Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ουρές Προτεραιότητας Σωροί υλοποίηση και πράξεις Ο αλγόριθμος ταξινόμησης HeapSort
|
|
- Μυρρίνη Βούλγαρης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ουρές Προτεραιότητας Σωροί υλοποίηση και πράξεις Ο αλγόριθμος ταξινόμησης HeapSort ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-1
2 Ουρά προτεραιότητας Η δομή δεδομένων ουρά υποστηρίζει FIFO (first in first out) στρατηγική για εισαγωγές και διαγραφές στοιχείων. Σε διάφορες εφαρμογές, όμως, υπάρχει η ανάγκη επιλογής στοιχείωναπόκάποιοσύνολοσύμφωναμεκάποιασειρά προτεραιότητας (π.χ. σε λειτουργικά συστήματα). Σε ουρές προτεραιότητας κύρια σημασία έχει η προτεραιότητα του κάθε στοιχείου, πρώτο βγαίνει πάντα το στοιχείο με τη μεγαλύτερη προτεραιότητα. Ουρά Προτεραιότητας ΟΑΤΔουρά προτεραιότητας ορίζεται ως μια ακολουθία στοιχείων συνοδευόμενη από τις πράξεις Delete_Min *, και Insert. * Θεωρούμε ότι το μικρότερο κλειδί έχει τη μεγαλύτερη προτεραιότητα ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-2
3 Ουρά προτεραιότητας Πιθανές υλοποιήσεις: 1. συνδεδεμένη λίστα Insert: Ο(1), Delete_Min: O(n) 2. ταξινομημένη συνδεδεμένη λίστα Insert: Ο(n), Delete_Min: O(1) 3. δυαδικό δένδρο αναζήτησης Insert, Delete_Min: O(log n) Υπάρχει καλύτερη υλοποίηση; Ναι, μια ενδιαφέρουσα τάξη δυαδικών δένδρων, οι σωροί. ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-3
4 Σωρός Σωρός ελαχίστων (MinHeap) είναι ένα δυαδικό δένδρο που ικανοποιεί: δομική ιδιότητα: είναι πλήρες ιδιότητα σειράς: το κλειδί ενός κόμβου είναι μικρότερο από τα κλειδιά των παιδιών του Σε κάθε υπόδενδρο, το μικρότερο στοιχείο βρίσκεται στη ρίζα. Δεν υπάρχει καμιά σχέση μεταξύ κλειδιών αδελφών κόμβων. Ποια από τα πιο κάτω δένδρα είναι σωροί; ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-4
5 Δυαδικά Δένδρα Ένα δυαδικό δένδρο είναι πλήρες (complete) αν 1. έχει ύψος 0 και ένα κόμβο, 2. έχει ύψος 1 και η ρίζα του έχει είτε δύο παιδιά είτε ένα αριστερό παιδί. 3. έχει ύψος h και η ρίζα του έχει ένα τέλειο αριστερό υπόδενδρο ύψους h-1 και ένα πλήρες δεξιό υπόδενδρο ύψους h-1, ή ένα πλήρες αριστερό υπόδενδρο ύψους h-1 και ένα τέλειο δεξιό υπόδενδρο ύψους h-2. Παραδείγματα δυαδικών δένδρων ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 6-5
6 Πλήρη Δυαδικά Δένδρα Σε ένα δυαδικό δένδρο, στο επίπεδο k υπάρχουν το πολύ 2 k-1 κόμβοι. Σε ένα πλήρες δυαδικό δένδρο ύψους h όλαταεπίπεδαμέχριτο h-οστό είναι εντελώς γεμάτα, και το επίπεδο h+1 είναι γεμάτο από τα αριστερά στα δεξιά. Ο αριθμός των κόμβων μέχρι το επίπεδο h δίνεται από το h άθροισμα i = 1 2 i 1 = 2 h 1 Επομένως, ένα πλήρες δένδρο ύψους h έχει μεταξύ 2 h και 2 h+1 1 κόμβους, ή 2 h n 2 h+1 1 Ένα πλήρες δένδρο με n κόμβους έχει ύψος Ο(log n). ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-6
7 Υλοποίηση με πίνακες Ένα πλήρες δυαδικό δένδρο μπορεί να αποθηκευτεί σε πίνακα ως εξής: στη θέση 1 βάζουμετοστοιχείοτηςρίζας αν κάποιος κόμβος u βρίσκεται στη θέση i, τότε τοποθετούμε το αριστερό του παιδί στη θέση 2i, καιτοδεξιότουπαιδίστηθέση2i +1. Ο πατέρας ενός κόμβου στη θέση i(εκτός από τη ρίζα) βρίσκεται στη θέση i/2. Πλεονέκτημα: Δεν χρειάζονται δείκτες, έτσι εξοικονομούμε μνήμη και έχουμε πιο απλές και πιο αποδοτικές διαδικασίες. Μειονέκτημα: πρέπει να γνωρίζουμε από την αρχή το μέγιστο μέγεθος του σωρού. ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-7
8 Παράδειγμα αναπαράστασης σωρού (1) Θέση Στοιχείο ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-8
9 Παράδειγμα αναπαράστασης σωρού (2) Α Β Γ Δ Ε Ζ Η Θ Ι Κ Θέση Στοιχείο A B Γ Δ Ε Ζ Η Θ Ι Κ ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-9
10 Υλοποίηση Σωρού Ένας σωρός μπορεί να υλοποιηθεί ως μια εγγραφή heap με τρία πεδία 1. size, τύπου int, όπου αποθηκεύεται το μέγεθος του σωρού. 2. maxsize, τύπου int, που δηλώνει το μέγεθος του πίνακα, και 3. contents, τύπου πίνακα, όπου αποθηκεύουμε τα στοιχεία του σωρού. Αυτήηδομήθαπρέπειναυποστηρίζειτιςπράξεις: ΜakeΕmpty, Ιnsert, DeleteMin, IsEmpty, IsFull. ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-10
11 Εισαγωγή κόμβου Σε ένα πλήρες δυαδικό δένδρο υπάρχει μία μόνο θέση όπου μπορεί να εισαχθεί κόμβος και η εισαγωγή να διατηρήσει το δένδρο πλήρες. Αυτή η θέση είναι η πιο δεξιά στο τελευταίο επίπεδο του δένδρου, και αντιστοιχεί στη θέση size+1 του πίνακα. Γιαναεισάγουμεένακλειδίk σε ένα σωρό σκεφτόμαστε ως εξής: Πιθανόν το k να μην μπορεί να μπει στην κενή θέση size+1, γιατί μια τέτοια εισαγωγή να παραβιάζει τη δεύτερη ιδιότητα του σωρού. Έστωότιηκενήθέσηείναιηx, o πατέρας αυτής της θέσης είναι ο u, και k είναι το κλειδί του u. Τότε εφαρμόζουμε τα εξής: 1. αν k>k, ή, η θέσηx αντιστοιχεί στη ρίζα, τότε contents[x] = k 2. αν k<k, τότε βάλε το k στηθέσηx, και ανάλαβε να γεμίσεις τη θέση u, δηλαδή contents[x] =k ; x=u; και 3. επανάλαβε τη διαδικασία. Αυτή η διαδικασία σύγκρισης με τον πατρικό κόμβο και αναρρίχησης μπορεί να συνεχιστεί μέχρι τη ρίζα του δένδρου. ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-11
12 Παράδειγμα: Εισαγωγή του ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-12
13 Παράδειγμα: Εισαγωγή του ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-13
14 Παράδειγμα: Εισαγωγή του ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-14
15 Διαδικασία Εισαγωγής Insert(int k, heap E){ check heap.size < heap.maxsize; int x = heap.size + 1; while(x>1 && contents[ x/2 ]>k){ contents[x] = contents[ x/2 ]; x = x/2 ; } contents[x] = k; Heap.size++ } ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-15
16 Διαγραφή του ελάχιστου στοιχείου Το ελάχιστο στοιχείο βρίσκεται πάντοτε στην κορυφή και η διαγραφή του προκαλεί μια κενή θέση στη ρίζα. Θα πρέπει να κατεβάσουμε αυτή την κενή θέση προς τα κάτω και δεξιά. Σε κάθε βήμα ελέγχουμε τα παιδιά της εκάστοτε κενής θέσης. Έστω ότι x είναι η κενή θέση, 1. Αν το κλειδί που βρίσκεται στην τελευταία θέση του σωρού είναι μικρότερο από τα κλειδιά των παιδιών του x τότε μεταφέρουμε το κλειδί αυτό στην κενή θέση και μειώνουμε το μέγεθος του σωρού contents [x] = contents [size]; size - και τερματίζουμε τη διαδικασία. 2. Διαφορετικά, διαλέγουμε το παιδί u του x το οποίο έχει το μικρότερο κλειδί, μεταφέρουμε το κλειδί του u στο x και κάνουμε κενή θέση τη u: contents[x] = contents[u]; x = u 3. και επαναλαμβάνουμε τη διαδικασία. ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-16
17 Παράδειγμα: Διαγραφή του ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-17
18 Διαδικασία Διαγραφής ελάχιστου στοιχείου int Delete_Min(heap E) if IsEmpty(E) report error; return; min = elements[1]; last = elements[size]; size=size-1; x=1; while(x*2 <= size){ child = x*2; if (child!= size && elements[child+1]<elements[child]) child++; if (last>elements[child]) elements[x]=elements[child]; x=child; else break; } elements[x] = last; return min; ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-18
19 Μερικά Σχόλια Ο χρόνος εκτέλεσης των διαδικασιών Insert και Delete_min είναι της τάξης O(h) δηλαδή Ο(log n). (h: ύψος, n: αριθμός κόμβων) Ποιο είναι το όφελος της δομής σε σύγκριση με δυαδικά δένδρα αναζήτησης; Οι σωροί χρησιμοποιούνται ευρέως σε λειτουργικά συστήματα, συστήματα όπου γίνεται διαμερισμός του χρόνου του υπολογιστή σε > 1 εργασίες (task scheduling) και σε μεταγλωττιστές. Συμμετρικά, μπορούμε να ορίσουμε τη δομή maxheap, όπου η ρίζα περιέχει το μέγιστο στοιχείο και υποστηρίζεται η DeleteMax. Εκτός από δυαδικούς σωρούς, μπορούμε να ορίσουμε τους δ- σωρούς (d-heaps), όπου κάθε κόμβος έχει d παιδιά. ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-19
20 Διαδικασία Καθόδου Έστω ένας πίνακας Α[1..n] και μια τιμή i, θα ορίσουμε διαδικασία PercoladeDown(i), η οποία μετακινεί το στοιχείο Α[i] μέσα στον σωρό προς τα κάτω όσο χρειάζεται. Έστω ότι Α[i] = k. Θεωρούμε πως η i είναι άδεια θέση. Αν η άδεια θέση έχει παιδί που περιέχει στοιχείο μικρότερο του k και x είναι το μικρότερο τέτοιο παιδί, τότε μετακινούμε το στοιχείο του x στην κενή θέση και μετακινούμε την κενή θέση στο x. Επαναλαμβάνουμε την ίδια διαδικασία μέχρι τη στιγμή που η κενή θέση δεν έχει παιδιά με στοιχεία μικρότερα του k. Τότε αποθηκεύουμε το k στην θέση αυτή. Ο χρόνος εκτέλεσης είναι ανάλογος του ύψους του κόμβου που αντιστοιχεί στη θέση i του σωρού. Δηλαδή, στη χείριστη περίπτωση, όπου i=n, Ο(lg n). ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-20
21 Διαδικασία Καθόδου Μη αναδρομική διαδικασία PercolateDown PercolateDown(int A[],int n,int i){ int k = A[i]; while (2*i <= n) { j = 2*i; if (j<n && A[j+1]<A[j]) j++; if (k > A[j]) A[i] = A[j]; i=j; else break; } A[i] = k; } ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-21
22 Παράδειγμα PercoladeDown Δεδομένα Εισόδου: i = 2, n = 9, A = [ -, 13, 8, 15, 4, 7, 20, 18, 5, 2] 13 if (j<n && A[j+1]<A[j]) j++; k= if (k > A[j]) A[i] = k; if (k > A[i] A[j]) = A[j]; i=j; A[i] = A[j]; i=j; 5 2 ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-22
23 Διαδικασία DeleteMin (2) Αφαιρούμε το στοιχείο της ρίζας (είναι το μικρότερο κλειδί του σωρού). Μεταφέρουμε το τελευταίο κλειδί στη ρίζα, και εφαρμόζουμε τη διαδικασία PercoladeDown(A, n, 1): int DeleteMin2(heap A){ check that size > 0; return (contents[1]); swap(contents[1],contents[size]); size = size 1; PercoladeDown(contents, size, 1); } Χρόνος Εκτέλεσης: O(h) = Ο(log n) ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-23
24 Παράδειγμα: Διαγραφή του 3 3 k= ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-24
25 Έστω πίνακας Α[1..n]. Από πίνακες σε σωρούς Μπορούμε να θεωρήσουμε τον πίνακα ως ένα πλήρες δυαδικό δένδρο με n κόμβους. Αν για μια τιμή i το αριστερό και το δεξί υπόδενδρο του i ικανοποιούν τις ιδιότητες ενός σωρού, τότε, αν καλέσουμε τη διαδικασία PercolateDown(A, n, i) θα έχουμε σαν αποτέλεσμα το υπόδενδρο που ριζώνει στη θέση i να ικανοποιεί τις ιδιότητες ενός σωρού. i PercolateDown(i) σωρό ς σωρό ς σωρό ς ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-25
26 Κτίσιμο σωρού από ένα πίνακα Μπορούμε να μετατρέψουμε ένα πίνακα Α[1..n] σεένασωρόμεδιαδοχική εφαρμογή της διαδικασίας PercoladeDown() από κάτω προς τα πάνω. Παρατήρηση: οι θέσεις > n/2 αντιστοιχούν σε φύλλα. Διαδικασία BuildHeap: BuildHeap( int A[], int n) { } for (i=n/2; i>0; i--) PercoladeDown(A,n,i); Ορθότητα. Αποδεικνύεται με τη μέθοδο της επαγωγής: μετά από την εφαρμογή της διαδικασίας PercoladeDown(A,n,i), τα υπόδενδρα που ριζώνουν στις θέσεις i,..., n, ικανοποιούν τις ιδιότητες του σωρού. Ανάλυση του Χρόνου Εκτέλεσης. Ο ολικός χρόνος εκτέλεσης είναι ανάλογος του αθροίσματος των υψών όλων των εσωτερικών κόμβων, το οποίο είναι Ο(n). ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-26
27 Τι κάνει ο πιο κάτω αλγόριθμος; mystery (int A[], int n) { BuildHeap(A, n); for (i=n ; i>1; i--){ swap (A[1], A[i]); PercoladeDown(A, i-1, 1); } } ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-27
28 Παράδειγμα Εκτέλεσης Δεδομένα Μετά από την Εισόδου: δεύτερη πρώτη τρίτη πέμπτη τέταρτη A επανάληψη = [ -, 34, 8, του 64, του 57, for-loop: 32, 21] [34, [21, [32, [64, [57, 32, 34, 57, 64, 64, 34, 32, 57, 32, 21, 34, 21, 8] 8] Μετά από εφαρμογή της BuildHeap k= k= k= k= Δεδομένο Εξόδου ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-28
29 HeapSort H διαδικασία mystery ταξινομεί ένα πίνακα σε φθίνουσα σειρά. Αρχικά δημιουργεί ένα σωρό σε χρόνο Ο(n). Στη συνέχεια επαναλαμβάνει το εξής: αφαιρεί το μικρότερο στοιχείο (της ρίζας του σωρού) και το μετακινεί στο τέλος (εκτελεί την PercolateDown). Κάθε εκτέλεση της PercoladeDown χρειάζεται χρόνο της τάξης Ο(log n). Ολικός Χρόνος Εκτέλεσης: Ο(n log n) O αλγόριθμος ονομάζεται Heapsort. Μπορούμε εύκολα να αλλάξουμε τον κώδικα ώστε να επιστρέφεται η λίστα σε αύξουσα σειρά. ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-29
30 Άλλες διαδικασίες σε σωρούς Παρόλοπουεύρεσητουελάχιστουκλειδιούσεένασωρόμπορεί να πραγματοποιηθεί σε σταθερό χρόνο, η εύρεση τυχαίου στοιχείου στη χειρότερη περίπτωση επιβάλλει διερεύνηση ολόκληρης της δομής (δηλαδή, είναι της τάξης Ο(n)). Αν όμως γνωρίζουμε τη θέση στοιχείων με κάποιο άλλο τρόπο, διαδικασίες σε σωρούς πραγματοποιούνται εύκολα, π.χ. οι πιο κάτω εκτελούνται σε χρόνο λογαριθμικό. Increase_Key(P,Δ), αυξάνει την προτεραιότητα του κλειδιού P, κατά Δ. Χρησιμοποιείται από χειριστές λειτουργικών συστημάτων για αύξηση της προτεραιότητας σημαντικών διεργασιών. Η συμμετρική διαδικασία Decrease_Key(P,Δ) συχνά εκτελείται αυτόματα σε λειτουργικά συστήματα σε περίπτωση που κάποια δουλειά χρησιμοποιεί υπερβολικά μεγάλη ποσότητα χρόνου του CPU. Remove(I), αφαιρεί τον κόμβο της θέσης Ι (χρήσιμη σε περίπτωση τερματισμού διαδικασίας). ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-30
31 Παραλλαγές Σωρών Leftist Heaps Ένα δυαδικό δένδρο Τ είναι leftist heap, αν για κάθε κόμβο u του Τ nullpath(u.left) nullpath(u.right) όπου nullpath(v) είναι η μικρότερη απόσταση του κόμβου v από κόμβο που έχει το πολύ ένα παιδί. Ο ορισμός αυτός επιτρέπει μη-ισοζυγισμένα δένδρα που είναι πιο βαθιά προς τα αριστερά. Ένα leftist heap Τ ικανοποιεί την πιο κάτω σημαντική ιδιότητα: αν το Τ έχει n κόμβους τότε το δεξί του μονοπάτι έχει το πολύ log(n+1) κόμβους. Το πλεονέκτημα αυτής της δομής είναι ότι επιτρέπει το συνδυασμό δύο σωρών σε ένα (διαδικασία Merge) σε χρόνο λογαριθμικό. Οι υπόλοιπες διαδικασίες (DeleteMin, Insert) επίσης πραγματοποιούνται σε λογαριθμικό χρόνο. ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-31
32 Παραλλαγές Σωρών Διωνυμικές Ουρές Προτεραιότητας (Binomial Queues) ΗδομήBinomial queue είναι ένα δάσος που αποτελείται από ένα αριθμό δένδρων τα οποία ονομάζονται διωνυμικά δένδρα (binomial trees). Ένα διωνυμικό δένδρο ύψους 0 έχει ένα κόμβο. Ένα διωνυμικό δένδρο ύψους k, Β k, κτίζεται από ένα διωνυμικό δένδρο ύψους k- 1, με την εισαγωγή στη ρίζα του δένδρου ενός διωνυμικού υποδένδρου ύψους k-1. Β 0 Β 1 Β 2 ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-32
33 Παραλλαγές Σωρών Μια διωνυμική ουρά είναι ένα δάσος από διωνυμικά δένδρα Τ 1,, Τ n που ικανοποιούν την ιδιότητα σειράς ενός σωρού (δηλ. το στοιχείο κάθε κόμβου είναι μεγαλύτερο από αυτό των παιδιών του), και για κάθε i, j, height(t i ) = height(t j ) i=j. π.χ. Μιαουράπροτεραιότηταςμήκους6, μπορεί να αναπαρασταθεί ως το δάσος που αποτελείται από τα δένδρα Β 1 και Β 2. Μια διωνυμική ουρά προτεραιότητας υποστηρίζει τις διαδικασίες DeleteMin, και Merge σε χρόνο λογαριθμικό και επιπλέον τη διαδικασία Insert σε σταθερό χρόνο μέσης περίπτωσης. ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-33
ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 2006 9-1
Σωροί Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ουρές Προτεραιότητας Σωροί υλοποίηση και πράξεις Ο αλγόριθµος ταξινόµησης HeapSort Παραλλαγές Σωρών ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι
Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας Η δομή
Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort
Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η διαδικασία PercolateDown, Δημιουργία Σωρού O Αλγόριθμος Ταξινόμησης HeapSort Υλοποίηση, Παραδείγματα
Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας Η δομή
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 28: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Η διαδικασία PercolateDown, Δημιουργία Σωρού - O Αλγόριθμος Ταξινόμησης HeapSort - Υλοποίηση, Παραδείγματα
Διάλεξη 26: Σωροί. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 26: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας -Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι
Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας (Priority
Ουρά Προτεραιότητας (priority queue)
Ουρά Προτεραιότητας (priority queue) Δομή δεδομένων που υποστηρίζει δύο βασικές λειτουργίες : Εισαγωγή στοιχείου με δεδομένο κλειδί. Επιστροφή ενός στοιχείου με μέγιστο (ή ελάχιστο) κλειδί και διαγραφή
Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 22: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης - Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή
Διάλεξη 17: Δυαδικά Δέντρα. Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 7: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου Διδάσκων:
Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα
Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης (ΔΔΑ) Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου Εισαγωγή στοιχείου
Ουρά Προτεραιότητας (priority queue)
Ουρά Προτεραιότητας (priority queue) Δομή δεδομένων που υποστηρίζει τις ακόλουθες λειτουργίες PQinsert : εισαγωγή στοιχείου PQdelmax : επιστροφή του στοιχείου με το μεγαλύτερο* κλειδί και διαγραφή του
ΕΝΟΤΗΤΑ 7 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ ΣΩΡΟΙ
ΕΝΟΤΗΤΑ 7 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ ΣΩΡΟΙ Ουρές Προτεραιότητας (Priority Queues) Θεωρούµε ότι τα προς αποθήκευση στοιχεία έχουν κάποια διάταξη (καθένα έχει µια προτεραιότητα). Τα προς αποθήκευση στοιχεία είναι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΑΣΚΗΣΗ 4 Σωροί, Γράφοι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΑΣΚΗΣΗ 4 Σωροί, Γράφοι Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου Ημερομηνία Υποβολής: 05/04/2013 Ημερομηνία
13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας
ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ Δομές Δεδομένων Τι θα δούμε Ουρές προτεραιότητας Πράξεις Διωνυμικές Ουρές Διωνυμικά Δέντρα Διωνυμικοί Σωροί Ουρές Fibonacci Αναπαράσταση Πράξεις Ανάλυση Συγκρίσεις Ουρές προτεραιότητας
Ουρά Προτεραιότητας: Heap
Ουρά Προτεραιότητας: Heap Επιμέλεια διαφανειών: Δ. Φωτάκης (λίγες τροποποιήσεις: Α. Παγουρτζής) Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Δομές Δεδομένων (Αναπαράσταση,)
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 / ένδρα Ενα δένδρο είναι
Δομές Δεδομένων Ενότητα 4
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Ουρές Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Δένδρα. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:
Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, ορισμοί, πράξεις και αναπαράσταση στη μνήμη ΔυαδικάΔένδρακαιΔυαδικάΔένδραΑναζήτησης ΕΠΛ 231 Δομές
Ουρά Προτεραιότητας: Heap
Ουρά Προτεραιότητας: Heap ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ομές εδομένων (Αναπαράσταση,) οργάνωση και διαχείριση συνόλων αντικειμένων για
Ενότητα 7 Ουρές Προτεραιότητας
Ενότητα Ουρές Προτεραιότητας ΗΥ4 - Παναγιώτα Φατούρου Ουρές Προτεραιότητας Θεωρούµε ένα χώρο κλειδιών U και έστω ότι µε κάθε κλειδί Κ (τύπου Key) έχει συσχετισθεί κάποια πληροφορία Ι (τύπου Type). Έστω
ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ
ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ Δομές Δεδομένων Παπαγιαννόπουλος Δημήτριος 30 Μαρτίου 2017 18 Μαΐου 2017 papagianno@ceid.upatras.gr 1 Περιεχόμενα Ουρές προτεραιότητας Πράξεις Διωνυμικές Ουρές Διωνυμικά Δέντρα Διωνυμικοί
Διάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 14: Δέντρα IV B Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: 2 3 Δένδρα, Εισαγωγή και άλλες πράξεις Άλλα Δέντρα: Β δένδρα, Β+ δέντρα, R δέντρα Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231
Ουρά Προτεραιότητας: Heap
Δομές Δεδομένων Ουρά Προτεραιότητας: Heap Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο (Αναπαράσταση,)
Δοµές Δεδοµένων. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Ουρές Προτεραιότητας 2
Δοµές Δεδοµένων Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Ουρές Προτεραιότητας 2 Δοµές Δεδοµένων (Αναπαράσταση,) οργάνωση και διαχείριση συνόλων αντικειµένων για αποδοτική ενηµέρωση και ανάκτηση πληροφορίας.
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 17 Σωροί (Heaps) έκδοση 10 1 / 19 Heap Σωρός Ο σωρός είναι μια μερικά ταξινομημένη δομή δεδομένων που υποστηρίζει
Κατ οίκον Εργασία 4 Σκελετοί Λύσεων
Κατ οίκον Εργασία 4 Σκελετοί Λύσεων Άσκηση 1 α) Εφαρμογή της BuildHeap στον πίνακα [-,, 3, 5, 10, 17, 8, 1, 11,, 15] έχει τις εξής ενδιάμεσες καταστάσεις. Αρχική Κατάσταση: 10 17 8 1 11 15 Μετά από εφαρμογή
Κεφάλαιο 6 Ουρές Προτεραιότητας
Κεφάλαιο 6 Ουρές Προτεραιότητας Περιεχόμενα 6.1 Ο αφηρημένος τύπος δεδομένων ουράς προτεραιότητας... 114 6.2 Ουρές προτεραιότητας με στοιχειώδεις δομές δεδομένων... 115 6.3 Δυαδικός σωρός... 116 6.3.1
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Α. SelectionSort Ταξινόμηση με Επιλογή Β. InsertionSort Ταξινόμηση με Εισαγωγή
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 3. Στοίβες & Ουρές 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 19/10/2017 Ανακεφαλαίωση:
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 3. Στοίβες & Ουρές 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 4/11/2016 Ανακεφαλαίωση:
Κεφάλαιο 2. Η δομή δεδομένων Σωρός και η Ταξινόμηση Σωρού (The Heap data structure and Heapsort) Έκδοση 1.3, 14/11/2014
Κεφάλαιο 2 Η δομή δεδομένων Σωρός και η Ταξινόμηση Σωρού (The Heap data structure and Heapsort) Έκδοση 1.3, 14/11/2014 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 Σωρός και Ταξινόμηση
Διδάσκων: Κωνσταντίνος Κώστα
Διάλεξη Ε4: Επανάληψη Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Δυαδικά Δένδρα Αναζήτησης Ισοζυγισμένα Δένδρα & 2-3 Δένδρα Διδάσκων: Κωνσταντίνος
Διάλεξη 18: B-Δένδρα
Διάλεξη 18: B-Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή & Ισοζυγισμένα Δένδρα 2-3 Δένδρα, Περιγραφή Πράξεων της Εισαγωγής και άλλες πράξεις Β-δένδρα Διδάσκων: Κωνσταντίνος
Πελάτες φθάνουν στο ταμείο μιας τράπεζας Eνα μόνο ταμείο είναι ανοικτό Κάθε πελάτης παρουσιάζεται με ένα νούμερο - αριθμός προτεραιότητας Όσο ο
Ουρές προτεραιότητας Πελάτες φθάνουν στο ταμείο μιας τράπεζας Eνα μόνο ταμείο είναι ανοικτό Κάθε πελάτης παρουσιάζεται με ένα νούμερο - αριθμός προτεραιότητας Όσο ο αριθμός είναι μεγάλος, τόσο οι πελάτες
Δομές Δεδομένων. Ενότητα 10: Πλήρη Δυαδικά Δέντρα, Μέγιστα/Ελάχιστα Δέντρα & Εισαγωγή στο Σωρό- Ο ΑΤΔ Μέγιστος Σωρός. Καθηγήτρια Μαρία Σατρατζέμη
Ενότητα 10: Πλήρη Δυαδικά Δέντρα, Μέγιστα/Ελάχιστα Δέντρα & Εισαγωγή στο Σωρό- Ο ΑΤΔ Μέγιστος Σωρός Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Ουρά Προτεραιότητας: Heap
Ουρά Προτεραιότητας: Heap ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Διάλεξη 14: Δέντρα IV - B-Δένδρα
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 14: Δέντρα IV - B-Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - 2-3 Δένδρα, Εισαγωγή και άλλες πράξεις - Άλλα Δέντρα: Β-δένδρα, Β+-δέντρα,
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές δεδομένων. Ενότητα 7η: Ουρές Προτεραιότητας Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Ενότητα 7η: Ουρές Προτεραιότητας Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητα 7 Ουρές Προτεραιότητας ΗΥ240 - Παναγιώτα Φατούρου 2 Ουρές
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Εξεταστική Ιανουαρίου 2014 Διδάσκων : Ευάγγελος Μαρκάκης 20.01.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες και
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΠΑΤΡΑ) ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΠΑΤΡΑ) ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Γιάννης Κουτσονίκος Επίκουρος Καθηγητής Οργάνωση Δεδομένων Δομή Δεδομένων: τεχνική οργάνωσης των δεδομένων με σκοπό την
Αλγόριθμοι ταξινόμησης
Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης BuubleSort, SelectionSort, InsertionSort, Merger Sort, Quick Soft ΕΠΛ Δομές Δεδομένων και Αλγόριθμοι
Κεφάλαιο 14 Προηγμένες Ουρές Προτεραιότητας
Κεφάλαιο 14 Προηγμένες Ουρές Προτεραιότητας Περιεχόμενα 14.1 Διωνυμικά Δένδρα... 255 14.2 Διωνυμικές Ουρές... 258 14.1.1 Εισαγωγή στοιχείου σε διωνυμική ουρά... 258 14.1.2 Διαγραφή μεγίστου από διωνυμική
Ενότητα 7 Ουρές Προτεραιότητας
Ενότητα 7 Ουρές Προτεραιότητας ΗΥ240 - Παναγιώτα Φατούρου Ουρές Προτεραιότητας Θεωρούµε ένα χώρο κλειδιών U και έστω ότι µε κάθε κλειδί Κ (τύπου Key) έχει συσχετισθεί κάποια πληροφορία Ι (τύπου Type).
Πρόβληµα (ADT) Λεξικού. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Λεξικό, Union - Find 2
Πρόβληµα (ADT) Λεξικού Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Λεξικό, Union - Find 2 Πρόβληµα (ADT) Λεξικού Δυναµικά µεταβαλλόµενη συλλογή αντικειµένων που αναγνωρίζονται µε κλειδί (π.χ. κατάλογοι,
Διάλεξη 13: Δέντρα ΙΙΙ - Ισοζυγισμένα Δέντρα, AVL Δέντρα
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 13: Δέντρα ΙΙΙ - Ισοζυγισμένα Δέντρα, AVL Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ισοζυγισμένα Δέντρα - Υλοποίηση AVL-δέντρων
Union Find, Λεξικό. Δημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Union Find, Λεξικό Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Διαμερίσεων Συνόλου Στοιχεία σύμπαντος διαμερίζονται σε κλάσεις ισοδυναμίας
Ουρές Προτεραιότητας: Υπενθύμιση. Σωροί / Αναδρομή / Ταξινόμηση. Υλοποίηση Σωρού. Σωρός (Εισαγωγή) Ορέστης Τελέλης
Ουρές Προτεραιότητας: Υπενθύμιση Σωροί / Αναδρομή / Ταξινόμηση Ορέστης Τελέλης telelis@unipi.gr Τμήμα Ψηφιακών Συστημάτων, Πανεπιστήμιο Πειραιώς (Abstract Data Type) με μεθόδους: Μπορεί να υλοποιηθεί με
Βασικές Δομές Δεδομένων
Βασικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αφηρημένοι Τύποι Δεδομένων Οι ΑΤΔ Στοίβα και Ουρά Υλοποίηση των ΑΤΔ Στοίβα και Ουρά με Διαδοχική και Δυναμική Χορήγηση
Δομές Δεδομένων & Αλγόριθμοι
Σωροί 1 Ορισμοί Ένα δέντρο μεγίστων (δένδρο ελαχίστων) είναι ένα δένδρο, όπου η τιμή κάθε κόμβου είναι μεγαλύτερη (μικρότερη) ή ίση με των τιμών των παιδιών του Ένας σωρός μεγίστων (σωρός ελαχίστων) είναι
Δομές Δεδομένων (Εργ.) Ακ. Έτος Διδάσκων: Ευάγγελος Σπύρου. Εργαστήριο 10 Δυαδικά Δένδρα Αναζήτησης
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Δομές Δεδομένων (Εργ.) Ακ. Έτος 2017-18 Διδάσκων: Ευάγγελος Σπύρου Εργαστήριο 10 Δυαδικά Δένδρα Αναζήτησης 1. Στόχος του εργαστηρίου Στόχος του δέκατου εργαστηρίου
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Ουρές Προτεραιότητας Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρά Προτεραιότητας Το πρόβλημα Έχουμε αντικείμενα με κλειδιά και θέλουμε ανά πάσα στιγμή
Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα
Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ισοζυγισμένα Δέντρα Υλοποίηση AVL δέντρων Εισαγωγή Κόμβων και Περιστροφές σε AVL δέντρα
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 5. Αφηρημένοι Τύποι Δεδομένων / Στοίβες και Ουρές
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 5. Αφηρημένοι Τύποι Δεδομένων / Στοίβες και Ουρές ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 2 Διάλεξη 05: Αφηρημένοι Τύποι Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα
Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ισοζυγισμένα Δέντρα Υλοποίηση AVL δέντρων Εισαγωγή Κόμβων και Περιστροφές σε AVL δέντρα
Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ουρές προτεραιότητας Κεφάλαιο 9. Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ουρές προτεραιότητας Κεφάλαιο 9 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Ουρές προτεραιότητας Στοιχειώδεις υλοποιήσεις Δοµή δεδοµένων σωρού Αλγόριθµοι σε σωρούς Ο αλγόριθµος heapsort Δοµές
Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)
Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 3η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Απλοί Αλγόριθμοι & Δομές Δεδομένων Δύο Απλές
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 8: Αφηρημένοι Τύποι Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αφηρημένοι Τύποι Δεδομένων (ΑΤΔ) Οι ΑΤΔ Στοίβα και Ουρά Υλοποίηση των ΑΤΔ Στοίβα και Ουρά με Στατική Δέσμευση
ΕΠΛ 231 Δοµές Δεδοµένων και Αλγόριθµοι 8-1
B-Δένδρα Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: 2-3 Δένδρα, Υλοποίηση και πράξεις Β-δένδρα ΕΠΛ 231 Δοµές Δεδοµένων και Αλγόριθµοι 8-1 2-3 Δένδρα Γενίκευση των δυαδικών δένδρων αναζήτησης.
Δομές Δεδομένων & Αλγόριθμοι
Δομές Δεδομένων & Αναζήτηση & Ταξινόμηση 1 Αναζήτηση Έχω έναν πίνακα Α με Ν στοιχεία. Πρόβλημα: Βρες αν το στοιχείο x ανήκει στον πίνακα Αν ο πίνακας είναι αταξινόμητος τότε μόνη λύση σειριακή αναζήτηση
Διάλεξη 05: Αφηρημένοι Τύποι Δεδομένων
Διάλεξη 05: Αφηρημένοι Τύποι Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αφηρημένοι Τύποι Δεδομένων (ΑΤΔ) Οι ΑΤΔ Στοίβα και Ουρά Υλοποίηση των ΑΤΔ Στοίβα και Ουρά ΕΠΛ231 Δομές Δεδομένων
Κεφάλαιο 2. Η δοµή δεδοµένων Σωρός και η Ταξινόµηση Σωρού (The Heap data structure and Heapsort) Έκδοση 1.1, 12/05/2010
Κεφάλαιο 2 Η δοµή δεδοµένων Σωρός και η Ταξινόµηση Σωρού (The Heap data structure and Heapsort) Έκδοση., 2/05/200 Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Σωρός και Ταξινόµηση
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα.0 Σταύρος Δ. Νικολόπουλος 06-7 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Ταξινόμηση Selection-Sort Bubble-Sort και
8. Σωροί (Heaps)-Αναδρομή- Προχωρημένη Ταξινόμηση
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 8. Σωροί (Heaps)-Αναδρομή- Προχωρημένη Ταξινόμηση 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων
Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης
Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης Δένδρα στα οποία κάθε κόμβος μπορεί να αποθηκεύει ένα ή περισσότερα κλειδιά. Κόμβος με d διακλαδώσεις : k 1 k 2 k 3 k 4 d-1 διατεταγμένα κλειδιά d διατεταγμένα παιδιά
Εισαγωγή ενός νέου στοιχείου. Επιλογή i-οστoύ στοιχείου : Εύρεση στοιχείου με το i-οστό μικρότερο κλειδί
Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με
#4. Heaps (σωροί), η ταξινόμηση HeapSort, η δομή std::priority_queue της STL
Τμήμα Μηχανικών Πληροφορικής Τ.Ε. Σχολή Τεχνολογικών Εφαρμογών Ακαδημαϊκό έτος 2016-2017 ΤΕΙ Ηπείρου - Άρτα Δομές Δεδομένων και Αλγόριθμοι (εργαστήριο) Γκόγκος Χρήστος #4. Heaps (σωροί), η ταξινόμηση HeapSort,
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ουρές προτεραιότητας Κεφάλαιο 9. Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ουρές προτεραιότητας Κεφάλαιο 9 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Ουρές προτεραιότητας Στοιχειώδεις υλοποιήσεις Δοµή δεδοµένων σωρού Αλγόριθµοι σε σωρούς Ο αλγόριθµος heapsort Δοµές
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ.
Διάλεξη 13: Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης SelectionSort, InsertionSort, Στις ερχόμενες διαλέξεις θα δούμε τους αλγόριθμους Mergesort,
Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις
Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του
Βασικές οµές εδοµένων
Βασικές οµές εδοµένων Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Αφηρηµένοι Τύποι εδοµένων Οι ΑΤ Στοίβα και Ουρά Υλοποίηση των ΑΤ Στοίβα και Ουρά µε ιαδοχική και υναµική Χορήγηση Μνήµης
Ταξινόμηση με συγχώνευση Merge Sort
Ταξινόμηση με συγχώνευση Merge Sort 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 Πληροφορικής 1 Διαίρει και Βασίλευε Η μέθοδος του «Διαίρει και Βασίλευε» είναι μια γενική αρχή σχεδιασμού αλγορίθμων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 21/10/2016
Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Λεξικό, Union Find ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα (ADT) Λεξικού υναμικά μεταβαλλόμενη
Σύνοψη Προηγούμενου. Πίνακες (Arrays) Πίνακες (Arrays): Βασικές Λειτουργίες. Πίνακες (Arrays) Ορέστης Τελέλης
Σύνοψη Προηγούμενου Πίνακες (Arrays Ορέστης Τελέλης telelis@unipi.gr Τμήμα Ψηφιακών Συστημάτων, Πανεπιστήμιο Πειραιώς Διαδικαστικά θέματα. Aντικείμενο Μαθήματος. Aντικείμενα, Κλάσεις, Μέθοδοι, Μεταβλητές.
Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).
Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού Διδάσκων: Μανόλης Κουμπαράκης Εαρινό Εξάμηνο 2016-2017. Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).
Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε:
Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε: (i) όλα τα περιεχόμενα στο αριστερό υποδέντρο του t είναι
Ουρές προτεραιότητας
Ουρές προτεραιότητας Πελάτες... στο ταµείο µιας τράπεζας Κάθε πελάτης µε ένα νούµερο/αριθµός προτεραιότητας! Όσοοαριθµός είναι µεγάλος, τόσο οι πελάτες είναι πιο ενδιαφέροντες(!) ένα µόνο ταµείο ανοικτό
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 14: Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης 3) Mergesort Ταξινόμηση με Συγχώνευση 4) BucketSort Ταξινόμηση με Κάδους Διδάσκων:
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 12/10/2017
Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Λεξικό, Union Find ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαχείριση ιαμερίσεων Συνόλου Στοιχεία
Εισαγωγή στους Αλγορίθμους Ενότητα 3η
Εισαγωγή στους Αλγορίθμους Ενότητα 3η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Κεφάλαιο 7 Λεξικά και Δυαδικά Δένδρα Αναζήτησης
Κεφάλαιο 7 Λεξικά και Δυαδικά Δένδρα Αναζήτησης Περιεχόμενα 7.1 Ο αφηρημένος τύπος δεδομένων λεξικού... 133 7.1.1 Διατεταγμένα λεξικά... 134 7.2 Στοιχειώδεις υλοποιήσεις με πίνακες και λίστες... 135 7.2.1
Κατ οίκον Εργασία 3 Σκελετοί Λύσεων
Άσκηση 1 Χρησιµοποιούµε τη δοµή Κατ οίκον Εργασία 3 Σκελετοί Λύσεων typedef struct Node int data; struct node *lchild; struct node *rbro; node; και υποθέτουµε πως ένα τυχαίο δένδρο είναι υλοποιηµένο ως
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 23: οµές εδοµένων και Αλγόριθµοι Ενδιάµεση Εξέταση Ηµεροµηνία : ευτέρα, 3 Νοεµβρίου 2008 ιάρκεια : 2.00-4.00 ιδάσκουσα : Άννα Φιλίππου Ονοµατεπώνυµο: ΣΚΕΛΕΤΟΙ
Heapsort Using Multiple Heaps
sort sort Using Multiple s. Λεβεντέας Χ. Ζαρολιάγκης Τµήµα Μηχανικών Η/Υ & Πληροφορικής 29 Αυγούστου 2008 sort 1 Ορισµός ify Build- 2 sort Πως δουλεύει Ιδιότητες 3 4 Προβλήµατα Προτάσεις Ανάλυση Κόστους
Quicksort. Πρόβλημα Ταξινόμησης. Μέθοδοι Ταξινόμησης. Συγκριτικοί Αλγόριθμοι
Πρόβλημα Ταξινόμησης Quicksort Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Είσοδος : ακολουθία n αριθμών (α 1, α 2,..., α n
Αλγόριθμοι Eλάχιστα μονοπάτια
Αλγόριθμοι Eλάχιστα μονοπάτια Μάρθα Σιδέρη Προτεινόμενη βιβλιογραφία: S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani «Αλγόριθμοι» Κλειδάριθμος 009 Κεφάλαιο. http://www.cs.berkeley.edu/~vazirani/algorithms/chap.pdf
Δομές Δεδομένων (Data Structures)
Δομές Δεδομένων (Data Structures) Στοίβες Ουρές Στοίβες: Βασικές Έννοιες. Ουρές: Βασικές Έννοιες. Βασικές Λειτουργίες. Παραδείγματα. Στοίβες Δομή τύπου LIFO: Last In - First Out (τελευταία εισαγωγή πρώτη
Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή
Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y
ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου,
B- ένδρα Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: 2-3 ένδρα, Υλοποίηση και πράξεις Β-δένδρα ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 2006 8-1 2-3 ένδρα Γενίκευση των δυαδικών
Κατ οίκον Εργασία 3 Σκελετοί Λύσεων
Κατ οίκον Εργασία 3 Σκελετοί Λύσεων Άσκηση 1 (α) Έστω Α(n) και Κ(n) ο αριθμός των ακμών και ο αριθμός των κόμβων ενός αυστηρά δυαδικού δένδρου με n φύλλα. Θέλουμε να αποδείξουμε για κάθε n 1 την πρόταση
Λεξικό, Union Find. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Λεξικό, Union Find ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)
Ενότητα 9 (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή ισχύει ότι S i S j =, για κάθε i,j µε i j και S 1 S k = U. Λειτουργίες q MakeSet(X): επιστρέφει
Αλγόριθμοι Ταξινόμησης Μέρος 3
Αλγόριθμοι Ταξινόμησης Μέρος 3 Μανόλης Κουμπαράκης 1 Ταξινόμηση με Ουρά Προτεραιότητας Θα παρουσιάσουμε τώρα δύο αλγόριθμους ταξινόμησης που χρησιμοποιούν μια ουρά προτεραιότητας για την υλοποίηση τους.
Συλλογές, Στοίβες και Ουρές
Συλλογές, Στοίβες και Ουρές Σε πολλές εφαρμογές μας αρκεί η αναπαράσταση ενός δυναμικού συνόλου με μια δομή δεδομένων η οποία δεν υποστηρίζει την αναζήτηση οποιουδήποτε στοιχείου. Συλλογή (bag) : Επιστρέφει
Διασυνδεδεμένες Δομές. Δυαδικά Δέντρα. Προγραμματισμός II 1
Διασυνδεδεμένες Δομές Δυαδικά Δέντρα Προγραμματισμός II 1 lalis@inf.uth.gr Δέντρα Τα δέντρα είναι κλασικές αναδρομικές δομές Ένα δέντρο αποτελείται από υποδέντρα, καθένα από τα οποία μπορεί να θεωρηθεί