4.3. Γραµµικοί ταξινοµητές
|
|
- Ἀελλώ Γαλάνης
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων υπολογίζονται οι ποσότητες όπου w ο πίνακας των συντελεστών των γραµµικών διακριτικών συναρτήσεων και ο πίνακας προτύπου που θεωρείται ως είσοδος στον κόµβο (Σχήµα - ) w w ν w w ν w N Ν Σχήµα - Σ Όπως φαίνεται στο σχήµα οι συντελεστές w ν σηµειώνονται επί των γραµµών που οδηγούν από τις εισόδους ν στον κόµβο και ονοµάζονται συνάψεις Ένας τέτοιος κόµβος ονοµάζεται νευρώνας λόγω µιας οµοιότητας του µε τα οµώνυµα βιολογικά κύτταρα του ανθρώπινου εγκεφάλου Συστήµατα διασυνδεδεµένων νευρώνων συνθέτουν τα λεγόµενα τεχνητά νευρωνικά δίκτυα (ΤΝ ), (rtificial Neural Networks) ιάφοροι τύποι νευρωνικών δικτύων επιτελούν χρήσιµες εργασίες στην αναγνώριση προτύπων Προς το παρόν θα ασχοληθούµε µε νευρωνικά δίκτυα που περιγράφουν γραµµικούς ταξινοµητές Ένα τέτοιο γραµµικό νευρωνικό δίκτυο ονοµάζεται perceptron Αναγνώριση Προτύπων-Νευρωνικά ίκτυα -7 Τµήµα πληροφορικής & Επικοινωνιών
2 Εκπαίδευση γραµµικών ταξινοµητών δυο κλάσεων Η εκπαίδευση γραµµικών ταξινοµητών ή γραµµικών νευρωνικών δικτύων Perceptron είναι µια επαναληπτική διαδικασία διόρθωσης σφάλµατος Για την απλούστερη µαθηµατική διατύπωση του µηχανισµού διόρθωσης θα θεωρήσουµε τους επαυξηµένους πίνακες των προτύπων Αν δηλαδή ο χώρος N των πινάκων των Προτύπων έχει Ν διαστάσεις (E ) οι σχέσεις θα γραφούν στον χώρο εξής: N E + που έχει Ν+ διαστάσεις Η διαδικασία εν συντοµία έχει ως Αν Α και Β οι δυο κλάσεις επιλέγουµε τυχαία ένα πρότυπο µε πίνακα από την Α τάξη και ένα πρότυπο µε πίνακα από την Β τάξη Ακολούθως φέρουµε το µεσοκάθετο υπερ-επιπέδου στο ευθύγραµµο τµήµα µε άκρα τα άκρα των r και r Το µεσοκάθετο υπερ-επιπέδου είναι το ενδιάµεσο σηµείο αν, E, η µεσοκάθετος ευθεία αν, E, το µεσοκάθετο υπερ- επιπέδου αν, E, και η µεσοκάθετος υπερ-επιπέδου αν, E N, N > Αν η εξίσωση του µεσοκάθετου υπερ-επιπέδου στο () w + 0 w N + µπορεί να γραφεί στο N E + () ~ W 0 οπου W [ w, w ] και ~ [,] ως N+ N E είναι Θεωρούµε τώρα την ποσότητα D( X) όπου [, W X X ] N+ E N+ Η σχέση D( X) 0 περιγράφει ένα υπερεπίπεδο που διέρχεται από το κέντρο των αξόνων του και τέµνει το επίπεδο των επαυξηµένων πινάκων των προτύπων στο µεσοκάθετο υπερεπίπεδο τους ισχύει N E + N E D( ~ ) > 0, τότε θα ισχύει D( ~ ) < 0 και αντίστροφα σύµφωνα µε την () ν Η βασική ιδέα της εκµάθησης είναι η διόρθωση του υπερεπιπέδου D( X) 0 του Ε Ν+, κάθε φορά που ταξινοµείται εσφαλµένα κάποιο πρότυπο µε πίνακα ~ ηλαδή, οι πίνακες των πρότυπων της κλάσης Α πρέπει να Αναγνώριση Προτύπων-Νευρωνικά ίκτυα -8 Τµήµα πληροφορικής & Επικοινωνιών
3 καθιστούν το πρόσηµο της D(X) ίδιο µε αυτό της ποσότητας D( ~ ) Αντίστοιχα πρέπει να συµβαίνει µε τους πίνακες των προτύπων της κλάσης Β Όταν δεν συµβαίνει αυτό, σηµαίνει ότι το υπερεπιπεδο πρέπει να διορθωθεί ώστε να αφήνει το πρότυπο προς την πλευρά των ορθώς ταξινοµηµένων προτύπων Η διόρθωση αυτή γίνεται σύµφωνα µε την σχέση () W W ± ρ ~ t+ t Η ποσότητα ρ λέγεται παράµετρος εκµάθησης και παίρνει τιµές στο διάστηµα (0,) και t είναι µετρητής επανάληψης της διαδικασίας εκµάθησης Το πρόσηµο στην () είναι αυτό της κλάσης του προτύπου όπως αυτό προσδιορίσθηκε από την ποσότητα D( ~ ) Τα παραπάνω παρουσιάζονται ακολούθως βηµατικά Βήµα ο : Επιλέγουµε τυχαία ένα πρότυπο από την κλάση µε πίνακα Α και ένα από την κλάση Β µε πίνακα Β, µε Α, Β Ε Ν Βήµα ο : Φέρουµε το µεσοκάθετο υπερεπίπεδο στο ευθύγραµµο τµήµα µε άκρα τα σηµεία Α, Β σύµφωνα µε τις σχέσεις () Βήµα ο : Ορίζουµε ένα µετρητή επανάληψης t0,,,, και του αποδίδουµε αρχικά την τιµή µηδέν Θεωρούµε την ποσότητα () D t (X)W X όπου W[w, w N+ ], X Ε Ν+ Βήµα ο : Υπολογίζουµε την ποσότητα D t ( ~ ) και βρίσκουµε το πρόσηµο κάθε κλάσης που θα είναι Πρόσηµο κλάσης Πρόσηµο Α κλάσης Β D 0 ( ~ ) > (+) (-) 0 D 0 ( ~ ) < (-) (+) 0 Βήµα ο : Επιλέγουµε ένα τυχαίο πρότυπο Π µε πίνακα ~, από το σύνολο εκπαίδευσης και υπολογίζουµε την ποσότητα D t ( ~ ) Αν το πρόσηµο της είναι ίδιο µε το πρόσηµο της κλάσης του Π το πρότυπο έχει ταξινοµηθεί σωστά και W t+ W t, αλλιώς ο W t+ διορθώνεται σύµφωνα µε την σχέση Αναγνώριση Προτύπων-Νευρωνικά ίκτυα -9 Τµήµα πληροφορικής & Επικοινωνιών
4 () W t+ W t ±ρ ~ (7) µε πρόσηµο το πρόσηµο της κλάσης του Π Βήµα 6 ο : Αυξάνεται η τιµή του t κατά ένα και η διαδικασία επαναλαµβάνεται από το βήµα έως ότου όλα τα πρότυπα να ταξινοµηθούν σωστά ΠΑΡΑ ΕΙΓΜΑ Έστω τα πρότυπα µε ένα χαρακτηριστικό ( []) που χωρίζονται σε δύο κλάσεις Α, Β και µε τιµές [], [08], [ ] [], [], [8], 6 7 [] Οι πίνακες των προτύπων ανήκουν στο χώρο Ε και απεικονίζονται στην ευθεία των πραγµατικών αριθµών όπως φαίνεται στο Σχ - M Σχήµα - Επιλέγουµε τυχαία ένα πρότυπο από κάθε κλάση, έστω τα και Το ενδιάµεσο σηµείο M των και, θα ικανοποιεί τις σχέσεις () και θα ισχύει (6) w w ' Αρα m w + w - ( - 0, w [w ] E [-]-[] [-] w M m ) - ([ ][ ] [][]) και w, w - R Στον επαυξηµένο χώρο E η σχέση Αναγνώριση Προτύπων-Νευρωνικά ίκτυα -0 Τµήµα πληροφορικής & Επικοινωνιών
5 (7) - M + 0 γράφεται (8) ~ W M 0 µε W [-, ] και ~ M [ M,] Η σχέση (9) W X 0 µε Χ [, ] E περιγράφει την ευθεία (ε) µε εξίσωση : (0) W w (ε) w X 0 [, ] 0 w + w Στο Σχ- φαίνονται τα άκρα των επαυξηµένων διανυσµάτων των προτύπων και η ευθεία (ε) ~ + (ε) (ε ) (ε ) ~ ~ ~ ~ ~ M ~ 6 ~ Σχήµα - Θεωρούµε την ποσότητα () D( X ) W X -, Ισχύει Αναγνώριση Προτύπων-Νευρωνικά ίκτυα - Τµήµα πληροφορικής & Επικοινωνιών
6 () D( ~ ) -, (-) + - < 0 Θα πρέπει ως εκ τούτου οι επαυξηµένοι πίνακες των προτύπων της κλάσης Β να καθιστούν την D( X) < 0 και αυτοί της κλάσης Α το D( X) > 0 Εάν αυτό δεν ισχύει η ποσότης D(X) πρέπει να διορθωθεί Προς τούτο ελέγχουµε την ποσότητα D(X) για όλα τα πρότυπα µε τυχαία σειρά και διορθώνουµε την D(X) όταν χρειαστεί Συγκεκριµένα για ρ 0 έχουµε τα ακόλουθα βήµατα: t ~ w W t w ~ ) D( W ~ 0 ~ - W < 0 ~ - 6 W < 0 ~ 08-6 W < 0 ~ -8 W < 0 ~ W < 0 ~ - -8 W 9 ~ W 6 9 ~ W 7 9 ~ -8 8 W 8 9 ~ -8 9 W 9 9 (-8) (-) > 0 (-8) < 0 (-8) > 0 (-8) < > 0 Πρόσηµο κλάσης του ~ ιόρθωση W W + p ~ t W W t W W W W W W W 6 W W 7 W 6 W 8 W 7 W 9 W 8 Κατά τα βήµατα για t,,,9 έχουν προσπελασθεί όλα τα πρότυπα έχουν ταξινοµηθεί σωστά Συνεπώς η εξίσωση Αναγνώριση Προτύπων-Νευρωνικά ίκτυα - Τµήµα πληροφορικής & Επικοινωνιών
7 () ή ισοδύναµα W () X 0 µε W [-8,9] διαχωρίζει τις δύο κλάσεις Στο Σχ- φαίνονται οι ευθείες (ε ), (ε ) για W W και W W στις αντίστοιχες φάσεις διόρθωσης Ακολούθως παρουσιάζεται η υλοποίηση ενός γραµµικού ταξινοµητή µε την γλώσσα προγραµµατισµού C, για την εκµάθηση των τιµών της λογικής διάζευξης (OR) #include<stdioh> #include<conioh> #define K #define N float [K][N+]{ 00, 00, 0, 00, 0, 0, 0, 00, 0, 0, 0, 0 }; float _class[k] { 00, 0, 0, 0 }; float w[n+] { 0, 0, -}; float D, r 0; int k, n; bool error; main() { //---- raining phase do {error false; for(k 0; k < K; k++) { D [ k][0]*w[ 0] + [ k][ ]*w[ ] + [ k][ ]*w[ ]; // printf("w(%+f %+f %+f ",w[0], w[], w[]); printf("(%+f, %+f, %+f) ",[k][0],[k][],[k][]); printf("d()%+f, class:%f ",D, _class[ k]); // if( D >0 && _class[ k] 00) { w[0]-r*[k][0]; w[]-r*[k][]; w[]-r*[k][]; error true; printf("false\n"); } else if(d < 0 && _class[ k] 0) { w[0]+r*[k][0]; w[]+r*[k][]; w[]+r*[k][]; error true; printf("false\n"); } else printf("rue\n"); } }while(error); } printf("d() %+f %+f %+f\n", w[0], w[], w[]); Αναγνώριση Προτύπων-Νευρωνικά ίκτυα - Τµήµα πληροφορικής & Επικοινωνιών
8 Από την εκτέλεση του προγράµµατος προκύπτουν τα ενδιάµεσα στάδια εκπαίδευσης και η ευθεία διαχωρισµού των κλάσεων w( (+000, +000, +) D()-0, class:000 rue w( (+000, +00, +) D()-00, class:00 False w( (+00, +000, +) D()-00, class:00 False w( (+00, +00, +) D()+0, class:00 rue w( (+000, +000, +) D()-0, class:000 rue w( (+000, +00, +) D()+00, class:00 rue w( (+00, +000, +) D()+00, class:00 rue w( (+00, +00, +) D()+0, class:00 rue D() Η απόφαση ταξινόµησης σε µία από τις δύο κλάσεις που διαχωρίζονται από ένα υπερεπίπεδο εξαρτάται τελικώς από το πρόσηµο της ποσότητας D( ~ ) Για την περιγραφή µε µαθηµατικό τρόπο ορίζουµε την συνάρτηση d() µε την παρακάτω σχέση : αν D( () ~ + ) W ~ > 0 d( ) ~ για D( ~ ) {} 0 -αν D( ~ R ) W < 0 Η τιµή + κωδικοποιεί την περίπτωση το πρότυπο να ανήκει στην κλάση d() ~ ) D( Σχήµα - για την οποία D( ~ ) >0 και η την περίπτωση το πρότυπο να ανήκει στην κλάση για την οποία D( ~ ) <0 Η γραφική παράσταση των τιµών της d() σε σχέση µε τις τιµές της D( ~ ) δείχνεται στο Σχ - Στα διαγράµµατα η d() θα παριστάνεται όπως στο Σχ - Αναγνώριση Προτύπων-Νευρωνικά ίκτυα - Τµήµα πληροφορικής & Επικοινωνιών
9 + - Σχήµα - Κατόπιν τούτων µπορούµε να παραστήσουµε διαγραµµατικά την ταξινόµηση ενός νέου προτύπου σε µία από τις δύο γραµµικά διαχωρίσιµες κλάσεις Α, Β, όπως δείχνεται στο Σχ- w ν Ν w w ν w N + Σ w N+ - + Σχήµα - Ο τύπος διόρθωσης () γράφεται τώρα W t+ W t ρd() ~ και αιτιολογείται εάν θεωρήσουµε το πρόβληµα εύρεσης του W ως πρόβληµα βελτιστοποίησης (optimization) µιας συνάρτησης κόστους Κ(W) Μία τέτοια συνάρτηση είναι η N + (6) Κ( W ) : R R µε Κ( W) ( d( ) W ~ ) S όπου S το σύνολο των διανυσµάτων που ταξινοµήθηκαν λάθος Η συνάρτηση Κ(W) εκφράζει ουσιαστικά το συνολικό σφάλµα ταξινόµησης και είναι κατά τµήµατα γραµµική συνάρτηση Η βέλτιστη λύση του προβλήµατος είναι η εύρεση τέτοιου W ώστε Κ(W)0 Αν WW 0 είναι µία αρχική τιµή, η βέλτιστη τιµή του W µπορεί να προσεγγισθεί από τον τύπο K ( W) (7) W t+ Wt Wt d ~ ρ ρ ( ) W S Αναγνώριση Προτύπων-Νευρωνικά ίκτυα - Τµήµα πληροφορικής & Επικοινωνιών
10 Ο τύπος αυτός αποτελεί έναν επαναληπτικό αλγόριθµο ελαχιστοποίησης της συνάρτησης κόστους Γραµµικοί ταξινοµητές πολλών επιπέδων Όταν το πρόβληµα της ταξινόµησης αφορά περισσότερες από δύο κλάσεις ή όταν οι κλάσεις δεν είναι γραµµικά διαχωρίσιµες, είναι δυνατόν να επιτευχθούν λύσεις µε κατάλληλους συνδυασµούς γραµµικών ταξινοµητών Μια τέτοια χαρακτηριστική περίπτωση είναι αυτή της λογικής πύλης XOR της οποίας ο πίνακας αληθείας δείχνεται στο Σχ- α β α XOR β Σχήµα - Σύµφωνα µε αυτόν οι συνδυασµοί των τιµών των λογικών µεταβλητών α, β αποτελούν τέσσερα πρότυπα που περιγράφονται από τα διανύσµατα στοιχείων συνόλου Ω { (0,0), (0,), (,0), (,) } και η πράξη α XOR β ορίζει τις κλάσεις Α{(0,0),(,)} και Β{(0,),(,0)} Στο Σχ- φαίνονται τα άκρα των διανυσµάτων στο Ε Είναι προφανές ότι οι κλάσεις Α, Β δεν διαχωρίζονται µε µια ευθεία Ο διαχωρισµός των κλάσεων µπορεί να γίνει µε δύο ευθείες (Σχ-) που ορίζουν µία ζώνη στο εσωτερικό της οποίας βρίσκονται τα πρότυπα της κλάσης Β Η ευθεία (ε ) µπορεί να προσδιοριστεί από ένα γραµµικό ταξινοµητή που θα διαχωρίζει το πρότυπο (,) από τα υπόλοιπα Η ευθεία (ε ) µπορεί να προσδιορισθεί από ένα γραµµικό ταξινοµητή Τ που θα διαχωρίζει το πρότυπο (0,0) από τα υπόλοιπα Αναγνώριση Προτύπων-Νευρωνικά ίκτυα -6 Τµήµα πληροφορικής & Επικοινωνιών
11 (ε ) (ε ) Σχήµα - Οι έξοδοι των Τ, Τ θα είναι οι τιµές των συναρτήσεων d (), d () για Ω θα είναι : α β d () d () ΚΛΑΣΗ Α Β Β + + Α Οι τιµές των d (), d () προσδιορίζουν τις κλάσεις Α και Β αποτελώντας ένα νέο σύνολο προτύπου Φ{(-,-),(-,+),(+,+)} (η περίπτωση (+,-) είναι αδύνατη) Στο Σχ- φαίνεται ο χώρος του Φ d () d () Σχήµα - Η κλάση Α προσδιορίζεται από το σηµείο (+,+) του χώρου Φ που διαχωρίζεται γραµµικά µε την ευθεία (ε) από τα διανύσµατα (-,-),(+,+) που προσδιορίζουν την κλάση Β Ένας γραµµικός ταξινοµητής Τ µπορεί να Αναγνώριση Προτύπων-Νευρωνικά ίκτυα -7 Τµήµα πληροφορικής & Επικοινωνιών
12 προσδιορίσει την ε Σ αυτόν αν d Τ ()>0 και αν d Τ ()<0 Το όλο σύστηµα φαίνεται στο Σχ- w w Σ d () Σ d() Ν w w Σ d () Σχήµα - Γραµµικός ταξινοµητής-ν Perceptron δύο επιπέδων Αναγνώριση Προτύπων-Νευρωνικά ίκτυα -8 Τµήµα πληροφορικής & Επικοινωνιών
4. Μέθοδοι αναγνώρισης ταξινοµητές µε επόπτη
ΑΕΙ Σερρών 4. Μέθοδοι αναγνώρισης ταξινοµητές µε επόπτη 4.. Αναγνώριση µε βάση τα κέντρα των τάξεων Είναι µια απλοϊκή µέθοδος αναγνώρισης µε επόπτη σύµφωνα µε την οποία κατά την εκµάθηση υπολογίζεται η
2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5
IOYNIOΣ 23 Δίνονται τα εξής πρότυπα: x! = 2.5 Άσκηση η (3 µονάδες) Χρησιµοποιώντας το κριτήριο της οµοιότητας να απορριφθεί ένα χαρακτηριστικό µε βάση το συντελεστή συσχέτισης. Γράψτε εδώ το χαρακτηριστικό
ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Νευρώνας Perceptron Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος Τζώρτζης Γρηγόρης Περιεχόμενα Εισαγωγή
Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων
Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση
Το μοντέλο Perceptron
Το μοντέλο Perceptron Αποτελείται από έναν μόνο νευρώνα McCulloch-Pitts w j x x 1, x2,..., w x T 1 1 x 2 w 2 Σ u x n f(u) Άνυσμα Εισόδου s i x j x n w n -θ w w 1, w2,..., w n T Άνυσμα Βαρών 1 Το μοντέλο
Γραµµικοί Ταξινοµητές
ΚΕΣ 3: Αναγνώριση Προτύπων και Ανάλυση Εικόνας KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Γραµµικοί Ταξινοµητές ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου 7 Ncolas sapatsouls
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδηµαϊκό έτος 2010-11 Χειµερινό Εξάµηνο Τελική εξέταση Τρίτη, 21 εκεµβρίου 2010,
5. Μέθοδοι αναγνώρισης εκπαίδευση χωρίς επόπτη
5. Μέθοδοι αναγνώρισης εκπαίδευση χωρίς επόπτη Tο πρόβληµα του προσδιορισµού των συγκεντρώσεων των προτύπων, όταν δεν είναι γνωστό το πλήθος τους και η ταυτότητα των προτύπων, είναι δύσκολο και για την
ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ. ΕΝΟΤΗΤΑ: Γραμμικές Συναρτήσεις Διάκρισης. ΔΙΔΑΣΚΟΝΤΕΣ: Βλάμος Π. Αυλωνίτης Μ. ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΕΝΟΤΗΤΑ: Γραμμικές Συναρτήσεις Διάκρισης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΟΝΤΕΣ: Βλάμος Π. Αυλωνίτης Μ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Αναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron Βιολογικός Νευρώνας Δενδρίτες, που αποτελούν τις γραμμές εισόδου των ερεθισμάτων (βιολογικών σημάτων) Σώμα, στο οποίο γίνεται η συσσώρευση των ερεθισμάτων και
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ
ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 2 Σεπτεµβρίου 2005 5:00-8:00 Σχεδιάστε έναν αισθητήρα ercetro
Μη γραµµικοί ταξινοµητές Νευρωνικά ίκτυα
KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Μη γραµµικοί ταξινοµητές Νευρωνικά ίκτυα ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Εισαγωγή Πολυεπίπεδες Perceptron Οαλγόριθµος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ
ΘΕΜΑ ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις Παρασκευή 9 Ιανουαρίου 2007 5:00-8:00 εδοµένου ότι η
5 Παράγωγος συνάρτησης
5 Παράγωγος συνάρτησης Ας ϑεωρήσουµε µια συνάρτηση f µε πεδίο ορισµού το [a, b]. Για κάθε 0 [a, b] ορίζουµε µια νέα συνάρτηση µε τύπο µε πεδίο ορισµού D(Π 0 ) = D(f ) { 0 }. Την συνάρτηση Π 0 Π 0 () =
Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 3ο Φροντιστήριο
Ασκήσεις Φροντιστηρίου 3ο Φροντιστήριο Πρόβλημα 1 ο Το perceptron ενός επιπέδου είναι ένας γραμμικός ταξινομητής προτύπων. Δικαιολογήστε αυτή την πρόταση. x 1 x 2 Έξοδος y x p θ Κατώφλι Perceptron (στοιχειώδης
Ασκήσεις μελέτης της 19 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 19 ης διάλεξης 19.1. Δείξτε ότι το Perceptron με (α) συνάρτηση ενεργοποίησης
Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν
Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 7/5/2000 Μηχανική ΙI Μετασχηµατισµοί Legendre Έστω µια πραγµατική συνάρτηση. Ορίζουµε την παράγωγο συνάρτηση της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα).
ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΔΕ. 11 ΙΟΥΝΙΟΥ 2012
ΔΕ. ΙΟΥΝΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η ( μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάσει το συντελεστή συσχέτισης. (γράψτε ποιο χαρακτηριστικό
Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E0: Μαθηµατική διατύπωση µοντέλου επίλυσης απλού δικτύου διανοµής
4. Ο αισθητήρας (perceptron)
4. Ο αισθητήρας (perceptron) Σκοπός: Προσδοκώµενα αποτελέσµατα: Λέξεις Κλειδιά: To µοντέλο του αισθητήρα (perceptron) είναι από τα πρώτα µοντέλα νευρωνικών δικτύων που αναπτύχθηκαν, και έδωσαν µεγάλη ώθηση
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης
ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ
ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com Αδεια χρήσης 3η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα 1 ΣΥΣΤΗΜΑΤΑ....................................................
Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή
Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδημαϊκό έτος 2010-11 Χειμερινό Εξάμηνο Practice final exam 1. Έστω ότι για
ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ 2012
ΠΑ. 7 ΣΕΠΤΕΜΒΡΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η (3 μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάση το συντελεστή συσχέτισης. (γράψτε ποιο
Τμήμα Διοίκησης Επιχειρήσεων
Τμήμα Διοίκησης Επιχειρήσεων ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα 2: Γραφική επίλυση προβληµάτων γραµµικού προγραµµατισµού(γ.π.) ιδάσκων: Βασίλειος Ισµυρλής Τηλ:6979948174, e-mail: vasismir@gmail.com
4 Συνέχεια συνάρτησης
4 Συνέχεια συνάρτησης Σε αυτή την ενότητα ϑα µελετήσουµε την έννοια της συνέχειας συνάρτησης. Πιο συγκεκριµένα πότε ϑα λέγεται µια συνάρτηση συνεχής σε ένα σηµείο το οποίο ανήκει στο πεδίο ορισµού της
Εκπαίδευση ΤΝΔ με ελαχιστοποίηση του τετραγωνικού σφάλματος εκπαίδευσης. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν.
Εκπαίδευση ΤΝΔ με ελαχιστοποίηση του τετραγωνικού σφάλματος εκπαίδευσης Ελαχιστοποίηση συνάρτησης σφάλματος Εκπαίδευση ΤΝΔ: μπορεί να διατυπωθεί ως πρόβλημα ελαχιστοποίησης μιας συνάρτησης σφάλματος E(w)
Κεφάλαιο 1. Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων
Κεφάλαιο Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων. Εισαγωγή Η µοντελοποίηση πολλών φυσικών φαινοµένων και συστηµάτων και κυρίως αυτών που εξελίσσονται στο χρόνο επιτυγχάνεται µε
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ
1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..
οµή δικτύου ΣΧΗΜΑ 8.1
8. ίκτυα Kohonen Το µοντέλο αυτό των δικτύων προτάθηκε το 1984 από τον Kοhonen, και αφορά διαδικασία εκµάθησης χωρίς επίβλεψη, δηλαδή δεν δίδεται καµία εξωτερική επέµβαση σχετικά µε τους στόχους που πρέπει
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΙΓΜΑΤΙΚΗ Ι ΑΣΚΑΛΙΑ «ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟ Ο ΤΩΝ ΟΡΙΖΟΥΣΩΝ ΚΑΙ ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΥΘΕΙΕΣ» 1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΟΡΙΣΜΟΣ 1 : Γραµµική εξίσωση λέγεται κάθε
3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPTRON
3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPRON 3. ΕΙΣΑΓΩΓΗ: Το Perceptron είναι η απλούστερη μορφή Νευρωνικού δικτύου, το οποίο χρησιμοποιείται για την ταξινόμηση ενός ειδικού τύπου προτύπων, που είναι γραμμικά διαχωριζόμενα.
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ
Ε_.ΜλΘΟ(ε) ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ηµεροµηνία: Σάββατο 7 Ιανουαρίου 7 ιάρκεια Εξέτασης: ώρες ΘΕΜΑ Α A. Έστω η συνάρτηση
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2 1 ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΟΥ ΧΩΡΟΥ ΤΩΝ ΤΑΞΙΝΟΜΗΤΩΝ Ταξινομητές Ταξινομητές συναρτ. διάκρισης Ταξινομητές επιφανειών απόφ. Παραμετρικοί ταξινομητές Μη παραμετρικοί
ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ
ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Ελαχιστοποίηση κόστους διατροφής Ηεπιχείρηση ζωοτροφών ΒΙΟΤΡΟΦΕΣ εξασφάλισε µια ειδική παραγγελίααπό έναν πελάτη της για την παρασκευή 1.000 κιλών ζωοτροφής, η οποία θα πρέπει
ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ
ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 05 Ε_.ΒΜλΘ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ηµεροµηνία: Κυριακή 6 Απριλίου 05 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία σχολικού βιβλίου, σελίδα.
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΜΙΑ ΣΥΜΒΑΣΗ: Προκειμένου να καταστήσουμε πιο συμπαγή το συμβολισμό H : ορίζουμε Ετσι έχουμε *=[ ] an *=[ ]. H : * * ΣΗΜΕΙΩΣΗ: Στη συνέχεια εκτός αν ορίζεται
Κεφάλαιο Τρία: Ψηφιακά Ηλεκτρονικά
Κεφάλαιο Τρία: 3.1 Τι είναι αναλογικό και τι ψηφιακό µέγεθος Αναλογικό ονοµάζεται το µέγεθος που µπορεί να πάρει οποιαδήποτε τιµή σε µια συγκεκριµένη περιοχή τιµών π.χ. η ταχύτητα ενός αυτοκινήτου. Ψηφιακό
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη 5 ο Εξάμηνο 4 ο ΜΑΘΗΜΑ Δημήτρης Λέκκας Επίκουρος Καθηγητής dlekkas@env.aegean.gr Τμήμα Στατιστικής & Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών
Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους.
Μάθηµα 1 Κεφάλαιο 1o: Συστήµατα Θεµατικές Ενότητες: A. Συστήµατα Γραµµικών Εξισώσεων B. Συστήµατα 3x3 Α. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Ορισµοί Κάθε εξίσωση της µορφής α x+β =γ, µε α, β, γ R παριστάνει
Πολύγωνο αθροιστικών σχετικών συχνοτήτων και διάµεσος µιας τυχαίας µεταβλητής ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Πρόλογος Στην εργασία αυτή αναλύονται
Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων
Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή
Γραµµικός Προγραµµατισµός - Μέθοδος Simplex
Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε
14 Εφαρµογές των ολοκληρωµάτων
14 Εφαρµογές των ολοκληρωµάτων 14.1 Υπολογισµός εµβαδών µε την µέθοδο των παράλληλων διατοµών Θεωρούµε µια ϕραγµένη επίπεδη επιφάνεια A µε οµαλό σύνορο, δηλαδή που περιγράφεται από µια συνεχή συνάρτηση.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΜΣΕ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΜΣΕ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΟΜΑ Α ΑΣΚΗΣΕΩΝ ΑΣΚΗΣΗ Στην εικόνα παρακάτω φαίνεται ένα νευρωνικό
ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ (Ε.Ο.Μ.Κ.) Με διάγραμμα :
Νόμος Νόμοι Πρότυπο ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ (Ε.Ο.Μ.Κ.) Πρότυπο ευθύγραμμης ομαλά μεταβαλλόμενης κίνησης (Ε.Ο.Μ.Κ) Όταν η επιτάχυνση ενός
ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΘΕΜΑ ο (.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις Πέµπτη 7 Ιανουαρίου 8 5:-8: Σχεδιάστε έναν αισθητήρα (perceptron)
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 8 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o A Να αποδειχθεί ότι η συνάρτηση f ln, * είναι παραγωγίσιµη στο * και ισχύει: ln Μονάδες Α Πότε µια συνάρτηση f λέµε ότι είναι συνεχής σε
Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο
Πρόβλημα ο Ασκήσεις Φροντιστηρίου 5 o Φροντιστήριο Δίνεται το παρακάτω σύνολο εκπαίδευσης: # Είσοδος Κατηγορία 0 0 0 Α 2 0 0 Α 0 Β 4 0 0 Α 5 0 Β 6 0 0 Α 7 0 Β 8 Β α) Στον παρακάτω κύβο τοποθετείστε τα
Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)
Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) ΜΙΧΑΛΗΣ ΤΖΟΥΜΑΣ ΕΣΠΟΤΑΤΟΥ 3 ΑΓΡΙΝΙΟ. ΠΕΡΙΛΗΨΗ Η έννοια της συνάρτησης είναι στενά συνυφασµένη µε τον πίνακα τιµών και τη γραφική παράσταση.
Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.
Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
4.3 Δραστηριότητα: Θεώρημα Fermat
4.3 Δραστηριότητα: Θεώρημα Fermat Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το Θεώρημα Fermat και στη συνέχεια την απόδειξή του. Ακολούθως εξετάζεται η χρήση του στον εντοπισμό πιθανών τοπικών
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 7 Απριλίου 4 ιάρκεια Εξέτασης: ώρες Α. Να αποδείξετε
Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.
Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ
ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 7 Ιανουαρίου 2005 ιάρκεια εξέτασης: 5:00-8:00 Έστω ότι
Καµπύλες Bézier και Geogebra
Καµπύλες Bézier και Geogebra Κόλλιας Σταύρος Ένα από τα προβλήµατα στη σχεδίαση δυσδιάστατων εικόνων στα προγράµµατα γραφικών των υπολογιστών είναι η δηµιουργία οµαλών καµπυλών. Η λύση στο πρόβληµα αυτό
3 η δεκάδα θεµάτων επανάληψης
η δεκάδα θεµάτων επανάληψης. Για ποιες τιµές του, αν υπάρχουν, ισχύει κάθε µία από τις ισότητες α. log = log( ) β. log = log γ. log 4 log = Να λυθεί η εξίσωση 4 log ( ) + = 0 6 α) Θα πρέπει > 0 και > 0,
Βασική Εφικτή Λύση. Βασική Εφικτή Λύση
Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n µεταβλητών και m περιορισµών Εστω πραγµατικοί αριθµοί a ij, b j, c i R µε 1 i m, 1 j n Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n
ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε
ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΣΑΝΑΤΛΙΣΜΥ Β ΛΥΚΕΙΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΥ Να δώσετε τους ορισμούς: διάνυσμα, μηδενικό διάνυσμα, μέτρο διανύσματος, μοναδιαίο διάνυσμα Διάνυσμα AB ονομάζεται ένα ευθύγραμμο
ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ
ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1) Γραμμική εξίσωση με δύο αγνώστους λέγεται κάθε εξίσωση της μορφής αχ+βψ=γ, όπου α,β,γr. α) Λύση της γραμμικής αυτής εξίσωσης λέγεται κάθε ζεύγος (χ,ψ)=(χ 0,ψ 0 ) που την
min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +
KΕΦΑΛΑΙΟ 4 Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ανισότητες 4. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΑΝΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση
A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
8Α ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ A ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Πότε μια συνάρτηση λέγεται συνεχής σε ένα σημείο του πεδίου ορισμού o της ; Απάντηση : ( ΟΜΟΓ, 6 ΟΜΟΓ, 9 Β, ΟΜΟΓ, 5 Έστω μια συνάρτηση και ένα σημείο του πεδίου
A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
8Α ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ A ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Πότε μια συνάρτηση λέγεται συνεχής σε ένα σημείο του πεδίου ορισμού o της ; Απάντηση : ( ΟΜΟΓ, 6 ΟΜΟΓ, 9 Β, ΟΜΟΓ, 5 Έστω μια συνάρτηση και ένα σημείο του πεδίου
Αναγνώριση Προτύπων - Νευρωνικά ίκτυα
ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ Αναγνώριση Προτύπων - Νευρωνικά ίκτυα ρ. Χαράλαµπος Π. Στρουθόπουλος Αναπληρωτής Καθηγητής
1. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η
Ερωτήσεις ανάπτυξης. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η συνάρτηση G () = F (α + β) είναι µια παράγουσα της h () = f (α + β), α α στο R. β + γ α+ γ. ** α) Να δείξετε ότι
Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ
Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά
F x h F x f x h f x g x h g x h h h. lim lim lim f x
3 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 013: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο 1, ) ΘΕΜΑ Α 1 Έχουμε F h F f( h) g h f() g f( h)
Ασκήσεις. Κεφάλαιο 6. a = a 0 + x 1 b 1 + x 2 b 2 + x 3 b 3, όπου b i = a i a 0, i = 1, 2, 3, P 2 = {(x, y, z) R 3 : x 2y + 3z = 2}.
Κεφάλαιο 6 Ασκήσεις 1. (αʹ) ώστε δράση του Χ R 2 στο αφινικό επίπεδο P = {(x, y, z) R 3 : x = 2}. Επίσης, δώστε µία αφινική ϐάση τριών σηµείων (a 0, a 1, a 2 ) και ϐρείτε τις ϐαρυκεντρικές συντεταγµένες
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Άσκηση 1. Έστω ότι η συνάρτηση f: R R είναι γνησίως αύξουσα στο R και η γραφική της παράσταση τέµνει τον άξονα y y στο. Να λύσετε την ανίσωση: f(x 9)
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΠΛΗΡΟΦΟΡΙΚΗ (ΘΕ ΠΛΗ ) ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ TEΛΙΚΗΣ ΕΞΕΤΑΣΗΣ 7 Ιουνίου 8 Θέµα ο ( µονάδες) α) ( µονάδες) yz yz του διανυσµατικού
A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ
A. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ d df() = f() = f (), = d d.κλίση ευθείας.μεταβολές 3.(Οριακός) ρυθµός µεταβολής ή παράγωγος 4.Παράγωγοι βασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία
Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange
64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από
ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ
ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ Στις φυσικές επιστήµες για να λύσουµε προβλήµατα ακολουθούµε συνήθως τα εξής βήµατα: 1. Μαθηµατική διατύπωση. Για να διατυπώσουµε µαθηµατικά ένα πρόβληµα
ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n
ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3 Ο αλγόριθµος Gauss Eστω =,3,, µε τον όρο γραµµικά συστήµατα, εννοούµε συστήµατα εξισώσεων µε αγνώστους της µορφής: a x + + a x = b a x + + a x = b a
cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα
ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;
ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται
Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α
ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση f παραγωγίσιµη σ ένα διάστηµα (α, β), µε εξαίρεση ίσως ένα σηµείο του, στο
ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία
Μοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP)
Μοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP) x -0,5 a x x 2 0 0 0 0 - -0,5 y y 0 0 x 2 -,5 a 2 θ η τιμή κατωφλίου Μία λύση του προβλήματος XOR Multi Layer Perceptron (MLP) x -0,5 Μία
ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ
ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ Κάθε εξίσωση της µορφής α + β = γ όπου α + β 0 ( α, β όχι συγχρόνως 0) παριστάνει ευθεία. (Η εξίσωση λέγεται : ΓΡΑΜΜΙΚΗ) ΕΙ ΙΚΑ γ Αν α = 0 και β 0έχουµε =. ηλαδή µορφή = c.
ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ
Συναρτήσεις Προεπισκόπηση Κεφαλαίου Τα μαθηματικά είναι μια γλώσσα με ένα συγκεκριμένο λεξιλόγιο και πολλούς κανόνες. Πριν ξεκινήσετε το ταξίδι σας στον Απειροστικό Λογισμό, θα πρέπει να έχετε εξοικειωθεί
Κυρτές Συναρτήσεις και Ανισώσεις Λυγάτσικας Ζήνων Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο e-mail: zenon7@otenetgr Ιούλιος-Αύγουστος 2004 Περίληψη Το σχολικό ϐιβλίο της Γ Λυκείου ορίζει σαν κυρτή (αντ κοίλη)
Επαναληπτικές μέθοδοι
Επαναληπτικές μέθοδοι Η μέθοδος της διχοτόμησης και η μέθοδος Regula Fals που αναφέραμε αξιοποιούσαν το κριτήριο του Bolzano, πραγματοποιώντας διαδοχικές υποδιαιρέσεις του διαστήματος [α, b] στο οποίο,
ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ
ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ Άξονας Έστω η ευθεία x x (σχ. 21) και τα σηµεία Ο, Ι πάνω σ αυτή, ώστε ΟΙ= i όπου i το µοναδιαίο διάνυσµα, δηλαδή ένα διάνυσµα που θεωρούµε ότι η φορά του είναι θετική και το µέτρο
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
6ο κεφάλαιο: Συναρτήσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 47 Αριθμητικές Μέθοδοι
Σχεδίαση τροχιάς. (α) (β) (γ) (δ) Σχήµα 2.5
Σχεδίαση τροχιάς Η πιο απλή κίνηση ενός βραχίονα είναι από σηµείο σε σηµείο. Με την µέθοδο αυτή το ροµπότ κινείται από µία αρχική θέση σε µία τελική θέση χωρίς να µας ενδιαφέρει η ενδιάµεση διαδροµή που
Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων
Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης
KEΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΑ ΚΡΥΠΤΟΣΥΣΤΗΜΑΤΑ
Βασικές έννοιες KEΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΑ ΚΡΥΠΤΟΣΥΣΤΗΜΑΤΑ Ένα κρυπτοσύστηµα όπου οι χώροι των καθαρών µηνυµάτων, των κρυπτογραφηµένων µυνηµάτων και των κλειδιών είναι ο m,,,... m = καλείται ψηφιακό κρυπτοσύστηµα.
Το Πολυεπίπεδο Perceptron. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
Το Πολυ Perceptron Δίκτυα Πρόσθιας Τροφοδότησης (feedforward) Tο αντίστοιχο γράφημα του δικτύου δεν περιλαμβάνει κύκλους: δεν υπάρχει δηλαδή ανατροφοδότηση της εξόδου ενός νευρώνα προς τους νευρώνες από
Ερωτήσεις κατανόησης σελίδας Κεφ. 1
Ερωτήσεις κατανόησης σελίδας 50 5 Κεφ.. Ο όγκος του διπλανού ορθογωνίου παραλληλεπιπέδου εκφράζεται µε τη συνάρτηση V() = ( )( ). Το πεδίο ορισµού της συνάρτησης αυτής είναι το διάστηµα : A. [0, + ] B.
sin ϕ = cos ϕ = tan ϕ =
Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΜΗΧΑΝΙΚΗ 1 ΠΑΡΑ ΕΙΓΜΑ 1 ΚΑΤΑΣΚΕΥΗ ΙΑΓΡΑΜΜΑΤΩΝ MQN ΣΕ ΟΚΟ ιδάσκων: Αριστοτέλης Ε. Χαραλαµπάκης Εισαγωγή Με το παράδειγµα αυτό αναλύεται
1. Η ευθεία y = 5 είναι κάθετη στον άξονα y y. Σ Λ. 2. Η ευθεία x = - 2 είναι παράλληλη προς τον άξονα x x. Σ Λ
ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Ερωτήσεις του τύπου «σωστό-λάθος» 1. Η ευθεία y = 5 είναι κάθετη στον άξονα y y. Σ Λ 2. Η ευθεία x = - 2 είναι παράλληλη προς τον άξονα x x. Σ Λ 3. Οι ευθείες x = κ και y
ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι
ΚΕΦΑΛΑΙΟ 3 Ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ. Ποια είναι η μορφή ενός συστήματος δύο γραμμικών εξισώσεων, δύο αγνώστων; Να δοθεί παράδειγμα.
Αναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 2: Δομικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 4
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 Ηµεροµηνία αποστολής στον φοιτητή: 9 Φεβρουαρίου 5. Τελική ηµεροµηνία αποστολής από τον φοιτητή: Μαρτίου 5.