ως αποθηκευτικός χώρος 1986 McClelland & Rumelhart: βιβλίο «Parallel Dstrbuted Processng» νευρωνικό δίκτυο ως παράλληλος επεξεργαστής εσωτερική δομή του δικτύου (κρυμμένα επίπεδα) νευρώνων, εκτός από την είσοδο και την εκπαίδευση με την μέθοδο της οπισθοδιάδοσης (back propagaton)
11 Νευρώνας Perceptron Ο νευρώνας perceptron είναι το απλούστερο ΤΝΔ Χρησιμοποιείται σε προβλήματα με 2 κατηγορίες Επιλύει μόνο γραμμικά διαχωρίσιμα προβλήματα
12 Τεχνητός Νευρώνας Ο νευρώνας δέχεται ως είσοδο ένα δεδομένο: Το δεδομένο αναπαρίσταται με ένα διάνυσμα x=[x 1,,x d ] Τα x 1,,x d ονομάζονται χαρακτηριστικά Ο τεχνητός νευρώνας έχει τόσες εισόδους όση και η διάσταση των δεδομένων (d) + μία είσοδο Η τιμή κάθε εισόδου είναι η τιμή του αντίστοιχου χαρακτηριστικού x Η επιπλέον τιμή εισόδου είναι πάντα 1 (x o =1) Το [x o,x 1,,x d ] ονομάζεται επαυξημένο διάνυσμα εισόδου Σε κάθε είσοδο αντιστοιχεί μία παράμετρος w (=0,1,,d) Τα w αποκαλούνται βάρη το w 0 αποκαλείται και πόλωση Τα βάρη αναπαρίστανται με ένα διάνυσμα w=[w 0,w 1,,w d ]
13 Αρχιτεκτονική x 0 =1 w 0 Βηματική συνάρτηση 1 αν u 0 (u) 0 αν u 0 x 1 x 2. w 1 w 2 Σ φ(u) y(x) w d x d y y x φ w x φ w x w x... w x φ u 1, 0, w w 0 0 x x 0 0 d 0 w1x w x w... w d d 0 x x d d d d
14 Λειτουργία 1. Υπολογίζεται το Σ (γραμμικός συνδυασμός της εισόδου με τα βάρη) 2. Υπολογίζεται η Συνάρτηση ενεργοποίησης (με βάση το Σ)
15 Γραμμικά Διαχωρίσιμο Πρόβλημα Υπάρχει υπερεπίπεδο που διαχωρίζει τα δεδομένα των δύο κατηγοριών Στις δύο διαστάσεις το υπερεπίπεδο είναι η ευθεία d Εξίσωση υπερεπιπέδου στον d : g x) w w x ( 0 w 0 w1x1... w dx d
16 Γραμμικά Διαχωρίσιμα Προβλήματα Λογικό AND x 1 x 2 AND Λογικό OR Κατηγορία C 1 Κατηγορία C 2 o o x o x 1 x 2 OR Κατηγορία C 1 Κατηγορία C 2 x o x x
17 Ιδιότητες Η ταξινόμηση ενός δεδομένου x γίνεται ως εξής: Είσοδος του x στο perceptron Υπολογισμός του y(x ) Αν y(x )=1 ταξινόμηση στην κατηγορία 1 Αν y(x )=0 ταξινόμηση στην κατηγορία 0 H εκπαίδευση έχει ως στόχο την εύρεση των τιμών των βαρών ώστε να διαχωρίζονται σωστά τα δεδομένα στις 2 κατηγορίες
18 Εκπαίδευση Θεωρούμε το σύνολο εκπαίδευσης X={(x,t(x ))} =1,..,N Τα x είναι τα δεδομένα εκπαιδεύσεις και x =[x 1,,x d] δηλαδή x d Το t(x ) είναι η κατηγορία του δεδομένου x Με την εκπαίδευση επιθυμούμε να βρούμε τις κατάλληλες τιμές για τα βάρη ώστε το υπερεπίπεδο που αντιστοιχεί σε αυτά να διαχωρίζει ορθά όλα τα δεδομένα του συνόλου εκπαίδευσης, δηλαδή y(x )=t(x ) x X
19 Αλγόριθμός Εκπαίδευσης [1] Επαυξημένο διάνυσμα δεδομένων Στο διάνυσμα όλων των δεδομένων του συνόλου εκπαίδευσης προσθέτουμε και τη συνιστώσα x 0 =1 που αντιστοιχεί στην είσοδο με τιμή 1 του perceptron To επαυξημένο διάνυσμα για το x είναι: x e=[x 0 =1, x 1,,x d] Παρέχει ευκολία στη διατύπωση του αλγορίθμου εκπαίδευσης Βήμα 1-Αρχικοποίηση Αρχικοποίησε τα βάρη του perceptron w (0) =[w 0 (0),w 1 (0),,w d (0) ] Η αρχικοποίηση γίνεται συνήθως τυχαία π.χ. επιλέγοντας τιμές στο διάστημα (-1,1)
20 Αλγόριθμός Εκπαίδευσης [2] Βήμα 2-Ενημέρωση βαρών Θέσε ως είσοδο τα πρότυπα x του συνόλου εκπαίδευσης (ένα την φορά) Για κάθε x υπολόγισε το y(x ) και άλλαξε τα βάρη με βάση τον εξής κανόνα (ο κανόνας περιέχει πράξεις με διανύσματα!): ( t) w ( t 1) w w w ( t) ( t) nx nx e e αν y( x αν y( x ) 0 & t( x ) 1& t( x αν y( x ) t( x ) ) 1 ) 0 Στη συνέχεια προχώρησε στο επόμενο πρότυπο Όταν τα πρότυπα εξαντληθούν άρχισε από την αρχή Κάθε κυκλική επανάληψη όλων των προτύπων καλείται εποχή Ορθή ταξινόμηση τα βάρη δεν αλλάζουν
21 Αλγόριθμός Εκπαίδευσης [3] Τερματισμός Επανέλαβε το βήμα 2 εωσότου όλα τα πρότυπα ταξινομηθούν σωστά, δηλαδή y(x )=t(x ) x X Το παραπάνω είναι ισοδύναμο με το να μη γίνει αλλαγή στα βάρη σε μία εποχή Ρυθμός μάθησης n Πρόκειται για σταθερά του αλγορίθμου εκπαίδευσης Καθορίζει πόσο έντονα μεταβάλλονται τα βάρη σε κάθε ανανέωση Ισχύει: n>0 και n (0,1]
22 Αλγόριθμός Εκπαίδευσης [4] t=0 -Αρχικοποίησε τα βάρη do{ for =1 to N { -Υπολόγισε το y(x ) με χρήση των βαρών w (t) ( t) -Ανανέωσε τα βάρη w nxe αν y( x t=t+1 ( t 1) ( t) w w nxe αν y( x } ( t) }untl y(x )=t(x ) x w αν y( x X ) 0 & t( x ) 1& t( x ) t( x ) ) 1 ) 0
23 Αλγόριθμός Εκπαίδευσης [5] Ο αλγόριθμος τερματίζει μόνον όταν y(x )=t(x ) x X Τερματισμός μόνο για γραμμικά διαχωρίσιμα προβλήματα Μη γραμμικά διαχωρίσιμο άπειρες επαναλήψεις Θεώρημα Αν το πρόβλημα είναι γραμμικά διαχωρίσιμο αποδεικνύεται ότι ο αλγόριθμος συγκλίνει Άγνωστος ο αριθμός επαναλήψεων εωσότου συγκλίνει Η σύγκλιση επηρεάζεται από το ρυθμό μάθησης n πολύ μεγάλο πιθανή ταλάντωση γύρω από τη λύση n πολύ μικρό ο αλγόριθμος συγκλίνει αργά
24 Αλγόριθμός Εκπαίδευσης [6] Η τελική λύση (τελικές τιμές των βαρών) εξαρτάται από: Τις αρχικές τιμές των βαρών Τη σειρά παρουσίασης των δεδομένων στον αλγόριθμο Την τιμή του ρυθμού μάθησης Ο αλγόριθμος βρίσκει ένα από τα άπειρα υπερεπίπεδα που διαχωρίζουν το σύνολο εκπαίδευσης (εφόσον είναι γραμμικά διαχωρίσιμο)
25 x = [0.7,-0.5; ,-0.2; ,0.6; ,0.3]; t = [0,0,1,1]; w = [ ]; n = 1;
26 - Perceptron - - Πρώτυπα : 4 - Αρχικά w: (0.300,-0.200,0.300) Εποχή Πρώτυπο:( 0.70,-0.50) u(x)=1* * * 0.30 = 0.01 φ(u)=1 t=0 ---> Ανανέωση w: w = w - 1*x = ( 0.30,-0.20, 0.30) - 1*( 1.00, 0.70,- 0.50) = (-0.70,-0.90, 0.80) - Πρώτυπο:(-0.50,-0.20) u(x)=1* * * 0.80 = φ(u)=0 t=0 - Πρώτυπο:( 0.80, 0.60) u(x)=1* * * 0.80 = φ(u)=0 t=1 ---> Ανανέωση w: w = w + 1*x = (-0.70,-0.90, 0.80) + 1*( 1.00, 0.80, 0.60) = ( 0.30,-0.10, 1.40) - Πρώτυπο:(-0.10, 0.30) u(x)=1* * * 1.40 = 0.73 φ(u)=1 t=1
27 Εποχή Πρώτυπο:( 0.70,-0.50) u(x)=1* * * 1.40 = φ(u)=0 t=0 - Πρώτυπο:(-0.50,-0.20) u(x)=1* * * 1.40 = 0.07 φ(u)=1 t=0 ---> Ανανέωση w: w = w - 1*x = ( 0.30,-0.10, 1.40) - 1*( 1.00,-0.50,- 0.20) = (-0.70, 0.40, 1.60) - Πρώτυπο:( 0.80, 0.60) u(x)=1* * * 1.60 = 0.58 φ(u)=1 t=1 - Πρώτυπο:(-0.10, 0.30) u(x)=1* * * 1.60 = φ(u)=0 t=1 ---> Ανανέωση w: w = w + 1*x = (-0.70, 0.40, 1.60) + 1*( 1.00,-0.10, 0.30) = ( 0.30, 0.30, 1.90) Εποχή Πρώτυπο:( 0.70,-0.50) u(x)=1* * * 1.90 = φ(u)=0 t=0 - Πρώτυπο:(-0.50,-0.20) u(x)=1* * * 1.90 = φ(u)=0 t=0 - Πρώτυπο:( 0.80, 0.60) u(x)=1* * * 1.90 = 1.68 φ(u)=1 t=1 - Πρώτυπο:(-0.10, 0.30) u(x)=1* * * 1.90 = 0.84 φ(u)=1 t=1
28
Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron Βιολογικός Νευρώνας Δενδρίτες, που αποτελούν τις γραμμές εισόδου των ερεθισμάτων (βιολογικών σημάτων) Σώμα, στο οποίο γίνεται η συσσώρευση των ερεθισμάτων και
Το μοντέλο Perceptron
Το μοντέλο Perceptron Αποτελείται από έναν μόνο νευρώνα McCulloch-Pitts w j x x 1, x2,..., w x T 1 1 x 2 w 2 Σ u x n f(u) Άνυσμα Εισόδου s i x j x n w n -θ w w 1, w2,..., w n T Άνυσμα Βαρών 1 Το μοντέλο
Το Πολυεπίπεδο Perceptron. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
Το Πολυ Perceptron Δίκτυα Πρόσθιας Τροφοδότησης (feedforward) Tο αντίστοιχο γράφημα του δικτύου δεν περιλαμβάνει κύκλους: δεν υπάρχει δηλαδή ανατροφοδότηση της εξόδου ενός νευρώνα προς τους νευρώνες από
Εκπαίδευση ΤΝΔ με ελαχιστοποίηση του τετραγωνικού σφάλματος εκπαίδευσης. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν.
Εκπαίδευση ΤΝΔ με ελαχιστοποίηση του τετραγωνικού σφάλματος εκπαίδευσης Ελαχιστοποίηση συνάρτησης σφάλματος Εκπαίδευση ΤΝΔ: μπορεί να διατυπωθεί ως πρόβλημα ελαχιστοποίησης μιας συνάρτησης σφάλματος E(w)
4.3. Γραµµικοί ταξινοµητές
Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων
Υπολογιστική Νοημοσύνη. Μάθημα 4: Μάθηση στον απλό τεχνητό νευρώνα (2)
Υπολογιστική Νοημοσύνη Μάθημα 4: Μάθηση στον απλό τεχνητό νευρώνα (2) Ο κανόνας Δέλτα για συνεχείς συναρτήσεις ενεργοποίησης (1/2) Για συνεχείς συναρτήσεις ενεργοποίησης, θα θέλαμε να αλλάξουμε περισσότερο
Τεχνητά Νευρωνικά Δίκτυα. Τσιριγώτης Γεώργιος Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Ανατολικής Μακεδονίας & Θράκης
Τεχνητά Τσιριγώτης Γεώργιος Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Ανατολικής Μακεδονίας & Θράκης Ο Βιολογικός Νευρώνας Δενδρίτες Συνάψεις Πυρήνας (Σώμα) Άξονας 2 Ο Βιολογικός Νευρώνας 3 Βασικά Χαρακτηριστικά
Συσχετιστικές Μνήμες Δίκτυο Hopfield. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
Συσχετιστικές Μνήμες Δίκτυο Hopfield Συσχετιστική Μνήμη Η ανάκληση ενός γεγονότος σε μία χρονική στιγμή προκαλείται από τη συσχέτιση αυτού του γεγονότος με κάποιο ερέθισμα. Πολλές φορές επίσης καλούμαστε
ΔΙΚΤΥO RBF. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
ΔΙΚΤΥO RBF Αρχιτεκτονική δικτύου RBF Δίκτυα RBF: δίκτυα συναρτήσεων πυρήνα (radial basis function networks). Πρόσθιας τροφοδότησης (feedforward) για προβλήματα μάθησης με επίβλεψη. Εναλλακτικό του MLP.
Ασκήσεις μελέτης της 19 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 19 ης διάλεξης 19.1. Δείξτε ότι το Perceptron με (α) συνάρτηση ενεργοποίησης
ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ. Καραγιώργου Σοφία
ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Καραγιώργου Σοφία Εισαγωγή Προσομοιώνει βιολογικές διεργασίες (π.χ. λειτουργία του εγκεφάλου, διαδικασία
3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPTRON
3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPRON 3. ΕΙΣΑΓΩΓΗ: Το Perceptron είναι η απλούστερη μορφή Νευρωνικού δικτύου, το οποίο χρησιμοποιείται για την ταξινόμηση ενός ειδικού τύπου προτύπων, που είναι γραμμικά διαχωριζόμενα.
ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το
Τεχνητή Νοημοσύνη. TMHMA ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ. Εξάμηνο 5ο Οικονόμου Παναγιώτης & Ελπινίκη Παπαγεωργίου. Νευρωνικά Δίκτυα.
Τεχνητή Νοημοσύνη. TMHMA ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ Εξάμηνο 5ο Οικονόμου Παναγιώτης & Ελπινίκη Παπαγεωργίου. Νευρωνικά Δίκτυα. 1 ΤΕΧΝΗΤΑ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Χαρακτηριστικά Είδη εκπαίδευσης Δίκτυα
Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο
Πρόβλημα ο Ασκήσεις Φροντιστηρίου 5 o Φροντιστήριο Δίνεται το παρακάτω σύνολο εκπαίδευσης: # Είσοδος Κατηγορία 0 0 0 Α 2 0 0 Α 0 Β 4 0 0 Α 5 0 Β 6 0 0 Α 7 0 Β 8 Β α) Στον παρακάτω κύβο τοποθετείστε τα
Τεχνητή Νοημοσύνη. 19η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 19η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτές βασίζονται σε ύλη των βιβλίων: Artificia Inteigence A Modern Approach των S. Russe και P.
Υπολογιστική Νοημοσύνη. Μάθημα 12: Παραδείγματα Ασκήσεων 2
Υπολογιστική Νοημοσύνη Μάθημα 12: Παραδείγματα Ασκήσεων 2 Δίκτυα Πολλών Επιπέδων Με μη γραμμικούς νευρώνες Έστω ένα πρόβλημα κατηγοριοποίησης, με δύο βαθμούς ελευθερίας (x, y) και δύο κατηγορίες (A, B).
Εισαγωγή στους Νευρώνες. Κυριακίδης Ιωάννης 2013
Εισαγωγή στους Νευρώνες Κυριακίδης Ιωάννης 2013 Τι είναι τα Τεχνητά Νευρωνικά Δίκτυα; Είναι μια προσπάθεια μαθηματικής προσομοίωσης της λειτουργίας του ανθρώπινου εγκεφάλου. Είναι ένα υπολογιστικό μοντέλο
Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο
Ασκήσεις Φροντιστηρίου 4 o Φροντιστήριο Πρόβλημα 1 ο Ο πίνακας συσχέτισης R x του διανύσματος εισόδου x( στον LMS αλγόριθμο 1 0.5 R x = ορίζεται ως: 0.5 1. Ορίστε το διάστημα των τιμών της παραμέτρου μάθησης
Αναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Μέθοδοι πολυδιάστατης ελαχιστοποίησης
Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΜΙΑ ΣΥΜΒΑΣΗ: Προκειμένου να καταστήσουμε πιο συμπαγή το συμβολισμό H : ορίζουμε Ετσι έχουμε *=[ ] an *=[ ]. H : * * ΣΗΜΕΙΩΣΗ: Στη συνέχεια εκτός αν ορίζεται
Αναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 2: Δομικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης
Μάθημα 4 ο Δρ. Ανέστης Γ. Χατζημιχαηλίδης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Διευρυμένη Υπολογιστική Νοημοσύνη (ΥΝ) Επεκτάσεις της Κλασικής ΥΝ. Μεθοδολογίες
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2 1 ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΟΥ ΧΩΡΟΥ ΤΩΝ ΤΑΞΙΝΟΜΗΤΩΝ Ταξινομητές Ταξινομητές συναρτ. διάκρισης Ταξινομητές επιφανειών απόφ. Παραμετρικοί ταξινομητές Μη παραμετρικοί
Επαναληπτικές μέθοδοι
Επαναληπτικές μέθοδοι Η μέθοδος της διχοτόμησης και η μέθοδος Regula Fals που αναφέραμε αξιοποιούσαν το κριτήριο του Bolzano, πραγματοποιώντας διαδοχικές υποδιαιρέσεις του διαστήματος [α, b] στο οποίο,
Μοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP)
Μοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP) x -0,5 a x x 2 0 0 0 0 - -0,5 y y 0 0 x 2 -,5 a 2 θ η τιμή κατωφλίου Μία λύση του προβλήματος XOR Multi Layer Perceptron (MLP) x -0,5 Μία
Μάθηση και Γενίκευση. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
Μάθηση και Γενίκευση Το Πολυεπίπεδο Perceptron (MultiLayer Perceptron (MLP)) Έστω σύνολο εκπαίδευσης D={(x n,t n )}, n=1,,n. x n =(x n1,, x nd ) T, t n =(t n1,, t np ) T Θα πρέπει το MLP να έχει d νευρώνες
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΟΥ ΧΩΡΟΥ ΤΩΝ ΤΑΞΙΝΟΜΗΤΩΝ Ταξινομητές Ταξινομητές συναρτ. διάκρισης Ταξινομητές επιφανειών απόφ. Παραμετρικοί ταξινομητές Μη παραμετρικοί
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Η παραπάνω ανάλυση ήταν χρήσιμη προκειμένου να κατανοήσουμε τη λογική των δικτύων perceptrons πολλών επιπέδων
ΑΝΤΑΓΩΝΙΣΤΙΚΗ ΜΑΘΗΣΗ ΔΙΚΤΥA LVQ και SOM. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
ΑΝΤΑΓΩΝΙΣΤΙΚΗ ΜΑΘΗΣΗ ΔΙΚΤΥA LVQ και SOM Μάθηση χωρίς επίβλεψη (unsupervised learning) Σύνολο εκπαίδευσης D={(x n )}, n=1,,n. x n =(x n1,, x nd ) T, δεν υπάρχουν τιμές-στόχοι t n. Προβλήματα μάθησης χωρίς
ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΔΕ. 11 ΙΟΥΝΙΟΥ 2012
ΔΕ. ΙΟΥΝΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η ( μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάσει το συντελεστή συσχέτισης. (γράψτε ποιο χαρακτηριστικό
Μάθημα 1: Εισαγωγή στην. Υπολογιστική Νοημοσύνη
Υπολογιστική Νοημοσύνη Μάθημα 1: Εισαγωγή στην Υπολογιστική Νοημοσύνη Εισαγωγή Ένας δυναμικά αναπτυσσόμενος κλάδος της Πληροφορικής είναι η Υπολογιστική Νοημοσύνη. Η Υπολογιστική Νοημοσύνη αποτελεί ένα
Πληροφοριακά Συστήματα Διοίκησης
Πληροφοριακά Συστήματα Διοίκησης Τρεις αλγόριθμοι μηχανικής μάθησης ΠΜΣ Λογιστική Χρηματοοικονομική και Διοικητική Επιστήμη ΤΕΙ Ηπείρου @ 2018 Μηχανική μάθηση αναγνώριση προτύπων Η αναγνώριση προτύπων
Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης
Μάθημα 5 ο Δρ. Ανέστης Γ. Χατζημιχαηλίδης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Διευρυμένη Υπολογιστική Νοημοσύνη (ΥΝ) Επεκτάσεις της Κλασικής ΥΝ. Μεθοδολογίες
Υπολογιστική Νοημοσύνη. Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks
Υπολογιστική Νοημοσύνη Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks Γενικά Ένα νευρωνικό δίκτυο λέγεται αναδρομικό, εάν υπάρχει έστω και μια σύνδεση από έναν νευρώνα επιπέδου i προς έναν νευρώνα επιπέδου
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2 1 C MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΕΠΙΦΑΝΕΙΕΣ ΑΠΟΦΑΣΗΣ Υπενθύμιση: είναι το σύνολο δεδομένων που περιέχει τα διαθέσιμα δεδομένα από όλες
Αναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 4: Νευρωνικά Δίκτυα στην Ταξιμόμηση Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ. ΕΝΟΤΗΤΑ: Γραμμικές Συναρτήσεις Διάκρισης. ΔΙΔΑΣΚΟΝΤΕΣ: Βλάμος Π. Αυλωνίτης Μ. ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΕΝΟΤΗΤΑ: Γραμμικές Συναρτήσεις Διάκρισης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΟΝΤΕΣ: Βλάμος Π. Αυλωνίτης Μ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012
ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η (3 μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάση το συντελεστή συσχέτισης. (γράψτε ποιο
Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 2ο Φροντιστήριο
Ασκήσεις Φροντιστηρίου 2ο Φροντιστήριο Πρόβλημα ο Ο κανόνας δέλτα που περιγράφεται από την παρακάτω ισότητα n) ηe n)x και ο κανόνας του Hebb που περιγράφεται από την επόμενη ισότητα n) ηy x αποτελούν δύο
Υπολογιστική Νοημοσύνη. Μέρος Β Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα (ΤΝΔ) Αναστάσιος Ντούνης, Καθηγητής 1
Υπολογιστική Νοημοσύνη Μέρος Β Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα (ΤΝΔ) Αναστάσιος Ντούνης, Καθηγητής 1 Περίγραμμα Διαλέξεων 1. Ορισμοί - Γενικά στοιχεία στα ΤΝΔ 2. Ιστορική αναδρομή 3. Ανάδραση 4.
Υπολογιστική Νοημοσύνη. Μάθημα 6: Μάθηση με Οπισθοδιάδοση Σφάλματος Backpropagation Learning
Υπολογιστική Νοημοσύνη Μάθημα 6: Μάθηση με Οπισθοδιάδοση Σφάλματος Backpropagation Learning Κεντρική ιδέα Τα παραδείγματα μάθησης παρουσιάζονται στο μηεκπαιδευμένο δίκτυο και υπολογίζονται οι έξοδοι. Για
Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα Τεχνητή Νοημοσύνη (Artificial Intelligence) Ανάπτυξη μεθόδων και τεχνολογιών για την επίλυση προβλημάτων στα οποία ο άνθρωπος υπερέχει (?) του υπολογιστή Συλλογισμοί
ΕΡΩΤΗΜΑΤΑ σε ΝΕΥΡΩΝΙΚΑ
ηµήτρης Ψούνης ΠΛΗ3, Απαντήσεις Quiz σε ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΕΡΩΤΗΜΑΤΑ σε ΝΕΥΡΩΝΙΚΑ Μάθηµα 3. ΕΡΩΤΗΜΑ Ένας αισθητήρας µπορεί να µάθει: a. εδοµένα που ανήκουν σε 5 διαφορετικές κλάσεις. b. εδοµένα που ανήκουν
num(m(w 1 ;... ; w k )) = f(num(w 1 ),..., num(w k ))
Υπολογισμοί με Μ.Τ. Εστω M = (K, Σ, δ, s, {y, n}) μια Μ.Τ. Κάθε συνολική κατάσταση τερματισμού της οποίας η κατάσταση τερματισμού είναι το y, θα ονομάζεται συνολική κατάσταση αποδοχής, ενώ αν η κατάσταση
Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 3ο Φροντιστήριο
Ασκήσεις Φροντιστηρίου 3ο Φροντιστήριο Πρόβλημα 1 ο Το perceptron ενός επιπέδου είναι ένας γραμμικός ταξινομητής προτύπων. Δικαιολογήστε αυτή την πρόταση. x 1 x 2 Έξοδος y x p θ Κατώφλι Perceptron (στοιχειώδης
Πληροφοριακά Συστήματα & Περιβάλλον
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Πληροφοριακά Συστήματα & Περιβάλλον Ενότητα 8: Τεχνητά Νευρωνικά Δίκτυα Παναγιώτης Λεφάκης Δασολογίας & Φυσικού Περιβάλλοντος Άδειες Χρήσης
Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 15/1/2008
Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 5//008 Πρόβληµα ο Στα παρακάτω ερωτήµατα επισηµαίνουµε ότι perceptron είναι ένας νευρώνας και υποθέτουµε, όπου χρειάζεται, τη χρήση δικτύων
Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού
Κινητά Δίκτυα Επικοινωνιών Συμπληρωματικό υλικό Προσαρμοστική Ισοστάθμιση Καναλιού Προσαρμοστικοί Ισοσταθμιστές Για να υπολογίσουμε τους συντελεστές του ισοσταθμιστή MMSE, απαιτείται να λύσουμε ένα γραμμικό
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΟΥ ΧΩΡΟΥ ΤΩΝ ΤΑΞΙΝΟΜΗΤΩΝ Ταξινομητές Ταξινομητές συναρτ. διάκρισης Ταξινομητές επιφανειών απόφ. Παραμετρικοί ταξινομητές Μη παραμετρικοί
Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων
Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή
Προσομοίωση Νευρωνικού Δικτύου στο MATLAB. Κυριακίδης Ιωάννης 2013
Προσομοίωση Νευρωνικού Δικτύου στο MATLAB Κυριακίδης Ιωάννης 2013 Εισαγωγή Ένα νευρωνικό δίκτυο αποτελεί μια πολύπλοκη δομή, όπου τα βασικά σημεία που περιλαμβάνει είναι τα εξής: Πίνακες με τα βάρη των
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ
ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 7 Ιανουαρίου 2005 ιάρκεια εξέτασης: 5:00-8:00 Έστω ότι
Κεφάλαιο 2. Ιστορική αναδροµή
Κεφάλαιο 2. Ιστορική αναδροµή Σκοπός: Στο κεφάλαιο αυτό γίνεται µία σύντοµη ιστορική ανασκόπηση της περιοχής των νευρωνικών δικτύων. Παρουσιάζονται επιγραµµατικά τα έργα που σηµάδευσαν την περιοχή αυτή,
2x 1 + x 2 x 3 + x 4 = 1. 3x 1 x 2 x 3 +2x 4 = 3 x 1 +2x 2 +6x 3 x 4 = 4
Παράδειγμα 2x 1 +2x 2 +0x 3 +6x 4 = 8 2x 1 + x 2 x 3 + x 4 = 1 3x 1 x 2 x 3 +2x 4 = 3 x 1 +2x 2 +6x 3 x 4 = 4 Επαυξημένος πίνακας: 2 2 0 6 8 2 1 1 1 1 Ã = 3 1 1 2 3 1 2 6 1 4 Γενικό σύστημα a 11 x 1 +a
Ανδρέας Παπαζώης. Τμ. Διοίκησης Επιχειρήσεων
Ανδρέας Παπαζώης Τμ. Διοίκησης Επιχειρήσεων Περιεχόμενα Εργ. Μαθήματος Εκπαίδευση (μάθηση) Νευρωνικών Δικτύων Απλός αισθητήρας Παράδειγμα εκπαίδευσης Θέματα υλοποίησης Νευρωνικών Δικτύων 2/17 Διαδικασία
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ
ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 2 Οκτωβρίου 23 ιάρκεια: 2 ώρες Έστω το παρακάτω γραµµικώς
Μη Συµβολικές Μέθοδοι
Μη Συµβολικές Μέθοδοι! Η Συµβολική (symbolic AI): # Προσοµοιώνει τον τρόπο σκέψης του ανθρώπου, χρησιµοποιώντας ως δοµικές µονάδες τα σύµβολα. # Ένα σύµβολο µπορεί να αναπαριστά µία έννοια ή µία σχέση
Α.Τ.Ε.Ι ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΕΡΓΑΣΤΗΡΙΟ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ. Σχήμα 1 Η λειτουργία του νευρώνα
Α.Τ.Ε.Ι ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΕΡΓΑΣΤΗΡΙΟ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ 1 Ο Νευρώνας Τα τεχνικά νευρωνικά δίκτυα αποτελούν μια προσπάθεια μαθηματικής προσομοίωσης της λειτουργίας του ανθρώπινου
Non Linear Equations (2)
Non Linear Equations () Τρίτη, 17 Φεβρουαρίου 015 5:14 μμ 15.0.19 Page 1 15.0.19 Page 15.0.19 Page 3 15.0.19 Page 4 15.0.19 Page 5 15.0.19 Page 6 15.0.19 Page 7 15.0.19 Page 8 15.0.19 Page 9 15.0.19 Page
Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου
Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού
Εφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)
Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών
Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3
Τεχνητά Νευρωνικά Δίκτυα
Τεχνητά Νευρωνικά Δίκτυα & εφαρμογή τους στην πρόγνωση καιρού Πτυχιακή Εργασία Όνομα: Ανδρέας Φωτέας ΑΜ: 200600226 Επιβλέπων: Εμμανουήλ Τσίλης 2 Περιεχόμενα 1. Αρχές Λειτουργίας...7 1.1 Η δομή ενός νευρωνικού
Αναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Υλοποίηση Συστήματος Ανίχνευσης Εισβολών σε Περιβάλλον Android για Ασύρματα Δίκτυα Πρόσβασης
Πανεπιστήμιο Δυτικής Μακεδονίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Υλοποίηση Συστήματος Ανίχνευσης Εισβολών σε Περιβάλλον Android για Ασύρματα Δίκτυα Πρόσβασης Ράδογλου
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Συγκριτική Μελέτη Μεθόδων Κατηγοριοποίησης σε Ιατρικά Δεδομένα
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Συγκριτική Μελέτη Μεθόδων Κατηγοριοποίησης σε Ιατρικά Δεδομένα
Υφαλμύρινση Παράκτιων Υδροφορέων - προσδιορισμός και αντιμετώπιση του φαινομένου με συνδυασμό μοντέλων προσομοίωσης και μεθόδων βελτιστοποίησης
Υφαλμύρινση Παράκτιων Υδροφορέων - προσδιορισμός και αντιμετώπιση του φαινομένου με συνδυασμό μοντέλων προσομοίωσης και μεθόδων βελτιστοποίησης Καθ. Καρατζάς Γεώργιος Υπ. Διδ. Δόκου Ζωή Σχολή Μηχανικών
Τεχνητή Νοημοσύνη. 18η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 18η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται: στο βιβλίο Machine Learning του T. Mitchell, McGraw- Hill, 1997,
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου
Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
Θ.Ε. ΠΛΗ31 (2004-5) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #3 Στόχος Στόχος αυτής της εργασίας είναι η απόκτηση δεξιοτήτων σε θέματα που αφορούν τα Τεχνητά Νευρωνικά Δίκτυα και ποιο συγκεκριμένα θέματα εκπαίδευσης και υλοποίησης.
PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ"
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ" ΜΕΡΟΣ ΤΡΙΤΟ Υπεύθυνος Καθηγητής Λυκοθανάσης Σπυρίδων Ακαδημαικό Έτος: 2011-2012
Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών
Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι
Κεφάλαιο 19 Τεχνητά Νευρωνικά ίκτυα (Artificial Neural Nets)
Κεφάλαιο 9 Τεχνητά Νευρωνικά ίκτυα (Artfcal Neural Nets) Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Νευρωνικά ίκτυα (Ν ) - Εισαγωγή Είναι µια ιδιαίτερη
Μη γραµµικοί ταξινοµητές Νευρωνικά ίκτυα
KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Μη γραµµικοί ταξινοµητές Νευρωνικά ίκτυα ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Εισαγωγή Πολυεπίπεδες Perceptron Οαλγόριθµος
Τεχνητή Νοημοσύνη. 17η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 17η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται: στο βιβλίο Artificia Inteigence A Modern Approach των S. Russe και
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 18: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής:
ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής: (,)(,)()() h 1 u x t u x t u t x (1) e Η διαφορά με τα
Ατομική Διπλωματική Εργασία. Πρόβλεψη ποδοσφαιρικών αποτελεσμάτων με την χρήση τεχνητών νευρωνικών δικτύων. Αντρέας Ιακώβου ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ
Ατομική Διπλωματική Εργασία Πρόβλεψη ποδοσφαιρικών αποτελεσμάτων με την χρήση τεχνητών νευρωνικών δικτύων Αντρέας Ιακώβου ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Μάιος 2010 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων
Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση
Γραµµικοί Ταξινοµητές
ΚΕΣ 3: Αναγνώριση Προτύπων και Ανάλυση Εικόνας KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Γραµµικοί Ταξινοµητές ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου 7 Ncolas sapatsouls
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΠΜΣ: Ηλεκτρονικής Φυσικής (Ραδιοηλεκτρολογίας) Κατεύθυνση: Ηλεκτρονική Τεχνολογία Τηλεπικοινωνιών ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ (Αρ.
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΤΡΙΤΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017. Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες. Η πρώτης τάξης διαφορική εξίσωση
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017 Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες Η πρώτης τάξης διαφορική εξίσωση M(x, y) + (x, y)y = 0 ή ισοδύναμα, γραμμένη στην μορφή M(x,
ΠΡΟΣΕΓΓΙΣΗ ΚΑΙ ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ ΜΙΑΣ ΔΙΑΣΤΑΣΗΣ ΜΕ ΣΥΝΔΥΑΣΜΟ MLP ΚΑΙ RBF ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ.
ΠΡΟΣΕΓΓΙΣΗ ΚΑΙ ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ ΜΙΑΣ ΔΙΑΣΤΑΣΗΣ ΜΕ ΣΥΝΔΥΑΣΜΟ MLP ΚΑΙ RBF ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ Υποβάλλεται στην ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης
Π Τ Υ Χ Ι Α Κ Η /ΔΙ Π Λ Ω Μ ΑΤ Ι Κ Η Ε Ρ ΓΑ Σ Ι Α
Α Ρ Ι Σ Τ Ο Τ Ε Λ Ε Ι Ο Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Θ Ε Σ Σ Α Λ Ο Ν Ι Κ Η Σ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Π Τ Υ Χ Ι Α Κ Η /ΔΙ Π Λ Ω Μ ΑΤ Ι Κ Η Ε Ρ ΓΑ Σ Ι Α ΤΕΧΝΙΚΕΣ ΟΜΑΔΟΠΟΙΗΣΗΣ ΜΕ ΧΡΗΣΗ ΝΕΥΡΩΝΙΚΩΝ
6. Στατιστικές μέθοδοι εκπαίδευσης
6. Στατιστικές μέθοδοι εκπαίδευσης Μία διαφορετική μέθοδος εκπαίδευσης των νευρωνικών δικτύων χρησιμοποιεί ιδέες από την Στατιστική Φυσική για να φέρει τελικά το ίδιο αποτέλεσμα όπως οι άλλες μέθοδοι,
Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο
Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 21: Δυϊκή Θεωρία, Θεώρημα Συμπληρωματικής Χαλαρότητας και τρόποι χρήσης του Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Version 2 1 Άλλοι τύποι νευρωνικών δικτύων Αυτοοργανούμενοι χάρτες (Self-organizing maps - SOMs) Αναδρομικά νευρωνικά δίκτυα (Recurrent Neural Networks): γενικής
Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή
Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδημαϊκό έτος 2010-11 Χειμερινό Εξάμηνο Practice final exam 1. Έστω ότι για
Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί
Κατηγορίες προβλημάτων (σε μια διάσταση) Εισαγωγικές έννοιες Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Το πρόβλημα
Δίκτυα Perceptron. Κυριακίδης Ιωάννης 2013
Δίκτυα Perceptron Κυριακίδης Ιωάννης 2013 Αρχιτεκτονική του δικτύου Το δίκτυο Perceptron είναι το πρώτο νευρωνικό δίκτυο το οποίο θα κατασκευάσουμε και στη συνέχεια θα εκπαιδεύσουμε προκειμένου να το χρησιμοποιήσουμε
Εργαστήριο Υπολογιστικής Νοημοσύνης Ευφυούς Ελέγχου. Αναστάσιος Ντούνης, Καθηγητής
Εργαστήριο Υπολογιστικής Νοημοσύνης Ευφυούς Ελέγχου Αναστάσιος Ντούνης, Καθηγητής Υπολογιστική Νοημοσύνη Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα (ΤΝΔ) Αναστάσιος Ντούνης, Καθηγητής 2 Περίγραμμα Διαλέξεων
Εφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι