כיצד למדוד את כל סוגי האנטנות תוך שימוש במדידת שדה-קרוב-מאוד
|
|
- Εφθαλία Βέργας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 כיצד למדוד את כל סוגי האנטנות תוך שימוש במדידת שדה-קרוב-מאוד רדט ציוד ומערכות / EMSCAN Ruska Patton & Ning Yang, מבוא אנטנות שלא עומדות בהגדרות תכנון, דרישות תקינה או שביעות רצון הלקוח או שמוצאות את עצמן במהירות בצבר כשלים או שגורמות השהיות יקרות ערך. אם האנטנה הנדונה מגיעה לשוק והצרכנים מזהים בעיה, הדבר עשוי לגרום לסיוט נרחב ביחסי ציבור. לכן, מתכננים צריכים לאפיין את האנטנה כדי לעמוד בביצועים הנדרשים כולל תדר רצוי, שבח נדרש, רוחב פס, עכבה, יעילות וקיטוב. אפיון אנטנה מסורתי דורש בדיקת שדה- רחוק מלאה בלתי תלויה או איסוף מקבצי נתונים של שדה קרוב כדי להשליך על תבניות השדה-רחוק. לרוע המזל, שיטת הדגימה המישורית, בטכניקה של שדה קרוב או רחוק המהירה והזולה ביותר יוצרת תוצאות אמינות רק עבור אנטנות כיווניות. אנטנה כלל כיוונית Aantena( )Omnidirectional צריכות להדגם בצורה כדורית בתא בדיקות מסוכך גדול מספיק כדי להתגבר על צימוד חיישנים פוטנציאלי. עבור אנטנה כלל-כיוונית נבדקת Antenna(,)Under Test - AUT מערכת כזו דורשת גם מערכת רובוטית תלת-ממדית )Y,X ו- Z ( ונקודות דגימה מרובות. כל שיטה של בדיקת אנטנות מסורתית מורכבת, לכן דורשת טכנאי מאומן ותא מסוכך גדול. דרישות אלו מוכחות כיקרות הן כהשקעת הון והוצאות הפעלה שוטפות. כדי להתגבר על קשיים אלה, טכנולוגיה חדשה של שדה-קרוב-מאוד מבוססת על מערך חיישנים דוגמת את ה- AUT על משטח מישורי במרחק של 2.5 ס"מ. ה- AUT יכול להיות כיווני או כלל-כיווני. בתהליך פנימי דו-שלבי, ללא תלות במשתמש, המכשיר ראשית משליך תוצאות של שדה-קרוב- מאוד אל תוצאות שדה-רחוק תוך שימוש באלגוריתמים מבוססים היטב. לאחר מכן, האלגוריתם שני מכוונן את השלכה כדי לקחת בחשבון את ההשפעות החזויות של הפרעה בין מערך החיישן וה- AUT. לשם התחלה, אנחנו נסקור את מערכות מדידת האנטנות המסורתיות. שיטות בדיקה מסורתיות: מהו השדה-הקרוב? כיום, שיטות בדיקה שונות מקשרות את לשני האזורים השונים המשמשים למדידת אנטנות. אזור השדה-הרחוק, המוכר גם כשדה-רחוק קורן או אזור,Fraunhofer מוגדר כאזור בו התבנית אינה משתנה עם המרחק. אם כי לא קיימת הגדרה מדויקת של השדה-הרחוק, קירוב מקובל עבור אנטנות גדולות חשמלית מייצג מתמטית אזור זה כ-,d>-2D2/ƛ כאשר d הוא המרחק מהאנטנה אל החיישן, D הוא הממד הגדול ביותר של האנטנה, ו- ƛ אורך הגל. קירוב מקובל אחר אשר לא מציין את ממד האנטנה הוא ש- d>10ƛ. יצרני האנטנות רק מאמצים את הבדיקה של שדה-רחוק היותר יקרה ותובעת משאבים לעתים רחוקות. בניגוד, השדה-הקרוב, המכונה רשמית שדה-קרוב קורן או אזור,Fresnel מייצג
2 «את אזור ההתפשטות הנמדד לעתים הקרובות ביותר על-ידי יצרני האנטנות. כפי שניתן לצפות מהשם, מדידות של שדה-קרוב מצמצמות מילולית את האזור הנמדד לשדה קטן יותר, לכן דורש תא קטן יותר. לאחר שהתקבלו תוצאות של השדה-הקרוב, אלגוריתם המרה מבוסס היטב משליך אל תוצאות השדה-הרחוק. תיאורטית, למרות ההשלכה מהשדה- הקרוב, אין הפסד מידע בתוצאות השדה הרחוק החזויות. מאחר שהמטרה היא לקבל מדידות שדה-רחוק מדויקות, תאי השדה-הקרוב צריכים לספק סביבה מבוקרת ומסוככת. אחרת, ההחזרות והרעש החיצוני עשויים להשפיע בצורה מחמירה על הדיוק. כמו השדה-הרחוק, השדה-הקרוב לא מוגדר פורמאלית בשונה מהאמירה שהשדה הקרוב הוא כל דבר שאיננו שדה-רחוק. זה אומר שמתמטית הוא ניתן להצגה כ-.d<2D2/ƛ בצורה פחות פורמאלית, השדה-הקרוב אמור להיות כפי שלוש עד עשר פעמים מאורך הגל. על-ידי ביצוע התמרת Fourier על מדידות השדה-הקרוב, מתקבלת ההשלכה לשדה הרחוק הרצויה. התמרת Fourier מיוחסת כ"פילוג הפתיחה המישורית על ההפיכה של הספקטרום הזוויתי.")Angular( שיטה זו של שליחת תוצאות של שדה-קרוב לתוך השדה-הרחוק מקובלת כמדויקת על-ידי רוב גופי התקינה. איור 1. הבחנה בשדות השונים מבוא לשדה הקרוב-מאוד «השדה הקרוב-מאוד, מושג חדש, מודד את ה- AUT די קרוב לחיישנים עד כדי השפעה על ביצועי ה- AUT. השדה הקרוב- מאוד עשוי למעשה לחדור לתוך האזור הריאקטיבי, בניגוד לשדה-הקרוב הנמנע תמיד מאזור זה. שיטות מדידה מקובלות אינן מדגימות AUTs באזור הריאקטיבי שניתן להגדרה מתמטית כ- d<-ƛ/2π עבור אנטנות קטנות או כ- d<0.62 (D3/ƛ ( עבור אנטנות גדולות. מדידות בשדה הקרוב- מאוד נלקחות כה קרוב לחיישנים עד שלא ניתן למנוע את צימודן. כדי לפעול בהצלחה בתור כלי למדידת שדה-קרוב-מאוד, המכשיר צריך למזער את השפעת הצימוד ולהפוך אותו לניתן איור 2. מערך סטאטי של חיישנים ו- AUT לחיזוי. כדי לעשות זאת, מערך סטאטי של חיישנים, המכסה את כל השטח הנסרק, לוכד לראשונה את הנתונים )ראה איור 2(. מאחר שאין תנועה מכנית של החיישנים במשך מהלך המדידה, המכשיר לוכד את נתוני השדה הקרוב-מאוד במהירות לא- תאמן. יתרון נוסף של היעדר התנועה הוא שהצימוד בין ה- AUT ומערך החיישנים הוא במדויק אותו אחד במשך תהליך המדידה. אפילו בגישה זו, אין מתודולוגיה יחידה המסוגלת לפתור את בעיית הצימוד מאחר שהצימוד תלוי בצורת ה- AUT. אולם, קירוב סביר של ההשפעה ניתן להיעשות אפילו עבור אנטנות בלתי ידועות. למימוש גישה זו יש מערך של לולאות קטנות המודד את השדה המגנטי )H-Field( עם השפעות צימוד החיישן כלולות, ושולח נתונים אלה לשדה-הרחוק תוך שימוש בהתפלגות מיפתח )Aperture( המישורי להמרת הספקטרום הזוויתי או המרת ספקטרום הגל המשטחי Wave( Plane.)Spectrum - PWS אלגוריתם יחודי שני מתאים לאחר מכן את השלכת השדה הרחוק כדי לבטל את השפעות הצימוד הניתנות לחיזוי של מערך המדידה. לחיזוי חיזוי השפעת הצימוד תחיל שגיאה
3 מסוימת מאחר שהוא תלוי בצורת ה- AUT. שגיאה זו היא אופיינית קטנה מאוד אולם מאחר שהיא קבועה עבור צורה מסוימת היכולת ליצור תוצאות הפרשיות עבור דגם אנטנה נתון היא טובה מאוד. «פרמטרי מדידת האנטנה המטרה הראשונית של מדידת כל אנטנה היא לזהות ביצועים הכרוכים באדיקות לתוצאות השדה-הרחוק. אם כי סוגים שונים רבים של השלכה הם זמינים, אנחנו נמקד את הדיון הזה ב-/ Wave Plane.Modal Expansion המדידות הבסיסיות הדרושות כוללות תבנית הקרינה, שבח, נצילות, רוחב אלומה וקיטוב. יישומים מורכבים יותר, כגון ה- LTE 4G, מיישמים עם אנטנות מרובות כדי לשפר את המהירות ואת איכות השידורים. יישומים אלה עשויים גם לדרוש מדידות מתקדמות דוגמת מתאם המעטפת envelope(.)correlation היחס הצירי מאפיין אנטנות מקוטבות מעגלית כגון אלה המשמשות ב- GPS, לוויינים ואנטנות קרקעיות אחדות. מדידות האלומה הנוצרת, משמשת למערך אנטנות וביישומי מכ"ם נפוצים, מוצאות גם את דרכן ביישומים מסחריים. מדידות של יצירת אלומה יכולות גם לשמש בניפוי סוגיות של שדה-קרוב כגון אלה: זיהוי מרכיב כשל אחד או יותר במערך אנטנה גדול, זיהוי תהודות בלתי רצויות בהתקן, וזיהוי זליגת אנרגיה מאזורים ללא- אנטנות של ההתקן. שיטות בדיקה מסורתיות )איור 3( שתי השיטות המסורתיות של בדיקת אנטנה דוגמות נתונים בשלושה אופנים: מישורי, גלילי וכדורי. התרשים לעיל, איור 2, משווה את פרמטרי המדידה השונים של כל שיטה בצורה כללית. בקיצור, מערכות מישוריות, בעלות שדה קרוב, הן אידיאליות למדידת אנטנות כיווניות, דוגמת משדרי לוויינים. למרות שמימושים של אנטנות שטוחות (planar ) של שדה-קרוב מתעלמים מהצימוד, למעשה הצימוד קיים תמיד אך הוא ממוזער למידה מספקת כדי שתהיה איור 3. השוואה מוכללת של שיטות בדיקת אנטנה לו השפעה קטנה על התוצאות המחושבות. אם כן, הקטנת אזור הסריקה עבור מדידות שדה-קרוב גורמות למדידות שדה-קרוב מקוטעות ואלה גורמים לאי-דיוקים בתבנית השדה הרחוק. כדי לקבל תוצאות שדה-קרוב טובות, מתודולוגיית הבדיקה צריכה לקיים תקן דגימה פנימי של /2ƛ ואזור סריקה מספק. שיטת הבדיקה גלילית )cylindrical( של שדה-קרוב משמשת לאנטנות המיועדות לפעול במישור דוגמת אנטנות של תחנות בסיס. שיטת הבדיקה הכדורית בשדה- קרוב היא המתאימה ביותר למדידת אנטנות אל-כיווניות המשמשות לתקשורת ניידות, Wi-Fi, Bluetooth ואנטנות דומות. אתגרים המוצבים על-ידי טכנולוגיות מסורתיות של מדידת אנטנה שדה-רחוק: האתגר הגדול ביותר של עריכת מדידות של שדה-רחוק משתקף בשם עצמו "שדה-רחוק". מדידות בשדה- רחוק דורשות מרחב פיזיקאלי גדול. אם המדידה נעשית בחוץ, המדידה הבלתי- מסוככת ניתנת ל"זיהום" על-ידי שידורים סביבתיים. אם היא נערכת בתוך בניין, מדידות בשדה-רחוק דורשות אולמות גדולים ביותר עם סיכוך מלא וקצב גלי רדיו יקר. יתרה מזו, טכנולוגיות של שדה-רחוק דורשות זמן רב ביותר מאחר שהחיישן הבודד צריך להיות ממוקם במדויק מאוד בשלושה צירים )y,x ו- z (. לשם השוואה, השיטה המישורית דורשת רק מדידות מדויקות בשני צירים )x ו- y (. כתוצאה מכך, מדידות בשדה רחוק עשויות לקחת שעות אחדות או יותר, דורשות טכנאי מיומן, ועשויות לכלול השהיות זמן כדי לתכנן את המדידה. כדי לבצע בדיקה כדורית או גלילית, מדידות שדה-רחוק דורשות רובוט תלת-צירי מדויק ויקר. בסיכום, מדידות בשדה-רחוק מוכחות כיקרות הן מנקודת ראות של הוצאות ההון והן של התפעול. שדה-קרוב: טכנולוגיות מדידה של שדה- קרוב מעמידות כמעט את אותם האתגרים כמו בשדה-רחוק עם היוצא מן הכלל שתא אל-הד יכול להיות קטן יותר. למרות זאת, המדידה מהירה יותר מהשדה- הרחוק, אפילו הפתרונות המהירים ביותר עדיין דורשים מספר דקות. בנוסף, כשל בחישוב הצימוד עשוי להוביל לשגיאות במדידה. כמו בטכנולוגיות של שדה-רחוק, הטכנולוגיות של שדה-קרוב הן עדיין יקרות בעלות ובתפעול. תאי הידהוד :)reverberation( למרות שהם עונים לאתגרים אחדים המוצבים על-ידי טכנולוגיות של שדה-קרוב ורחוק, לתאי הדהוד יש מגבלות משמעותיות. הם לא יכולים לספק מידע על כיווניות או קיטוב של שדה-רחוק. הם מספקים
4 תוצאות מהירות ביותר עבור מדידות מסוימות אם כי איזון דיוק המדידה ומהירות הבדיקה הוא קשה; מגוון ההגבר, יכולת MIMO (Multiple Input Multiple )Output עבור אנטנות מרובות, הספק קורן כולל, ורגישות המקלט ב- )BER( הם חלק מהפרמטרים המתאימים עבור בדיקת תאי הידהוד. תאי הידהוד הם גם קטנים יותר וזולים יותר מאשר התאים שאינם אל הד המשמשים למדידות בשדה קרוב ושדה רחוק, אך הם עדיין דורשים השקעת הון ומקום מיועד ברצפת המעבדה. התאמת השלכות של נתוני שדה-קרוב-מאוד עם תוצאות שדה-רחוק מעשיות מכשירי שדה -קרוב-מאוד דוגמת ה- RFxpert צריכים לספק תוצאות הקשורות לתוצאות שדה-רחוק מדודות. למרות תכנוני אנטנה שונים ומרובים נהנים מהשימוש במדידות שדה-קרוב- מאוד, אנטנות בעלות מבנה מישורי דוגמת אנטנות ה- patch ופתחים מישוריים דוגמת אנטנות שופר יספקו את התוצאות המדויקות ביותר. דוגמה טובה לכך היא האנטנות בהתקנים ניידים. החברות המייצרות התקנים ניידים מודדות מספר פרמטרים של האנטנה כדי לענות לדרישות התקנים ולבדוק מפרטי ביצועים כולל כיווניות ויעילות האנטנה. יעילות האנטנה היא חיונית במיוחד מאחר שככל שיעילות האנטנה תהיה גבוהה יותר, כך יקטן השימוש בהספק, ויחסוך בצריכת הספק לשימוש בחיי סוללה ארוכים יותר. תוצאות הבדיקה הבאות בודקות שהשלכות של שדה-קרוב-מאוד ניתנות להשוואה חיובית עם תוצאות מעשיות של שדה-רחוק. שינויים בין השניים מוכיחים תחום קבוע של תוצאות בדיקה #1: תוצאות בדיקה #2:.±1.5dB תוצאות בדיקה: 1-3# משווה השלכות של שדה-קרוב-מאוד לתוצאות שדה-רחוק מעשיות עבור שלושה טלפונים סלולאריים בתחום התדר האופייני של טלפונים ניידים. כפי שנעשה בתאי אל הד לעומת מערכת ה- RFxpert של חברת EMSCAN
5 תוצאות בדיקה #3: תוצאות בדיקה #4: ציר ה- y כולל נתוני שדה קרוב מאוד של RFxpert המיוחסים לתוצאות של שדה-רחוק כנגד ציר ה- x הכוללים תוצאות שדה-קרוב מסורתיים ביחס לשדה-הרחוק. תוצאות אלו מאשרות שמדידות שדה קרוב-מאוד WDCMA Low Bands and WiFi ב- 2.4 גיגה-הרץ מתאימות למדידות של שדה-רחוק עד כדי.±1.5dB מסקנה: יתרונות של מדידת אנטנה בשדה קרוב מאוד מערכות מדידת שדה-קרוב ורחוק מסורתיות ( תאי אל הד( דורשות תחזוקה וכיול מתמשכים, אך אף אחת מהן לא דרושה עם מערכות של שדה-קרוב-מאוד דוגמת ה- RFxpert. כמו כן, הרבה תאים דורשים אנטנת ייחוס, אך אף אחת לא דרושה עבור מדידות של שדה-קרוב-מאוד. אולי הדבר החשוב ביותר עבור ניתובי המשימות והאצת הזמן לשיווק, ה- RFxpert מספק תוצאות ישירות באזור התכנון תוך פחות משנייה!! הגודל הקומפקטי של המערכת פירושו שניתן להשתמש בה כמעט בכל מקום. זוהי פשוט מערכת מדידת אנטנה על שולחן העבודה. למרות הגודל הקטן שלה, המערכת מספקת דיוק מצוין הן עבור המבנים והן עבור הפרמטרים המוחלטים של השדה הרחוק. המערכת מתגברת על המגבלות המסורתיות של הסורק המישורי עבור אנטנות לא כיווניות בחצי הכדור על-ידי שימוש בקרבה הקרובה של ה- AUT למישור הסריקה כדי ליצור כיסוי זוויתי גדול. על-ידי עריכת מדידה אחורית שנייה, צוות תכנון יכול לקבל תוצאות כדוריות מלאות. תוצאות השדה הרחוק הנוצרות ממדידות של שדה מאור קרוב מציעות מגוון של גדלים שניתנים לבחירה על-ידי המשתמש והכוללים שבח, הספק מוקרן, יעילות, כיווניות ויחס צירי. הכתבה באדיבות חברת רדט ציוד ומערכות
פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )
פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד a d U c M ( יהי b (R) a b e ל (R M ( (אין צורך להוכיח). מצאו קבוצה פורשת ל. U בדקו ש - U מהווה תת מרחב ש a d U M (R) Sp,,, c a e
ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים (
תכנון ניסויים כאשר קיימת אישביעות רצון מהמצב הקיים (למשל כשלים חוזרים בבקרת תהליכים סטטיסטית) נחפש דרכים לשיפור/ייעול המערכת. ניתן לבצע ניסויים על גורם בודד, שני גורמים או יותר. ניסויים עם גורם בודד: נבצע
לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור
הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין
שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם
תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא
Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.
Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.
פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur
פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת
3-9 - a < x < a, a < x < a
1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.
שאלה 1 V AB פתרון AB 30 R3 20 R
תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A
התפלגות χ: Analyze. Non parametric test
מבחני חי בריבוע לבדיקת טיב התאמה דוגמא: זורקים קוביה 300 פעמים. להלן התוצאות שהתקבלו: 6 5 4 3 2 1 תוצאה 41 66 45 56 49 43 שכיחות 2 התפלגות χ: 0.15 התפלגות חי בריבוע עבור דרגות חופש שונות 0.12 0.09 0.06
[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m
Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות
ל הזכויות שמורות לדפנה וסטרייך
מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות
מהי המשמעות של IEEE 1588 עבור תכנון מערכת ה- T&M הבאה שלך?
מהי המשמעות של IEEE 1588 עבור תכנון מערכת ה- T&M הבאה שלך? תזמון וסנכרון הם קריטיים בבניית מערכות בדיקה ומדידה (& Test,(Measurement T&M דבר ההופך את קלות השימוש והביצועים הגבוהים של IEEE 1588 Precision
Vcc. Bead uF 0.1uF 0.1uF
ריבוי קבלים תוצאות בדיקה מאת: קרלוס גררו. מחלקת בדיקות EMC 1. ריבוי קבלים תוצאות בדיקה: לקחנו מעגל HLXC ובדקנו את סינון המתח על רכיב. HLX מעגל הסינון בנוי משלוש קבלים של, 0.1uF כל קבל מחובר לארבע פיני
c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V )
הצגות של חבורות סופיות c ארזים 6 בינואר 017 1 משפט ברנסייד משפט 1.1 ברנסייד) יהיו p, q ראשוניים. תהי G חבורה מסדר.a, b 0,p a q b אזי G פתירה. הוכחה: באינדוקציה על G. אפשר להניח כי > 1 G. נבחר תת חבורה
חורף תש''ע פתרון בחינה סופית מועד א'
מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר
EMC by Design Proprietary
ערן פליישר אייל רוטברט הנדסה וניהול בע"מ eranf@rotbart-eng.com 13.3.15 בית ספר אלחריזי הגבלת החשיפה לקרינה של שדה מגנטי תכנון מיגון הקרינה תוכן העניינים כלליותכולה... 2 1. נתונים... 3 2. נתונימיקוםומידות...
גלים א. חיבור שני גלים ב. חיבור N גלים ג. גלים מונוכרומטיים וגלים קוהרנטיים ד. זרם העתקה ה. משוואות מקסוול ו. גלים אלקטרומגנטיים
גלים א. חיבור שני גלים ב. חיבור גלים ג. גלים מונוכרומטיים וגלים קוהרנטיים ד. זרם העתקה ה. משוואות מקסוול ו. גלים אלקטרומגנטיים םילג ינש רוביח ו Y Y,הדוטילפמא התוא ילעב :לבא,,, ( ( Y Y ןוויכ ותואב םיענ
תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות
תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si
תרגול פעולות מומצאות 3
תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה
כמה חתכי קרינה דרושים כדי לאפיין אנטנה?
כמה חתכי קרינה דרושים כדי לאפיין אנטנה? פרופ' עלי לוין מכללת אפקה להנדסה תל אביב ElyL@afeka.ac.il אנטנות משדרות וקולטות בעוצמה שונה בכל כיוון במרחב. מדידת עוצמת הקרינה במרחב השלם היא ממושכת ויקרה ולכן
brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק
יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות
סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות
סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד
פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה
פתרון מבחן פיזיקה 5 יח"ל טור א' שדה מגנטי ורמות אנרגיה פרק א שדה מגנטי (100 נקודות)
שאלה מספר 1 פתרון מבחן פיזיקה 5 יח"ל טור א' שדה מגנטי ורמות אנרגיה פרק א שדה מגנטי (1 נקודות) על פי כלל יד ימין מדובר בפרוטון: האצבעות מחוץ לדף בכיוון השדה המגנטי, כף היד ימינה בכיוון הכוח ולכן האגודל
יווקיינ לש תוביציה ןוירטירק
יציבות מגבר שרת הוא מגבר משוב. בכל מערכת משוב קיימת בעיית יציבות מהבחינה הדינמית (ולא מבחינה נקודת העבודה). חשוב לוודא שהמגבר יציב על-מנת שלא יהיו נדנודים. קריטריון היציבות של נייקוויסט: נתונה נערכת המשוב
Logic and Set Theory for Comp. Sci.
234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =
מבני נתונים ואלגוריתמים תרגול #11
מבני נתונים ואלגוריתמים תרגול # התאמת מחרוזות סימונים והגדרות: P[,,m] כך Σ * טקסט T )מערך של תווים( באורך T[,,n] n ותבנית P באורך m ש.m n התווים של P ו T נלקחים מאלפבית סופי Σ. לדוגמא: {a,b,,z},{,}=σ.
החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח.
החשמלי השדה הקדמה: מושג השדה חשמלי נוצר, כאשר הפיזיקאי מיכאל פרדיי, ניסה לתת הסבר אינטואיטיבי לעובדה שמטענים מפעילים זה על זה כוחות ללא מגע ביניהם. לטענתו, כל עצם בעל מטען חשמלי יוצר מסביבו שדה המשתרע
הגדרה: מצבים k -בני-הפרדה
פרק 12: שקילות מצבים וצמצום מכונות לעי תים קרובות, תכנון המכונה מתוך סיפור המעשה מביא להגדרת מצבים יתי רים states) :(redundant הפונקציה שהם ממלאים ניתנת להשגה באמצעו ת מצבים א חרים. כיוון שמספר רכיבי הזיכרון
תרגול מס' 6 פתרון מערכת משוואות ליניארית
אנליזה נומרית 0211 סתיו - תרגול מס' 6 פתרון מערכת משוואות ליניארית נרצה לפתור את מערכת המשוואות יהי פתרון מקורב של נגדיר את השארית: ואת השגיאה: שאלה 1: נתונה מערכת המשוואות הבאה: הערך את השגיאה היחסית
שטף בהקשר של שדה וקטורי הוא "כמות" השדה הוקטורי העובר דרך משטח מסויים. שטף חשמלי מוגדר כך:
חוק גאוס שטף חשמלי שטף בהקשר של שדה וקטורי הוא "כמות" השדה הוקטורי העובר דרך משטח מסויים. שטף חשמלי מוגדר כך: Φ E = E d כאשר הסימון מסמל אינטגרל משטחי כלשהו (אינטגרל כפול) והביטוי בתוך האינטגרל הוא מכפלה
PDF created with pdffactory trial version
הקשר בין שדה חשמלי לפוטנציאל חשמלי E נחקור את הקשר, עבור מקרה פרטי, בו יש לנו שדה חשמלי קבוע. נתון שדה חשמלי הקבוע במרחב שגודלו שווה ל. E נסמן שתי נקודות לאורך קו שדה ו המרחק בין הנקודות שווה ל x. המתח
תרגיל 13 משפטי רול ולגראנז הערות
Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון
gcd 24,15 = 3 3 =
מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =
גבול ורציפות של פונקציה סקלרית שאלות נוספות
08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך
normally open (no) normally closed (nc) depletion mode depletion and enhancement mode enhancement mode n-type p-type n-type p-type n-type p-type
33 3.4 מודל ליניארי ומעגל תמורה לטרנזיסטורי אפקט שדה ישנם שני סוגים של טרנזיסטורי אפקט השדה: א ב, (ormally מבוסס על שיטת המיחסו( oe JFT (ormally oe המבוסס על שיטת המיחסור MOFT ו- MOFT המבוסס על שיטת העשרה
רשימת בעיות בסיבוכיות
ב) ב) רשימת בעיות בסיבוכיות כל בעיה מופיעה במחלקה הגדולה ביותר שידוע בוודאות שהיא נמצאת בה, אלא אם כן מצוין אחרת. כמובן שבעיות ב- L נמצאות גם ב- וב- SACE למשל, אבל אם תכתבו את זה כתשובה במבחן לא תקבלו
לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:
לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( 2016 2015 )............................................................................................................. חלק ראשון: שאלות שאינן להגשה.1
שיעור 1. זוויות צמודות
יחידה 11: זוגות של זוויות שיעור 1. זוויות צמודות נתבונן בתמרורים ובזוויות המופיעות בהם. V IV III II I הדסה מיינה את התמרורים כך: בקבוצה אחת שלושת התמרורים שמימין, ובקבוצה השנייה שני התמרורים שמשמאל. ש
תרגיל 7 פונקציות טריגונומטריות הערות
תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר
I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx
דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה
{ : Halts on every input}
אוטומטים - תרגול 13: רדוקציות, משפט רייס וחזרה למבחן E תכונה תכונה הינה אוסף השפות מעל.(property המקיימות תנאים מסוימים (תכונה במובן של Σ תכונה לא טריביאלית: תכונה היא תכונה לא טריוויאלית אם היא מקיימת:.
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p
גלים מכניים גלים אלקטרומגנטיים משוואת הגלים גלים עומדים ו.
א. ב. ג. ד. גלים גלים מכניים גלים אלקטרומגנטיים משוואת הגלים ה. מהירות פאזה, מהירות חבורה גלים עומדים ו. גלים מכניים בסביבה אלסטית גלים הם הזזה של חלק של סביבה אלסטית ממצב שיווי-משקל. הזזה זו גורמת לתנודות
קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים.
קבל קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים. על לוח אחד מטען Q ועל לוח שני מטען Q. הפוטנציאל על כל לוח הוא
TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים
TECHNION Iael Intitute of Technology, Faculty of Mechanical Engineeing מבוא לבקרה (034040) גליון תרגילי בית מס 5 d e C() y P() - ציור : דיאגרמת הבלוקים? d(t) ו 0 (t) (t),c() 3 +,P() + ( )(+3) שאלה מס נתונה
חשמל ומגנטיות תשע"ה תרגול 6 קיבול וחומרים דיאלקטרים
חשמל ומגנטיות תשע"ה תרגול 6 קיבול וחומרים דיאלקטרים בשיעור הקודם עסקנו רבות במוליכים ותכונותיהם, בשיעור הזה אנחנו נעסוק בתכונה מאוד מרכזית של רכיבים חשמליים. קיבול המטען החשמלי. את הקיבול החשמלי נגדיר
דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות
יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)
חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד.
חידה לחימום ( M ש- N > (כך מספרים טבעיים Mו- N שappleי appleתוappleים בעלי אותה הזוגיות (שappleיהם זוגיים או שappleיהם אי - זוגיים). המספרים הטבעיים מ- Mעד Nמסודרים בשורה, ושappleי שחקappleים משחקים במשחק.
סדרות - תרגילים הכנה לבגרות 5 יח"ל
סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר
אנטנות קטנות וניידות
אנטנות קטנות וניידות פרופ' עלי לוין מכללת אפקה להנדסה תל אביב ElyL@afeka.ac.il אנטנות קטנות (ביחס לאורך הגל) משמשות מגוון רב של מכשירי תקשורת ניידים. באנטנות אלה אין דרישה לשבח גבוה ולעקומי קרינה מדויקים
צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים
מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה
תוכן הפרק: ,best case, average case דוגמאות 1. זמן - נמדד באמצעות מס' פעולות סיבוכיות, דוגמאות, שיפור בפקטור קבוע האלגוריתם. וגודלם. איטרטיביים. לקלט.
פרק סיבוכיות פרק סיבוכיות המושג יעילות מהו? במדעי המחשב היעילות נמדדת בעזרת מדדי סיבוכיות, החשובים שבהם: של אלגוריתמים יעילותם תוכן הפרק: יעילות מהי (זיכרון וזמן, זמן ריצה T( של אלגוריתם מהו, מהם case,
The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן
.. The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן 03.01.16 . Factor Models.i = 1,..., n,r i נכסים, תשואות (משתנים מקריים) n.e[f j ] נניח = 0.j = 1,..., d,f j
אנטנות וקרינה. ur ur. ur ur ur uur ur ur. ur ur. ur ur. = jωρ. ur uur משוואת מקסוול משוואות הרציפות
אנטנות וקרינה משוואת מקסוול רישום פאזורי רישום זמני u u B u E Jm t u uu D u H + J t u D ρ u B ρ m u u u E jωb J uu u u H jωd+ J u D ρ u B ρ m m u ρ J t u ρ m Jm t משוואות הרציפות רישום פאזורי רישום זמני
חישוב מרכז המסה של המערכת אופנים + רוכב
לצאת מהשיגרה חישוב מרכז המסה של המערכת אופנים + רוכב חזי יצחק, תיכון לחינוך סביבתי, מדרשת שדה בוקר, המכון לחקר המדבר, אוניברסיטת בן גוריון בנגב גל ברן, חברת גיאופן תקציר אנו מציעים שיטה חדשה לחישוב מרכז
משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ
משוואות רקורסיביות הגדרה: רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים למשל: T = Θ 1 if = 1 T + Θ if > 1 יונתן יניב, דוד וייץ 1 דוגמא נסתכל על האלגוריתם הבא למציאת
קחרמב יאצמנה דחא לכ Q = 1 = 1 C לש ינעטמ ינש ינותנ (ג ( 6 )? עטמה תא ירצוי ינורטקלא המכ.1 ( 5 )? עטמ לכ לע לעופה חוכ והמ.2
לקט תרגילי חזרה בנושא אלקטרוסטטיקה מבנה אטו, חוק קולו. א) נתוני שני איזוטופי של יסוד ליטיו 3 Li 6 : ו. 3 Li 7 מהו הבדל בי שני האיזוטופי? מה משות ביניה? ) התייחס למספר אלקטרוני, פרוטוני וניטרוני, מסת האיזוטופ
קיום ויחידות פתרונות למשוואות דיפרנציאליות
קיום ויחידות פתרונות למשוואות דיפרנציאליות 1 מוטיבציה למשפט הקיום והיחידות אנו יודעים לפתור משוואות דיפרנציאליות ממחלקות מסוימות, כמו משוואות פרידות או משוואות לינאריות. עם זאת, קל לכתוב משוואה דיפרנציאלית
-107- גיאומטריה זוויות מבוא מטרתנו בפרק זה היא לחזור על המושגים שנלמדו ולהעמיק את הלימוד בנושא זה.
-07- בשנים קודמות למדתם את נושא הזוויות. גיאומטריה זוויות מבוא מטרתנו בפרק זה היא לחזור על המושגים שנלמדו ולהעמיק את הלימוד בנושא זה. זווית נוצרת על-ידי שתי קרניים היוצאות מנקודה אחת. הנקודה נקראת קדקוד
דינמיקה כוחות. N = kg m s 2 מתאפסת.
דינמיקה כאשר אנו מנתחים תנועה של גוף במושגים של מיקום, מהירות ותאוצה כפי שעשינו עד כה, אנו מדלגים על ניתוח הכוחות הפועלים על הגוף. כוחות אלו ומסתו של הגוף הם אשר קובעים את תאוצתו. על מנת לקבל קשר בין הכוחות
חלק: א' הדו"ח מוגש על ידי: פומרנץ ישי קישון איתי ת.ז. שם משפחה שם פרטי ת.ז. שם משפחה שם פרטי 1 X 02 סמסטר ב' תשס"א שם הבודק : תאריך הבדיקה:
דו"ח מסכם בניסוי: חלק: א' מגנטיות סמסטר ב' תשס"א שם הבודק : תאריך הבדיקה: I שם מדריך הניסוי (שם מלא): אריאל ציון הדו"ח: II תאריך ביצוע הניסוי: 30/04/00 תאריך הגשת הדו"ח: 7/05/00 הדו"ח מוגש על ידי: II I
בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד
בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד סמסטר: א' מועד: א' תאריך: יום ה' 0100004 שעה: 04:00 משך הבחינה: שלוש שעות חומר עזר: אין בבחינה שני פרקים בפרק הראשון 8 שאלות אמריקאיות ולכל אחת מהן מוצעות
הרצאה. α α פלוני, וכדומה. הזוויות α ל- β שווה ל-
מ'' ל'' Deprmen of Applied Mhemics Holon Acdemic Insiue of Technology PROBABILITY AND STATISTICS Eugene Knzieper All righs reserved 4/5 חומר לימוד בקורס "הסתברות וסטטיסטיקה" מאת יוג'ין קנציפר כל הזכויות
אלקטרומגנטיות אנליטית תירגול #2 סטטיקה
Analytical Electromagnetism Fall Semester 202-3 אלקטרומגנטיות אנליטית תירגול #2 סטטיקה צפיפויות מטען וזרם צפיפות מטען נפחית ρ מוגדרת כך שאינטגרל נפחי עליה נותן את המטען הכולל Q dv ρ היחידות של ρ הן מטען
תרגול #14 תורת היחסות הפרטית
תרגול #14 תורת היחסות הפרטית 27 ביוני 2013 עקרונות יסוד 1. עקרון היחסות חוקי הפיסיקה אינם משתנים כאשר עוברים ממערכת ייחוס אינרציאלית (מע' ייחוס שאינה מאיצה) אחת למערכת ייחוס אינרציאלית אחרת. 2. אינווריאנטיות
dspace זווית - Y מחשב מנוע ואנקודר כרטיס ו- driver
ת : 1 ניסוי - מנוע מצביע מטרת הניסוי מטרת הניסוי היא לתרגל את הנושאים הבאים: זיהוי פונקציות תמסורת של מנועים חשמליים, בנית חוגי בקרה עבור מערכת המופעלת ע"י מנוע חשמלי עם דרישות כגון רוחב סרט, עודפי הגבר
אוסף שאלות מס. 3 פתרונות
אוסף שאלות מס. 3 פתרונות שאלה מצאו את תחום ההגדרה D R של כל אחת מהפונקציות הבאות, ושרטטו אותו במישור. f (x, y) = x + y x y, f 3 (x, y) = f (x, y) = xy x x + y, f 4(x, y) = xy x y f 5 (x, y) = 4x + 9y 36,
f ( x, y) 1 5y axy x xy ye dxdy לדוגמה: axy + + = a ay e 3 2 a e a y ( ) במישור. xy ואז dxdy למישור.xy שבסיסם dxdy וגבהם y) f( x, איור 25.
( + 5 ) 5. אנטגרלים כפולים., f ( המוגדרת במלבן הבא במישור (,) (ראה באיור ). נתונה פונקציה ( β α f(, ) נגדיר את הסמל הבא dd e dd 5 + e ( ) β β איור α 5. α 5 + + = e d d = 5 ( ) e + = e e β α β α f (, )
פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה.
פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. 16 במאי 2010 נסמן את מחלקת הצמידות של איבר בחבורה G על ידי } g.[] { y : g G, y g כעת נניח כי [y] [] עבור שני איברים, y G ונוכיח כי [y].[] מאחר והחיתוך
תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME
הנדסת המישור - תרגילים הכנה לבגרות תרגילים הנדסת המישור - תרגילים הכנה לבגרות באמצעות Q תרגיל 1 מעגל העובר דרך הקודקודים ו- של המקבילית ו- חותך את האלכסונים שלה בנקודות (ראה ציור) מונחות על,,, הוכח כי
מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1
1 טורים כלליים 1. 1 התכנסות בהחלט מתכנס. מתכנס בהחלט אם n a הגדרה.1 אומרים שהטור a n משפט 1. טור מתכנס בהחלט הוא מתכנס. הוכחה. נוכיח עם קריטריון קושי. יהי אפסילון גדול מ- 0, אז אנחנו יודעים ש- n N n>m>n
מבני נתונים ויעילות אלגוריתמים
מבני נתונים ויעילות אלגוריתמים (8..05). טענה אודות סדר גודל. log טענה: מתקיים Θ(log) (!) = הוכחה: ברור שמתקיים: 3 4... 4 4 4... 43 פעמים במילים אחרות:! נוציא לוגריתם משני האגפים: log(!) log( ) log(a b
פיזיקה 2 שדה מגנטי- 1
Ariel University אוניברסיטת אריאל פיזיקה שדה מגנטי- 1. 1 MeV 1.חשב את זמן המחזור של פרוטון בתוך השדה המגנטי של כדור הארץ שהוא בערך B. 5Gauss ואת רדיוס הסיבוב של המסלול, בהנחה שהאנרגיה של הפרוטון הוא M
מבני נתונים מבחן מועד ב' סמסטר חורף תשס"ו
TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE הטכניון - מכון טכנולוגי לישראל הפקולטה למדעי המחשב מרצים: רן אל-יניב, נאדר בשותי מבני נתונים 234218-1 מבחן מועד ב' סמסטר חורף תשס"ו
1. שאלות הכנה. 2. רקע תיאורטי המקובלות.
1 נספח ב' : בדיקות קושי 1. שאלות הכנה. 1. הגדר מה זה קושי.. האם קושי הוא תכונה אלסטית או פלסטית, הסבר. 3. הסבר את הנוסחאות לבדיקת קשיות בשיטות ברינל, ויקרס ורוקוול. באילו יחידות נמדדת הקשיות? 4. הסבר את
אלגוריתמים ללכסון מטריצות ואופרטורים
אלגוריתמים ללכסון מטריצות ואופרטורים לכסון מטריצות יהי F שדה ו N n נאמר שמטריצה (F) A M n היא לכסינה אם היא דומה למטריצה אלכסונית כלומר, אם קיימת מטריצה הפיכה (F) P M n כך ש D P AP = כאשר λ λ 2 D = λ n
מתמטיקה בדידה תרגול מס' 5
מתמטיקה בדידה תרגול מס' 5 נושאי התרגול: פונקציות 1 פונקציות הגדרה 1.1 פונקציה f מ A (התחום) ל B (הטווח) היא קבוצה חלקית של A B המקיימת שלכל a A קיים b B יחיד כך ש. a, b f a A.f (a) = ιb B. a, b f או, בסימון
x = r m r f y = r i r f
דירוג קרנות נאמנות - מדד אלפא מול מדד שארפ. )נספחים( נספח א': חישוב מדד אלפא. מדד אלפא לדירוג קרנות נאמנות מוגדר באמצעות המשוואה הבאה: כאשר: (1) r i r f = + β * (r m - r f ) r i r f β - התשואה החודשית
= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(
א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π
( a) ( a) ( ) ( ) ( ) ( ) ( ) ( ) ( μ μ E E = + θ kr. cos. θ = θ אופטיקה = = c t c V = = = c 3. k i. k r = 90 משוואות מקסוול. n sin.
o ( ω דף נוסחאות אופטיקה 4 מורן אסיף אביב תשס"ח משוואות מקסוול D 4π H J B D ε D 4πρ B B μh משוואות הגלים με με B B π λ, גל זה נקרא מישורי מפני ש- הוא פתרונן יהיה: ולכן עבור ליניארית שניתן לכתיבה היטל של
סיכום- בעיות מינימוםמקסימום - שאלון 806
סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,
אלגברה לינארית מטריצות מטריצות הפיכות
מטריצות + [( αij+ β ij ] m λ [ λα ij ] m λ [ αijλ ] m + + ( + +C + ( + C i C m q m q ( + C C + C C( + C + C λ( ( λ λ( ( λ (C (C ( ( λ ( + + ( λi ( ( ( k k i חיבור מכפלה בסקלר מכפלה בסקלר קומוטטיב אסוציאטיב
לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)
לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור
תרגיל 3 שטף חשמלי ומשפט גאוס
תרגיל שטף חשמלי ומשפט גאוס הערה: אינטגרלים חיוניים מוצגים בסוף הדף 1. כדור שמסתו.5 g ומטענו 1 6- C תלוי בחוט שאורכו 1 m ונמצא בשדה חשמלי של לוח אינסופי. החוט נפרש בזווית של 1 לכיוון הלוח. מה צפיפות המטען
ריבוי אלחוטית בהעדר קו ראייה, הקדמה:? היתרון של ריבוי וגיוון ערוצים מה משוואת תקשורת בלי קו ראייה פיתוח. וגיוון ערוצים Diversity and Selective MIMO
אנטנות בתקשורת אלחוטית וגיוון ריבוי עניינים תוכן אלחוטית בהעדר קו ראייה, תקשורת הקדמה:? היתרון של ריבוי וגיוון ערוצים מה (LOS) (NLOS) משוואת תקשורת עם קו ראייה פיתוח משוואת תקשורת בלי קו ראייה פיתוח של
תאריך עדכון אחרון: 27 בפברואר ניתוח לשיעורין analysis) (amortized הוא טכניקה לניתוח זמן ריצה לסדרת פעולות, אשר מאפשר קבלת
תרגול 3 ניתוח לשיעורין תאריך עדכון אחרון: 27 בפברואר 2011. ניתוח לשיעורין analysis) (amortized הוא טכניקה לניתוח זמן ריצה לסדרת פעולות, אשר מאפשר קבלת חסמי זמן ריצה נמוכים יותר מאשר חסמים המתקבלים כאשר
חשמל ומגנטיות תשע"ה תרגול 3 פוטנציאל חשמלי ואנרגיה אלקטרוסטטית
חשמל ומגנטיות תשע"ה תרגול 3 פוטנציאל חשמלי ואנרגיה אלקטרוסטטית הפונציאל החשמלי בעבור כל שדה וקטורי משמר ישנו פוטנציאל סקלרי המקיים A = φ הדבר נכון גם כן בעבור השדה החשמלי וניתן לרשום E = φ (1) סימן המינוס
"קשר-חם" : לקידום שיפור וריענון החינוך המתמטי
הטכניון - מכון טכנולוגי לישראל המחלקה להוראת הטכנולוגיה והמדעים "קשר-חם" : לקידום שיפור וריענון החינוך המתמטי נושא: חקירת משוואות פרמטריות בעזרת גרפים הוכן ע"י: אביבה ברש. תקציר: בחומר מוצגת דרך לחקירת
גודל. איור 29.1 ב- = 2 = 4. F x שני דרכים לחבר: גאומטרית ואלגברית. איור d = 3
d פרופ' שלמה הבלין 9. אנליזה וקטורית הפרק שלפנינו נקרא אנליזה וקטורית והוא עוסק בחשבון דפרנציאלי ואנטגרלי של וקטורים. הרבה גדלים בפיסיקה יש להם גם ערך מספרי גודל וגם כיוון במרחב. למשל העתק, או מהירות של
אלגברה ליניארית (1) - תרגיל 6
אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,
הפקולטה לפיסיקה בחינת פיסיקה 2 ממ סמסטר אביב תשע"ה מועד טור 0
הטכניון - מכון טכנולוגי לישראל 6/7/5 הפקולטה לפיסיקה בחינת פיסיקה ממ 75 סמסטר אביב תשע"ה מועד א ' טור ענו על השאלות הבאות. לכל שאלה משקל זהה. משך הבחינה 3 שעות. חומר עזר: מותר השימוש במחשבון פשוט ושני
כלליים זמן: S מחסנית, top(s) ראש המחסנית. (Depth First Search) For each unmarked DFS(v) / BFS(v) רקורסיבי. אלגוריתם :BFS
כלליים שיטות חיפוש בבגרפים שיטה 1: חיפוש לרוחב S (readth irst Search) זמן: ) Θ( V + הרעיון: שימוש בתור.O שיטה 2: חיפוש לעומק S (epth irst Search) Θ( V + ) יהי =(V,) גרף כלשהו, V הוא צומת התחלת החיפוש.
הסתברות שבתחנה יש 0 מוניות ו- 0 נוסעים. הסתברות שבתחנה יש k-t נוסעים ו- 0 מוניות. λ λ λ λ λ λ λ λ P...
שאלה תורת התורים קצב הגעת נוסעים לתחנת מוניות מפולג פואסונית עם פרמטר λ. קצב הגעת המוניות מפולג פואסונית עם פרמטר µ. אם נוסע מגיע לתחנה כשיש בה מוניות, הוא מייד נוסע במונית. אם מונית מגיעה לתחנה כשיש בתחנה
סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור
סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b
קורס: מבוא למיקרו כלכלה שיעור מס. 17 נושא: גמישויות מיוחדות ושיווי משקל בשוק למוצר יחיד
גמישות המחיר ביחס לכמות= X/ Px * Px /X גמישות קשתית= X(1)+X(2) X/ Px * Px(1)+Px(2)/ מקרים מיוחדים של גמישות אם X שווה ל- 0 הגמישות גם כן שווה ל- 0. זהו מצב של ביקוש בלתי גמיש לחלוטין או ביקוש קשיח לחלוטין.
Ze r = 2 h. Z n. me En = E = h
דוח מעבדה: מעבדה ג' בפיסיקה ניסוי: ספקטרומטר מדריך: דימיטרי צ'סקיס \ אדר גרינברג מגישים: דניאל קראוטגמר ת.ז. 03967906-3 יבגני אוסטרניק ת.ז. 30594306-0 מבוא בניסוי זה למדנו על ספקטרוסקופיה אטומית. למדנו
יתרואת עקר יאטל - וו וטופ את
מיקוד במעבדה בפיסיקה 9 רקע תאורתי קיטוב האור E אור מקוטב אור טבעי גל אלקרומגנטי הוא גל המורכב משדה חשמלי B ושדה מגנטי המאונכים זה לזה לכן.1 וקטור השדה החשמלי ווקטור ההתקדמות יוצרים מישור קבוע שנקרא מישור
רקע תיאורטי פיסיקה 1
רקע תיאורטי פיסיקה 1 30 ביוני 2013 הערה: יתכן וישנן נוסחאות שנלמדו אך אינן מופיעות פה. הרשימות מטה הן ריכוז של התרגולים בקורס ואין לייחס אליהם כאל מקור רפרנס יחיד בקורס (כל הזכויות שמורות לשרית נגר). dx(t)