Εξωτερική Ταξινόμηση. Μ.Χατζόπουλος 1
|
|
- Φώτις Κορνάρος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Εξωτερική Ταξινόμηση Μ.Χατζόπουλος 1
2 Γιατί είναι απαραίτητη; Κλασσικό Πρόβλημα της Πληροφορικής Πολλές φορές θέλουμε να παρουσιάσουμε δεδομένα σε ταξινομημένη μορφή Είναι σημαντική για την απαλοιφή διπλοτύπων Πράξεις στις βάσεις δεδομένων απαιτούν ταξινόμηση Σε πολλές οργανώσεις αρχείων αποτελεί το πρώτο βήμα στο αρχικό φόρτωμα του αρχείου. Σημαντικό πρόβλημα: τα αρχεία είναι μεγάλα και εφόσον δεν χωράνε στη μνήμη δεν μπορώ να χρησιμοποιήσω μια μέθοδο εσωτερικής ταξινόμησης Θα μπορούσα να χρησιμοποιήσω εικονική μνήμη; Μ.Χατζόπουλος Εξωτερική Ταξινόμηση 2 2
3 Η εξωτερική ταξινόμηση αναφέρεται σε αλγόριθμους ταξινόμησης που είναι κατάλληλοι για μεγάλα αρχεία εγγραφών αποθηκευμένα στο δίσκο που δεν μπορούν να χωρέσουν ολόκληρα στην κύρια μνήμη. Ο τυπικός αλγόριθμος εξωτερικής ταξινόμησης χρησιμοποιεί μια στρατηγική ταξινόμησης-συγχώνευσης, -, που ξεκινά με την ταξινόμηση μικρών υποαρχείων ονομάζονται σειρές (runs)-του κυρίως αρχείου και στη συνέχεια συγχώνευση των ταξινομημένων σειρών, δημιουργώντας μεγαλύτερα ταξινομημένα υποαρχεία που γίνεται με την σειρά συγχώνευση και αυτών. Μ.Χατζόπουλος 3
4 Εξωτερική Ταξινόμηση-Συγχώνευση Έστω Mτο μέγεθος της μνήμης (σε σελίδες). 1. Δημιουργία ταξινομημένων τμημάτων (runs). Έστω ότι αρχικά είναι i=0. Διαβάζουμε από το αρχείο τα παρακάτω μέχρι να τελειώσει: (a) Διάβασμα M blocks στη μνήμη (b) Ταξινόμηση των μπλοκ στη μνήμη (c) Γράψιμο του ταξινομημένου τμήματος (run) R i ; i++. Έστω ότι τελικά i=n 2. Συγχώνευση των runs (συνεχίζεται).. Μ.Χατζόπουλος 4
5 Εξωτερική Ταξινόμηση-Συγχώνευση (συν.) 2. Συγχώνευση των runs (N-τάξεως συγχώνευση). Έστω N < M. 1. Χρήση N blocks της μνήμης σαν είσοδο των runs, και 1 block σαν έξοδο. Διαβάζεται το πρώτο block από κάθε run στη σελίδα εισόδου το 2. repeat 1. Επιλογή της πρώτης εγγραφής (στη σειρά διάταξης) μεταξύ όλων των σελίδων 2. Γράψιμο στη σελίδα εξόδου. Αν γεμίσει γράψιμο στο δίσκο. 3. Διαγραφή της εγγραφής από τη σελίδα εισόδου της. Αν η σελίδα αδειάσει τότε διάβασε το επόμενο block αυτού του run (αν υπάρχει). 3. until όλες οι σελίδες εισόδου να αδειάσουν : Μ.Χατζόπουλος 5
6 Εξωτερική Ταξινόμηση-Συγχώνευση (συν.) Αν N M, απαιτούνται πολλά περάσματα συγχώνευσης. Σε κάθε πέρασμα, συγχωνεύονται ομάδες M - 1 runs. Κάθε πέρασμα μειώνει το πλήθος των runs κατά ένα παράγοντα M -1, και δημιουργεί μεγαλύτερα runs. Π.χ. Αν M=11, και υπάρχουν 90 runs, ένα πέρασμα μειώνει το πλήθος των runs σε 9, που το καθένα είναι 10 φορές το μέγεθος των αρχικών runs Εκτελούνται επαναλαμβανόμενα περάσματα μέχρι το πλήθος των runs να περιορισθεί σε 1. Μ.Χατζόπουλος 6
7 Παράδειγμα: Εξωτερικής Ταξινόμησης Μ.Χατζόπουλος 7
8 3,4 6,2 9,4 8,7 5,6 3,1 2 3,4 2,6 4,9 7,8 5,6 1,3 2 2,3 4,7 1,3 2 4,6 8,9 5,6 2,3 1,2 4,4 3,5 6,7 6 8,9 1,2 2,3 3,4 4,5 6,6 7,8 9 Μ.Χατζόπουλος 8
9 function rmerge(x, l, m, n); // (X l,.. X m ) και (X m+1, X n ) είναι ταξινομημένα (με κλειδιά τα x i ) και // η συγχώνευση παράγει στο Ζ στις θέχσεις (Ζ ι, Ζ n ) { k l; i l; j m+1; while ((i<=m) && (j<=n)) { if x i <= x j {Z k =X i ; i++} else {Z k =X j ; j++} k++ } if i>m { (Z k, Z n ) (X j, X n ) } else {(Z k, Z n ) (X j, X m ) } (X l, X n ) (Z l, Z n ) } Μ.Χατζόπουλος 9
10 function mpass(x, Y, n. l); // συγχωνεύει διαδοχικά υποαρχεία μεγέθους l από το αρχείο X στο // αρχείο Y. n είναι το πλήθος των εγγραφών του X { i=1; while (i<=(n-2*l+1)) do { rmerge(x, i, i+l-1, i+2*l-1, Y); i=i+2*l } if ((i+l-1)<n) {rmerge(x, i, i+l-1, n, Y) } else ({(Y i, Y n ) (X j, X n ) } } Μ.Χατζόπουλος 10
11 function msort(x, n) declare Y(n) {l=1; /* το μέγεθος των υποαρχείων */ while (l<n) {mpass(x,y,n, l); l=2*l; mpass(y,x,n.l); l=2*l } } Μ.Χατζόπουλος 11
12 Φάση Ταξινόμησης set i 1; j b; {το μέγεθος του αρχείου σε μπλοκ} k n b ; {το μέγεθος του μπαφερ σε μπλοκ} m (j/k) ; {φάση της ταξινόμησης} while (i<=m) do { διάβασε τα επόμενα k μπλοκ του αρχείου στο μπαφερ ή αν απομένουν λιγότερα από k μπλοκ διάβασε τα μπλοκ που απομένουν ταξινόμησε τις εγγραφές στο μπαφερ και να γραφούν σαν προσωρινό υποαρχείο; i i+1; } Μ.Χατζόπουλος 12
13 set i 1; p log k-1 m ; j m; while (i<=p) do { n 1; Φάση Συγχώνευσης q (j/(k-1)) ; {πλήθος υποαρχείων που θα γραφούν στο πέρασμα αυτό} while (n<=q) do { διάβασε τα επόμενα k-1 υποαρχεία (από το προηγούμενο πέρασμα) ένα μπλοκ τη φορά; συνένωση και γράψιμο σαν νέο υποαρχείο; n n+1; } j q; i i+1; } Μ.Χατζόπουλος 13
14 INPUT 1 OUTPUT INPUT 2 Μ.Χατζόπουλος 14
15 Εξωτερική ταξινόμηση Αν μπορούμε να έχουμε στη μνήμη περισσότερες από 2 σελίδες μπορούμε να κάνουμε κάτι καλύτερο Αν έχουμε n B σελίδες μνήμης Στο πέρασμα 0 ταξινομούμε n B σελίδες (θα δημιουργηθούν b/ n B ταξινομημένες σειρές Μετά σε κάθε πέρασμα θα γίνεται συγχώνευση n B -1 ταξινομημένων σειρών
16 INPUT 1 INPUT 2.. OUTPUT INPUT Β-1 Μ.Χατζόπουλος 16
17 Φάση Ταξινόμησης Έστω b το πλήθος των μπλοκ του αρχείου και έστω ότι μπορώ να έχω στη μνήμη n B μπλοκ. Τότε οι πρώτες ταξινομημένες σειρές που μπορώ να δημιουργήσω είναι: n R = (b/ n B ) Μ.Χατζόπουλος 17
18 Φάση της Συγχώνευσης Κάθε φάση της συγχώνευσης απαιτεί μια ανάγνωση και μια εγγραφή ολόκληρου του αρχείου. Επομένως το κόστος θα εξαρτάται από το πλήθος των συγχωνεύσεων. Αν γίνει συγχώνευση βαθμού dτότε το πλήθος των συγχωνεύσεων θα είναι: (log d (n R )) Και στην περίπτωση δυαδικής συγχώνευσης: (log 2 (n R )) Μ.Χατζόπουλος 18
19 Συνολικό κόστος Το κόστος για την δημιουργία των ταξινομημένων σειρών θα είναι: Για την συγχώνευση: 2*b 2*b* (log d (n R )) Επομένως συνολικά: 2*b+2*b* (log d (n R )) Μ.Χατζόπουλος 19
20 Πλήθος συγχωνεύσεων b n B =3 n B =5 n B =9 n B =17 n B =129 n B =
21 Μπορώ να κάνω κάτι καλλίτερο; Από τον προηγούμενο τύπο για να έχω λιγότερες σαρώσεις του αρχείου πρέπει να συμβεί: 1)Όσο το δυνατόν μεγαλύτερο βαθμό συνένωσης. Όμως το d δεν μπορεί να ξεπεράσεις το n b -1. Ένα για την έξοδο και όλα τα υπόλοιπα για συγχώνευση. 2)Όσο το δυνατόν μικρότερο n R. Δηλαδή να φτιάξω αρχικές ταξινομημένες σειρές μεγαλύτερου μεγέθους. Μ.Χατζόπουλος 21
22 Μπορώ όμως να φτιάξω αρχικές ταξινομημένες σειρές με μέγεθος μεγαλύτερο από αυτό που χωράει η μνήμη; Σωρός ταξινόμησης είναι ένα πλήρες δυαδικό δένδρο με την ιδιότητα το στοιχείο της ρίζας να είναι μικρότερο από το στοιχείο της ρίζας των υποδένδρων του και κάθε υποδένδρο έχει την ιδιότητα να είναι σωρός ταξινόμησης Αυτό είναι Αυτό δεν είναι Μ.Χατζόπουλος 22
23 Έστω ο πίνακας Α που έχει την ιδιότητα του σωρού ταξινόμησης από το στοιχείο i+1 μέχρι το τέλος m procedure pilesort(a, i, n) { if i<= n/2 then { j:=2*i; if j<n then {if A[j+1]<A[j] then j:=j+1} if A[i]>A[j] then {A[i] ]A[j]; pilesort(a,j,n)} } else exit } Μ.Χατζόπουλος 23
24 Το πιο πρόσφατο στοιχείο της εξόδου. Αν το επόμενο που θα διαβασθεί Είναι μεγαλύτερο του μπορούν να πάνε στην ίδια σειρά last ΜΠΛΟΚ ΕΞΟΔΟΥ m θέσεις μνήμης ΜΠΛΟΚ ΕΙΣΟΔΟΥ Μ.Χατζόπουλος 24
25 Αρχική εισαγωγή στοιχείων (δημιουργία αρχικού σωρού ταξινόμησης for i:=m downto m/2 +1 do read(in,a[i]) for i:= m/2 downto 1 do { read(in,a[i]); pilesort(a,i,m) } Μ.Χατζόπουλος 25
26 Κάθε φορά κατασκευάζονται δύο σειρές, η τρέχουσα και η επόμενη last:=a[1]; write(out, last); k:=m; no_of_runs:=1; while not eof(in) do{ read(in, A[1]); if A[1]>=last then pilesort(a,1,k) write(out,a[1]) } else{ if k>1 then{a[1] A[k]; } pilesort(a,1,k-1); pilesort(a, k, m); k:=k-1} else {write(out, end_of_run); no_of_runs:= no_of_runs+1; k:=m; pilesort(a, 1,k)} Μ.Χατζόπουλος 26
27 if k<m then { for i:=k downto 2 do{write(out, A[1]); A[1]:=A[i]; pilesort(a, 1, i-1); A[i]:=A[m-k+i]; pilesort(a, i, m-k+i-1] }; write(out, end_of_run); k:=m-k; no_of_runs:= no_of_runs+1; } else {for i:=k downto 1 do{write(out, A[1]); A[1]:=A[i]; pilesort(a, 1, i-1); } Μ.Χατζόπουλος 27
28 Τελευταίο Έξοδος Είσοδος Μ.Χατζόπουλος 28
29 Τελευταίο Έξοδος Είσοδος Μ.Χατζόπουλος 29
30 Τελευταίο Έξοδος Είσοδος Μ.Χατζόπουλος 30
31 Τελευταίο Έξοδος Είσοδος Μ.Χατζόπουλος 31
32 Τελευταίο Έξοδος Είσοδος Μ.Χατζόπουλος 32
33 Τελευταίο Έξοδος Είσοδος Μ.Χατζόπουλος 33
34 Τελευταίο Έξοδος Είσοδος Μ.Χατζόπουλος 34
35 Τελευταίο Έξοδος Είσοδος Μ.Χατζόπουλος 35
36 Τελευταίο Έξοδος Είσοδος Μ.Χατζόπουλος 36
37 Τελευταίο Έξοδος Είσοδος Μ.Χατζόπουλος 37
38 Τελευταίο Έξοδος Είσοδος Μ.Χατζόπουλος 38
39 Τελευταίο Έξοδος Είσοδος Μ.Χατζόπουλος 39
40 Τελευταίο Έξοδος Είσοδος Μ.Χατζόπουλος 40
41 Τελευταίο Έξοδος Είσοδος Μ.Χατζόπουλος 41
42 Τελευταίο Έξοδος Είσοδος Μ.Χατζόπουλος 42
43 Τελευταίο Έξοδος Είσοδος Μ.Χατζόπουλος 43
44 Τελευταίο Έξοδος Είσοδος Μ.Χατζόπουλος 44
45 Τελευταίο Έξοδος Είσοδος Μ.Χατζόπουλος 45
46 Τελευταίο Έξοδος Είσοδος Μ.Χατζόπουλος 46
47 Τελευταίο Έξοδος Είσοδος Μ.Χατζόπουλος 47
48 Τελευταίο Έξοδος Είσοδος Μ.Χατζόπουλος 48
49 Τελευταίο Έξοδος Είσοδος Μ.Χατζόπουλος 49
50 Τελευταίο Έξοδος Είσοδος Μ.Χατζόπουλος 50
51 Τελευταίο Έξοδος Είσοδος Μ.Χατζόπουλος 51
52 Τελευταίο Τώρα αρχίζει νέα σειρά 8 Έξοδος Είσοδος Μ.Χατζόπουλος 52
53 Τελευταίο Έξοδος Είσοδος Μ.Χατζόπουλος 53
54 Τελευταίο Έξοδος Είσοδος Μ.Χατζόπουλος 54
55 Όσο λιγότερες ταξινομημένες σειρές υπάρχουν τόσο είναι λιγότερες οι επαναλήψεις Για λιγότερες ταξινομημένες σειρές χρειαζόμαστε μεγάλες αρχικές ταξινομημένες σειρές Αποδεικνύεται ότι κατά μέσο όρο ο παραπάνω αλγόριθμος φτιάχνει αρχικές σειρές μεγέθους 2* n B Άλλες τεχνικές για ελαχιστοποίηση του Ι/Ο / χρόνου είναι η χρήση διπλού μπαφερ (που βέβαια μειώνει τον διαθέσιμο χώρο)
56 INPUT 1 INPUT 1 INPUT 2 INPUT 2.. INPUT K INPUT K OUTPUT OUTPUT Μ.Χατζόπουλος 56
57 Η ταξινόμηση αρχείων γενικά κοστίζει Παλαιό πρόβλημα των απανταχού μηχανογράφων Μια λύση η χρήση παραλληλίας Σε δοκιμές 1Μ εγγραφών μεγέθους 100 bytes Τυπικά ΣΔΒΔ 15 λεπτά 3,5 δευτερόλεπτα με 12 CPUs SGI μηχανή, 96 δίσκους, 2GB ram Νέοι τύποι δοκιμών Πόσες εγγραφές μπορώ να ταξινομήσω στη μονάδα χρόνου Πόσες εγγραφές μπορώ να ταξινομήσω με βάση το κόστος
58 Χρήση των Β+ δένδρων για ταξινόμηση Το αρχείο που θέλουμε να ταξινομήσουμε έχει ευρετήριο Β+ δένδρου στο πεδίο ταξινόμησης. Μπορούμε να ανακτήσουμε τις εγγραφές με σαρώνοντας στη σειρά τους κόμβους φύλλα Είναι καλή ιδέα? Θα θεωρήσουμε δύο περιπτώσεις: Το Β+ δένδρο είναι συστάδα (καλή ιδέα) Το Β+ δένδρο δεν είναι συστάδα (μπορεί να είναι πολύ κακή ιδέα)
59 Δομή Ευρετηρίου Καταχωρήσεις Ευρετηρίου Εγγραφές Αρχείου σε συστάδα
60 Δομή Ευρετηρίου Καταχωρήσεις Ευρετηρίου Εγγραφές Αρχείου δενδρικό ευρετήριο χωρίς συστάδα
61 Συμπεράσματα Η εξωτερική ταξινόμηση είναι πολύ σημαντική εργασία στις Βάσεις Δεδομένων. Με την μέθοδο της εξωτερικής ταξινόμησης θέλουμε να ελαχιστοποιήσουμε το I/O κόστος Η πρώτη φάση δημιουργεί ταξινομημένες σειρές (runs) μεγέθους nb Όσο μεγαλύτερο είναι το τόσο λιγότερες ταξινομημένες σειρές θα δημιουργηθούν Στην πράξη θέλουμε όσο το δυνατόν λιγότερες ταξινομηένες σειρές Μ.Χατζόπουλος 61
62 Συμπεράσματα (συν.) Είναι σημαντική η επιλογή του εσωτερικού αλγόριθμου ταξινόμησης quicksort :γρήγορος Heapsort: φτιάχνει ταξινομημένες σειρές διπλάσιου μεγέθους κατά μέσο όρο. Παρά τις προόδους των τελευταίων 50 ετών, ακόμη βελτιωνόμαστε Τα Β+ δένδρα αποτελούν καλή μέθοδο όταν είναι σε συστάδες. Μ.Χατζόπουλος 62
Εξωτερική Ταξινόμηση. Μ.Χατζόπουλος 1
Εξωτερική Ταξινόμηση Μ.Χατζόπουλος 1 Γιατί είναι απαραίτητη; Κλασσικό Πρόβλημα της Πληροφορικής Πολλές φορές θέλουμε να παρουσιάσουμε δεδομένα σε ταξινομημένη μορφή Είναι σημαντική για την απαλοιφή διπλοτύπων
Οι πράξεις της συνένωσης. Μ.Χατζόπουλος 1
Οι πράξεις της συνένωσης Μ.Χατζόπουλος 1 ΠΡΟΜΗΘΕΥΤΗΣ (ΠΡΜ) Κ_Προμ Π_Ονομα Είδος Πόλη 22 Ανδρέου 7 Αθήνα 31 Πέτρου 8 Πάτρα 28 Δέδες 12 Λάρισα 58 Παππάς 7 Αθήνα ΠΡΟΙΟΝ (ΠΡ) Κ_Πρ Πρ_Ονομα Χρώμα Βάρος Π35
Οργάνωση Βάσεων Βιοϊατρικών Δεδομένων Εξόρυξη Γνώσης Βιοϊατρικών Δεδομένων. Σεμινάριο 7: Αλγόριθμοι για επεξεργασία ερωτήσεων και βελτιστοποίηση
Οργάνωση Βάσεων Βιοϊατρικών Δεδομένων Εξόρυξη Γνώσης Βιοϊατρικών Δεδομένων Σεμινάριο 7: Αλγόριθμοι για επεξεργασία ερωτήσεων και βελτιστοποίηση Ευάγγελος Καρκαλέτσης, Αναστασία Κριθαρά, Γεώργιος Πετάσης
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 / ένδρα Ενα δένδρο είναι
Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Εισαγωγή στην Επεξεργασία Ερωτήσεων Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα Βάσεις
Τα δεδοµένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Για να επεξεργαστούµε τα δεδοµένα θα πρέπει αυτά να βρίσκονται στη
Ευρετήρια 1 Αρχεία Τα δεδοµένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Για να επεξεργαστούµε τα δεδοµένα θα πρέπει αυτά να βρίσκονται στη µνήµη. Η µεταφορά δεδοµένων από το δίσκο στη µνήµη και από τη
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΑΣΚΗΣΗ ΔΕΥΤΕΡΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΑΣΚΗΣΗ ΔΕΥΤΕΡΗ ΜΑΘΗΜΑ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΑΚΑΔ. ΕΤΟΣ 2007-2008 14.02.2008 EΠΙΣΤΡΕΦΕΤΑΙ ΔΙΔΑΣΚΩΝ Ιωάννης Βασιλείου, Καθηγητής,
Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο
Κατακερµατισµός 1 Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο 1. Αρχεία Σωρού 2. Ταξινοµηµένα Αρχεία Φυσική διάταξη των εγγραφών
Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο
Κατακερματισμός 1 Αποθήκευση εδομένων (σύνοψη) Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Παραδοσιακά, μία σχέση (πίνακας/στιγμιότυπο) αποθηκεύεται σε ένα αρχείο Αρχείο δεδομένων
Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα 2 Βήματα Επεξεργασίας Τα βασικά βήματα στην επεξεργασία
Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Ευρετήρια Ευαγγελία Πιτουρά 1 τιμή γνωρίσματος Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται
Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1
Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1 Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ.Χατζόπουλος 2 Δένδρο αναζήτησης είναι ένας ειδικός τύπος δένδρου που χρησιμοποιείται για να καθοδηγήσει την αναζήτηση μιας
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑ ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ ΑΚΑ. ΕΤΟΣ 2012-13 Ι ΑΣΚΟΝΤΕΣ Ιωάννης Βασιλείου Καθηγητής, Τοµέας Τεχνολογίας
Κατακερµατισµός. Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετημένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο
Κατακερµατισµός 1 Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετημένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο 1. Αρχεία Σωρού 2. Ταξινομημένα Αρχεία Φυσική διάταξη των εγγραφών
Κεφ.11: Ευρετήρια και Κατακερματισμός
Κεφ.11: Ευρετήρια και Κατακερματισμός Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Κεφ. 11: Ευρετήρια-Βασική θεωρία Μηχανισμοί ευρετηρίου χρησιμοποιούνται για την επιτάχυνση
Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2018-2019 1 Κατακερματισμός Πρόβλημα στατικού κατακερματισμού: Έστω Μ κάδους και r εγγραφές ανά κάδο - το πολύ Μ * r εγγραφές (αλλιώς μεγάλες αλυσίδες υπερχείλισης)
Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1
Κατακερματισμός 4/3/2009 Μ.Χατζόπουλος 1 H ιδέα που βρίσκεται πίσω από την τεχνική του κατακερματισμού είναι να δίνεται μια συνάρτησης h, που λέγεται συνάρτηση κατακερματισμού ή παραγωγής τυχαίων τιμών
Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων 2009-2010: Ευρετήρια 1
Ευρετήρια 1 Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου
Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2017-2018 1 Κατακερματισμός Πρόβλημα στατικού κατακερματισμού: Έστω Μ κάδους και r εγγραφές ανά κάδο - το πολύ Μ * r εγγραφές (αλλιώς μεγάλες αλυσίδες υπερχείλισης)
Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή (ως τρόπος οργάνωσης αρχείου) μέγεθος
Κεφάλαιο 14. οµές Ευρετηρίων για Αρχεία. ιαφάνεια 14-1
ιαφάνεια 14-1 Κεφάλαιο 14 οµές Ευρετηρίων για Αρχεία Copyright 2007 Ramez Elmasri and Shamkant B. NavatheΕλληνικήΈκδοση, ιαβλος, Επιµέλεια Μ.Χατζόπουλος 1 Θα µιλήσουµε για Τύποι Ταξινοµηµένων Ευρετηρίων
Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων : Ευρετήρια 1
Ευρετήρια 1 Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου
Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort
Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η διαδικασία PercolateDown, Δημιουργία Σωρού O Αλγόριθμος Ταξινόμησης HeapSort Υλοποίηση, Παραδείγματα
Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή
Επεξεργασία Ερωτήσεων
Εισαγωγή Επεξεργασία Ερωτήσεων ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήματος 1. Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασμός) 2. Προγραμματισμός (Σχεσιακή Άλγεβρα, SQL) ημιουργία/κατασκευή Εισαγωγή εδομένων
Επεξεργασία Ερωτήσεων
Εισαγωγή Επεξεργασία Ερωτήσεων Σ Β Βάση εδομένων Η ομή ενός ΣΒ Βάσεις Δεδομένων 2006-2007 Ευαγγελία Πιτουρά 1 Βάσεις Δεδομένων 2006-2007 Ευαγγελία Πιτουρά 2 Εισαγωγή Εισαγωγή ΜΕΡΟΣ 1 (Χρήση Σ Β ) Γενική
Ταξινόμηση με συγχώνευση Merge Sort
Ταξινόμηση με συγχώνευση Merge Sort 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 Πληροφορικής 1 Διαίρει και Βασίλευε Η μέθοδος του «Διαίρει και Βασίλευε» είναι μια γενική αρχή σχεδιασμού αλγορίθμων
Κεφάλαιο 14. Δομές Ευρετηρίων για Αρχεία. Copyright 2007 Ramez Elmasri and Shamkant B. Navathe Ελληνική Έκδοση,
Δίαβλος, Επιμέλεια Μ.Χατζόπουλος Διαφάνεια 14-1 Κεφάλαιο 14 Δομές Ευρετηρίων για Αρχεία Copyright 2007 Ramez Elmasri and Shamkant B. Navathe Ελληνική Έκδοση, Διαβλος, Επιμέλεια Μ.Χατζόπουλος 1 Θα μιλήσουμε
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα.0 Σταύρος Δ. Νικολόπουλος 06-7 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Ταξινόμηση Selection-Sort Bubble-Sort και
Επεξεργασία Ερωτήσεων
Εισαγωγή Σ Β Σύνολο από προγράμματα για τη διαχείριση της Β Επεξεργασία Ερωτήσεων Αρχεία ευρετηρίου Κατάλογος συστήματος Αρχεία δεδομένων ΒΑΣΗ Ε ΟΜΕΝΩΝ Σύστημα Βάσεων εδομένων (ΣΒ ) Βάσεις Δεδομένων 2007-2008
Copyright 2007 Ramez Elmasri and Shamkant B. Navathe, Ελληνική Έκδοση, Δίαβλος, Επιμέλεια Μ.Χατζόπουλος Διαφάνεια 14-1
Δίαβλος, Επιμέλεια Μ.Χατζόπουλος Διαφάνεια 14-1 Κεφάλαιο 14 Δομές Ευρετηρίων για Αρχεία Copyright 2007 Ramez Elmasri and Shamkant B. Navathe Ελληνική Έκδοση, Διαβλος, Επιμέλεια Μ.Χατζόπουλος Θα μιλήσουμε
Αλγόριθμοι Ταξινόμησης Μέρος 3
Αλγόριθμοι Ταξινόμησης Μέρος 3 Μανόλης Κουμπαράκης 1 Ταξινόμηση με Ουρά Προτεραιότητας Θα παρουσιάσουμε τώρα δύο αλγόριθμους ταξινόμησης που χρησιμοποιούν μια ουρά προτεραιότητας για την υλοποίηση τους.
Δεντρικά Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δεντρικά Ευρετήρια 1 Δέντρα Αναζήτησης Ένα δέντρο αναζήτησης (search tree) τάξεως p είναι ένα δέντρο τέτοιο ώστε κάθε κόμβος του περιέχει το πολύ p - 1 τιμές αναζήτησης και ρ δείκτες ως εξής P 1 K 1 P
Τα δεδομένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο
Οργάνωση Αρχείων 1 Αρχεία Τα δεδομένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Η μεταφορά δεδομένων από το δίσκο στη μνήμη και από τη μνήμη στο δίσκο γίνεται σε μονάδες blocks Βασικός στόχος η ελαχιστοποίηση
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Άσκηση 2 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών HY460 Συστήματα Διαχείρισης Βάσεων Δεδομένων Δημήτρης Πλεξουσάκης
Επεξεργασία Ερωτήσεων
Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Εισαγωγή ΣΔΒΔ Σύνολο από προγράµµατα για τη διαχείριση της ΒΔ Αρχεία ευρετηρίου Κατάλογος ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ Αρχεία δεδοµένων συστήµατος Σύστηµα Βάσεων Δεδοµένων (ΣΒΔ)
Δεντρικά Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δεντρικά Ευρετήρια Ευαγγελία Πιτουρά 1 Δέντρα Αναζήτησης Ένα δέντρο αναζήτησης (search tree) τάξεως p είναι ένα δέντρο τέτοιο ώστε κάθε κόμβος του περιέχει το πολύ p - 1 τιμές αναζήτησης και ρ δείκτες
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Ουρές Προτεραιότητας Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρά Προτεραιότητας Το πρόβλημα Έχουμε αντικείμενα με κλειδιά και θέλουμε ανά πάσα στιγμή
Οργάνωση Βάσεων Βιοϊατρικών Δεδομένων Εξόρυξη Γνώσης Βιοϊατρικών Δεδομένων. Σεμινάριο 6: Δομές ευρετηρίων για αρχεία
Οργάνωση Βάσεων Βιοϊατρικών Δεδομένων Εξόρυξη Γνώσης Βιοϊατρικών Δεδομένων Σεμινάριο 6: Δομές ευρετηρίων για αρχεία Ευάγγελος Καρκαλέτσης, Αναστασία Κριθαρά, Γεώργιος Πετάσης Εργαστήριο Τεχνολογίας Γνώσεων
Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Σχεδίαση Αλγορίθμων Διαίρει και Βασίλευε http://delab.csd.auth.gr/~gounaris/courses/ad auth gounaris/courses/ad 1 Διαίρει και Βασίλευε Η γνωστότερη ρημέθοδος σχεδιασμού αλγορίθμων: 1. Διαιρούμε το στιγμιότυπο
Δεντρικά Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δεντρικά Ευρετήρια Βάσεις Δεδομένων 2017-2018 1 Δέντρα Αναζήτησης Ένα δέντρο αναζήτησης (search tree) τάξεως p είναι ένα δέντρο τέτοιο ώστε κάθε κόμβος του περιέχει το πολύ p - 1 τιμές αναζήτησης και ρ
Αλγόριθμοι Ταξινόμησης Μέρος 2
Αλγόριθμοι Ταξινόμησης Μέρος 2 Μανόλης Κουμπαράκης 1 Προχωρημένοι Αλγόριθμοι Ταξινόμησης Στη συνέχεια θα παρουσιάσουμε τρείς προχωρημένους αλγόριθμους ταξινόμησης: treesort, quicksort και mergesort. 2
Οργάνωση Αρχείων. Βάσεις Δεδομένων : Οργάνωση Αρχείων 1. Blobs
Αρχεία Τα δεδομένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Οργάνωση Αρχείων Η μεταφορά δεδομένων από το δίσκο στη μνήμη και από τη μνήμη στο δίσκο γίνεται σε μονάδες blocks Βασικός στόχος η ελαχιστοποίηση
Οργάνωση Αρχείων. Βάσεις Δεδομένων : Οργάνωση Αρχείων 1. Blobs
Αρχεία Τα δεδομένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Οργάνωση Αρχείων Η μεταφορά δεδομένων από το δίσκο στη μνήμη και από τη μνήμη στο δίσκο γίνεται σε μονάδες blocks Βασικός στόχος η ελαχιστοποίηση
auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Σχεδίαση Αλγορίθμων Διαίρει και Βασίλευε http://delab.csd.auth.gr/courses/algorithms/ auth 1 Διαίρει και Βασίλευε Η γνωστότερη ρημέθοδος σχεδιασμού αλγορίθμων: 1. Διαιρούμε το στιγμιότυπο του προβλήματος
Δεντρικά Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δεντρικά Ευρετήρια Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Δέντρα Αναζήτησης Ένα δέντρο αναζήτησης (search tree) τάξεως p είναι ένα δέντρο τέτοιο ώστε κάθε κόμβος του περιέχει το πολύ p - 1 τιμές
Merge Sort (Ταξινόμηση με συγχώνευση) 6/14/2007 3:04 AM Merge Sort 1
Merge Sort (Ταξινόμηση με συγχώνευση) 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 6/14/2007 3:04 AM Merge Sort 1 Κύρια σημεία για μελέτη Το παράδειγμα του «διαίρει και βασίλευε» ( 4.1.1) Merge-sort
Το εσωτερικό ενός Σ Β
Επεξεργασία Ερωτήσεων 1 Εισαγωγή ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήµατος Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασµός) Προγραµµατισµός (Σχεσιακή Άλγεβρα, SQL) ηµιουργία/κατασκευή Εισαγωγή εδοµένων
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Εξεταστική Ιανουαρίου 2014 Διδάσκων : Ευάγγελος Μαρκάκης 20.01.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες και
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 28: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Η διαδικασία PercolateDown, Δημιουργία Σωρού - O Αλγόριθμος Ταξινόμησης HeapSort - Υλοποίηση, Παραδείγματα
Ο αλγόριθμος Quick-Sort. 6/14/2007 3:42 AM Quick-Sort 1
Ο αλγόριθμος Quick-Sort 7 4 9 6 2 2 4 6 7 9 4 2 2 4 7 9 7 9 2 2 9 9 6/14/2007 3:42 AM Quick-Sort 1 Κύρια σημεία για μελέτη Quick-sort ( 4.3) Αλγόριθμος Partition step Δέντρο Quick-sort Παράδειγμα εκτέλεσης
Εξωτερική Αναζήτηση. Ιεραρχία Μνήμης Υπολογιστή. Εξωτερική Μνήμη. Εσωτερική Μνήμη. Κρυφή Μνήμη (Cache) Καταχωρητές (Registers) μεγαλύτερη ταχύτητα
Ιεραρχία Μνήμης Υπολογιστή Εξωτερική Μνήμη Εσωτερική Μνήμη Κρυφή Μνήμη (Cache) μεγαλύτερη χωρητικότητα Καταχωρητές (Registers) Κεντρική Μονάδα (CPU) μεγαλύτερη ταχύτητα Πολλές σημαντικές εφαρμογές διαχειρίζονται
ΕΝΟΤΗΤΑ 7 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ ΣΩΡΟΙ
ΕΝΟΤΗΤΑ 7 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ ΣΩΡΟΙ Ουρές Προτεραιότητας (Priority Queues) Θεωρούµε ότι τα προς αποθήκευση στοιχεία έχουν κάποια διάταξη (καθένα έχει µια προτεραιότητα). Τα προς αποθήκευση στοιχεία είναι
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Α. SelectionSort Ταξινόμηση με Επιλογή Β. InsertionSort Ταξινόμηση με Εισαγωγή
ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 2006 9-1
Σωροί Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ουρές Προτεραιότητας Σωροί υλοποίηση και πράξεις Ο αλγόριθµος ταξινόµησης HeapSort Παραλλαγές Σωρών ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι
Advanced Data Indexing
Advanced Data Indexing (Προηγμένη ευρετηρίαση δεδομένων) Μοντέλα - Αλγόριθμοι Ταξινόμηση Μοντέλα Δευτερεύουσας Μνήμης I/O Αποδοτικοί Αλγόριθμοι Οι εσωτερικές τεχνικές caching και prefetching των Η/Υ είναι
Αλγόριθμοι Ταξινόμησης Μέρος 4
Αλγόριθμοι Ταξινόμησης Μέρος 4 Μανόλης Κουμπαράκης Δομές Δεδομένων και Τεχνικές 1 Μέθοδοι Ταξινόμησης Βασισμένοι σε Συγκρίσεις Κλειδιών Οι αλγόριθμοι ταξινόμησης που είδαμε μέχρι τώρα αποφασίζουν πώς να
Εισαγωγή. Γενική Εικόνα του Μαθήµατος. Το εσωτερικό ενός Σ Β. Εισαγωγή. Εισαγωγή Σ Β Σ Β. Αρχεία ευρετηρίου Κατάλογος συστήµατος Αρχεία δεδοµένων
Βάσεις εδοµένων 2003-2004 Ευαγγελία Πιτουρά 1 ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήµατος Επεξεργασία Ερωτήσεων Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασµός) Προγραµµατισµός (Σχεσιακή Άλγεβρα, SQL)
ΕΝΟΤΗΤΑ 6 ΛΙΣΤΕΣ ΠΑΡΑΛΕΙΨΗΣ (SKIP LISTS)
ΕΝΟΤΗΤΑ 6 ΛΙΣΤΕΣ ΠΑΡΑΛΕΙΨΗΣ (SKIP LISTS) Ταχεία Αναζήτηση Σε πίνακα: δυαδική αναζήτηση (binary search) σε ταξινοµηµένο πίνακα O(log n) Σε δένδρο: αναζήτηση σε ισοζυγισµένο δένδρο O(log n) Σε λίστα: Μπορούµε
Δομές Δεδομένων & Αλγόριθμοι
Δομές Δεδομένων & Αναζήτηση & Ταξινόμηση 1 Αναζήτηση Έχω έναν πίνακα Α με Ν στοιχεία. Πρόβλημα: Βρες αν το στοιχείο x ανήκει στον πίνακα Αν ο πίνακας είναι αταξινόμητος τότε μόνη λύση σειριακή αναζήτηση
Διάλεξη 19: Αλγόριθμοι ΤαξινόμησηςII. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 19: Αλγόριθμοι ΤαξινόμησηςII Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Γ. MergeSort Ταξινόμηση με Συγχώνευση Δ. BucketSort Ταξινόμηση με Κάδους Διδάσκων:
Ταξινόμηση: Εισαγωγικά. Ταξινόμηση (Sor ng) Αλγόριθμοι Απλής Ταξινόμησης. Βασικά Βήματα των Αλγορίθμων
Ταξινόμηση: Εισαγωγικά Ταξινόμηση (Sor ng) Ορέστης Τελέλης Βασικό πρόβλημα για την Επιστήμη των Υπολογιστών. π.χ. αλφαβητική σειρά, πωλήσεις ανά τιμή, πόλεις με βάση πληθυσμό, Μπορεί να είναι ένα πρώτο
Μεταγλωττιστές Βελτιστοποίηση
Μεταγλωττιστές Βελτιστοποίηση Νίκος Παπασπύρου nickie@softlab.ntua.gr Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχ. και Μηχ. Υπολογιστών Εργαστήριο Τεχνολογίας Λογισμικού Πολυτεχνειούπολη, 15780
Επεξεργασία Ερωτήσεων
Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Εισαγωγή ΣΔΒΔ Σύνολο από προγράμματα γιατηδιαχείρισητηςβδ Αρχεία ευρετηρίου Αρχεία δεδομένων Κατάλογος συστήματος ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ Σύστημα Βάσεων Δεδομένων (ΣΒΔ) 2 :
5. Απλή Ταξινόμηση. ομές εδομένων. Χρήστος ουλκερίδης. Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 5. Απλή Ταξινόμηση 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 11/11/2016 Εισαγωγή Η
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 14: Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης 3) Mergesort Ταξινόμηση με Συγχώνευση 4) BucketSort Ταξινόμηση με Κάδους Διδάσκων:
Ταξινόμηση. Σαλτογιάννη Αθανασία
Ταξινόμηση Σαλτογιάννη Αθανασία Ταξινόμηση Ταξινόμηση Τι εννοούμε όταν λέμε ταξινόμηση; Ταξινόμηση Τι εννοούμε όταν λέμε ταξινόμηση; Ποια είδη αλγορίθμων ταξινόμησης υπάρχουν; Ταξινόμηση Τι εννοούμε όταν
Αλγόριθμοι ταξινόμησης
Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης BuubleSort, SelectionSort, InsertionSort, Merger Sort, Quick Soft ΕΠΛ Δομές Δεδομένων και Αλγόριθμοι
Ευρετήρια. Ευρετήρια. Βάσεις εδοµένων :ευρετήρια 1
Ευρετήρια 1 Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου
Ουρά Προτεραιότητας (priority queue)
Ουρά Προτεραιότητας (priority queue) Δομή δεδομένων που υποστηρίζει δύο βασικές λειτουργίες : Εισαγωγή στοιχείου με δεδομένο κλειδί. Επιστροφή ενός στοιχείου με μέγιστο (ή ελάχιστο) κλειδί και διαγραφή
ιαφάνειες παρουσίασης #6
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ http://www.corelab.ece.ntua.gr/courses/programming/ ιδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης
Ουρά Προτεραιότητας (priority queue)
Ουρά Προτεραιότητας (priority queue) Δομή δεδομένων που υποστηρίζει τις ακόλουθες λειτουργίες PQinsert : εισαγωγή στοιχείου PQdelmax : επιστροφή του στοιχείου με το μεγαλύτερο* κλειδί και διαγραφή του
Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Εισαγωγή στην Επεξεργασία Ερωτήσεων Βάσεις Δεδομένων 2018-2019 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα 2 Βήματα Επεξεργασίας
Πληροφορική 2. Δομές δεδομένων και αρχείων
Πληροφορική 2 Δομές δεδομένων και αρχείων 1 2 Δομή Δεδομένων (data structure) Δομή δεδομένων είναι μια συλλογή δεδομένων που έχουν μεταξύ τους μια συγκεκριμένη σχέση Παραδείγματα δομών δεδομένων Πίνακες
Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας Η δομή
Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ουρές Προτεραιότητας Σωροί υλοποίηση και πράξεις Ο αλγόριθμος ταξινόμησης HeapSort
Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ουρές Προτεραιότητας Σωροί υλοποίηση και πράξεις Ο αλγόριθμος ταξινόμησης HeapSort ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-1 Ουρά προτεραιότητας
Βάσεις Δεδομένων 2. Φροντιστήριο Αλγόριθμοι Επεξεργασίας και Βελτιστοποίησης Επερωτήσεων. Ημερ: 27/5/2008 Ακ.Έτος
Βάσεις Δεδομένων 2 Φροντιστήριο Αλγόριθμοι Επεξεργασίας και Βελτιστοποίησης Επερωτήσεων Ημερ: 27/5/2008 Ακ.Έτος 2007-08 Υλοποίηση σχεσιακών πράξεων ΤΑΞΙΝΟΜΗΣΗ Εξωτερική ταξινόμηση για μεγάλα αρχεία, αποθηκευμένα
Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1
Σχεδίαση Αλγορίθμων Μετασχημάτισε και Κυριάρχησε http://delab.csd.auth.gr/~gounaris/courses/ad auth gounaris/courses/ad Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Μετασχημάτισε και Κυριάρχησε
Βάσεις δεδομένων. (10 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr
Βάσεις δεδομένων (10 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr Περιεχόμενα Ευρετήρια Σκανδάλες PL/SQL Δείκτες/Δρομείς 2 Αποθήκευση δεδομένων Πρωτεύουσα αποθήκευση Κύρια μνήμη (main memory) ή κρυφή μνήμη
Τεχνολογία Πολυμέσων. Ενότητα # 9: Κωδικοποίηση εντροπίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 9: Κωδικοποίηση εντροπίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του
Κεφάλαιο 2. Η δομή δεδομένων Σωρός και η Ταξινόμηση Σωρού (The Heap data structure and Heapsort) Έκδοση 1.3, 14/11/2014
Κεφάλαιο 2 Η δομή δεδομένων Σωρός και η Ταξινόμηση Σωρού (The Heap data structure and Heapsort) Έκδοση 1.3, 14/11/2014 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 Σωρός και Ταξινόμηση
13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας
ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ Δομές Δεδομένων Τι θα δούμε Ουρές προτεραιότητας Πράξεις Διωνυμικές Ουρές Διωνυμικά Δέντρα Διωνυμικοί Σωροί Ουρές Fibonacci Αναπαράσταση Πράξεις Ανάλυση Συγκρίσεις Ουρές προτεραιότητας
Copyright 2007 Ramez Elmasri and Shamkant B. Navathe, Ελληνική Έκδοση Διαφάνεια 16-1
Copyright 2007 Ramez Elmasri and Shamkant B. Navathe, Ελληνική Έκδοση Διαφάνεια 16-1 Κεφάλαιο 20 Φυσικός Σχεδιασμός Βάσεων Δεδομένων και Ρύθμιση Copyright 2007 Ramez Elmasri and Shamkant B. Navathe, Ελληνική
Copyright 2007 Ramez Elmasri and Shamkant B. Navathe, Ελληνική Έκδοση, Δίαυλος Διαφάνεια 15-1
Copyright 2007 Ramez Elmasri and Shamkant B. Navathe, Ελληνική Έκδοση, Δίαυλος Διαφάνεια 15-1 Κεφάλαιο 15 Αλγόριθμοιγια επεξεργασία ερωτήσεων και βελτιστοποίηση Copyright 2007 Ramez Elmasri and Shamkant
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 8: ΧΡΗΣΗ ΔΟΜΩΝ ΔΕΝΤΡΟΥ ΚΑΙ ΣΩΡΟΥ ΓΙΑ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΤΑΞΙΝΟΜΗΣΗΣ ΑΛΓΟΡΙΘΜΟΣ HEAPSORT
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 8: ΧΡΗΣΗ ΔΟΜΩΝ ΔΕΝΤΡΟΥ ΚΑΙ ΣΩΡΟΥ ΓΙΑ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΤΑΞΙΝΟΜΗΣΗΣ ΑΛΓΟΡΙΘΜΟΣ HEAPSORT Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης
Ταξινόμηση κάδου και ταξινόμηση Ρίζας Bucket-Sort και Radix-Sort
Ταξινόμηση κάδου και ταξινόμηση Ρίζας Bucket-Sort και Radix-Sort 1, c 3, a 3, b 7, d 7, g 7, e B 0 1 3 4 5 6 7 8 9 1 BucketSort (Ταξινόμηση Κάδου) - Αρχικά θεωρείται ένα κριτήριο κατανομής με βάση το οποίο
Άσκηση 1 (15 μονάδες) (Επεκτατός Κατακερματισμός)
ΗΥ460 Τελική Εξέηαζη 29 Ιανουαπίου 2013 Σελίδα 1 από 8 Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-460 Συστήματα Διαχείρισης Βάσεων Δεδομένων Δημήτρης Πλεξουσάκης Βασίλης Χριστοφίδης Επαναληπτική
Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας Η δομή
Οργάνωση Βάσεων Βιοϊατρικών Δεδομένων Εξόρυξη Γνώσης Βιοϊατρικών Δεδομένων. Σεμινάριο 7: Αλγόριθμοι για επεξεργασία ερωτήσεων και βελτιστοποίηση
Οργάνωση Βάσεων Βιοϊατρικών Δεδομένων Εξόρυξη Γνώσης Βιοϊατρικών Δεδομένων Σεμινάριο 7: Αλγόριθμοι για επεξεργασία ερωτήσεων και βελτιστοποίηση Ευάγγελος Καρκαλέτσης, Αναστασία Κριθαρά, Γεώργιος Πετάσης
Κατανεμημένα Συστήματα Ι
Κατανεμημένα Συστήματα Ι Παναγιώτα Παναγοπούλου Χριστίνα Σπυροπούλου 8η Διάλεξη 8 Δεκεμβρίου 2016 1 Ασύγχρονη κατασκευή BFS δέντρου Στα σύγχρονα συστήματα ο αλγόριθμος της πλημμύρας είναι ένας απλός αλλά
ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 4: Διαίρει και Βασίλευε. Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Τμήμα Πληροφορικής ΑΠΘ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 4: Διαίρει και Βασίλευε Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 3η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Απλοί Αλγόριθμοι & Δομές Δεδομένων Δύο Απλές
Advanced Data Indexing
Advanced Data Indexing (Προηγμένη ευρετηρίαση δεδομένων) Αναζήτηση Δέντρα (2 ο Μέρος) Διαχρονικά -Δέντρα (Persistent -trees) Σε μερικές εφαρμογές βάσεων/δομών δεδομένων όπου γίνονται ενημερώσεις μας ενδιαφέρει
Δομές Δεδομένων & Αλγόριθμοι
Δομές Δεδομένων & Αναζήτηση & Ταξινόμηση 1 Αναζήτηση Έχω έναν πίνακα Α με Ν στοιχεία. Πρόβλημα: Βρες αν το στοιχείο x ανήκει στον πίνακα Αν ο πίνακας είναι αταξινόμητος τότε μόνη λύση σειριακή αναζήτηση
Αλγόριθμοι και πολυπλοκότητα Συγχωνευτική Ταξινόμηση
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Συγχωνευτική Ταξινόμηση Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Συγχωνευτική Ταξινόμηση (Merge Sort) 7 2 9 4 2 4 7 9 7 2 2 7 9 4
ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ
ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ Δομές Δεδομένων Παπαγιαννόπουλος Δημήτριος 30 Μαρτίου 2017 18 Μαΐου 2017 papagianno@ceid.upatras.gr 1 Περιεχόμενα Ουρές προτεραιότητας Πράξεις Διωνυμικές Ουρές Διωνυμικά Δέντρα Διωνυμικοί
Μεταγλωττιστές Βελτιστοποίηση
Βελτιστοποίηση (i) Μεταγλωττιστές Βελτιστοποίηση Νίκος Παπασπύρου nickie@softlab.ntua.gr Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχ. και Μηχ. Υπολογιστών Εργαστήριο Τεχνολογίας Λογισμικού Πολυτεχνειούπολη,
Προχωρημένες έννοιες προγραμματισμού σε C
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr)
Quicksort. Πρόβλημα Ταξινόμησης. Μέθοδοι Ταξινόμησης. Συγκριτικοί Αλγόριθμοι
Πρόβλημα Ταξινόμησης Quicksort Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Είσοδος : ακολουθία n αριθμών (α 1, α 2,..., α n
Πίνακες. (i) FORTRAN και Αντικειµενοστραφής Προγραµµατισµός
Πίνακες (i) οµηµένη µεταβλητή: αποθηκεύει µια συλλογή από τιµές δεδοµένων Πίνακας (array): δοµηµένη µεταβλητή που αποθηκεύει πολλές τιµές του ίδιου τύπου INTEGER:: pinakas(100)ή INTEGER, DIMENSION(100)::pinakas