Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1
|
|
- Αταλάντη Ζέρβας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Σχεδίαση Αλγορίθμων Μετασχημάτισε και Κυριάρχησε auth gounaris/courses/ad Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1
2 Μετασχημάτισε και Κυριάρχησε Μπορούμε να επιλύσουμε ένα πρόβλημα με μετασχηματισμό σε: Ένα περισσότερο βολικό στιγμιότυπο του ιδίου προβλήματος (απλοποίηση στιγμιότυπου) Προταξινόμηση, Gaussian απαλοιφή, αντιστροφή πίνακα, υπολογισμός ορίζουσας Μία διαφορετική αναπαράσταση του ίδιου στιγμιότυπου (αλλαγή αναπαράστασης) Ισοζυγισμένα δυαδικά δ δένδρα, δ σωροί και ταξινόμηση με σωρό, υπολογισμός πολυωνύμου με τον κανόνα του Horner, γρήγορος μετασχηματισμός μ Fourier ένα τελείως διαφορετικό πρόβλημα (αναγωγή προβλήματος) Μείωση σε προβλήματα γράφων,, γραμμικός προγραμματισμός μ Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 2
3 Απλοποίηση στιγμιότυπου - Προταξινόμηση Ένα στιγμιότυπο ενός προβλήματος επιλύεται μετασχηματίζοντάς το σε ένα απλούστερο/ευκολότερο στιγμιότυπο του ιδίου προβλήματος Προταξινόμηση: Πολλά προβλήματα με λίστες επιλύονται ευκολότερα αν οι λίστες είναι ταξινομημένες Μοναδικότητα στοιχείου Υπολογισμός της τυπικής τιμής (mode) Υπολογισμός επαναλαμβανόμενων μ στοιχείων Αναζήτηση Υπολογισμός του μεσαίου Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 3
4 Εύρεση επαναλαμβανόμενων στοιχείων Αλγόριθμος γ ρ μ ςωμής βίας: Θ(n( 2 ) Αλγόριθμος με προταξινόμηση: Ταξινόμηση με συγχώνευση: Θ(nlgn) Σάρωσε τον πίνακα για την εύρεση ίδιων διαδοχικών στοιχείων: Θ(n) Συνολικά: Θ(nlgn) Συμπέρασμα Συμπέρασμα: η προταξινόμηση βελτιώνει σημαντικά Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 4
5 Έλεγχος της τυπικής τιμής Τυπική τιμή (mode mode) είναι το συχνότερο στοιχείο Ωμή βία: Σάρωσε τη λίστα, υπολόγισε τις συχνότητες, βρες τη μεγαλύτερη Algorithm PresortedMode Sort the array A i 0; modefrequency 0; while i n-1 do runlength 1; runvalue A[i]; while i+runlength n-1 and A[i+runlength]=runvalue runlength runlength+1 if runlength>modefrequency modefrequency runlength, modevalue runvalue i i+runlength return modevalue Συμπέρασμα: η προταξινόμηση και πάλι βοηθά την επίδοση Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 5
6 Έλεγχος μοναδικότητας στοιχείου Αλγόριθμος ωμής βίας: Θ(n 2 ) Algorithm PresortedElementUniqueness Sort the array A for i 0 to n-2 do if A[i]=A[i+1] return false else return true Συμπέρασμα: η προταξινόμηση βελτιώνει την επίδοση Ίδια βελτίωση για την εύρεση της τυπικής τιμής Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 6
7 Το πρόβλημα της επιλογής Βρες το k-οστό μικρότερο στοιχείο μεταξύ των A[1],,A[ A[n] Το ελάχιστο:k = 1 Το μέγιστο: k = n Το μεσαίο: : k = n/2 Αλγόριθμοι με προταξινόμηση Ταξινόμησε τη λίστα Επίστρεψε το A[k] Αλγόριθμοι γρ με διαμερισμό μρ μ (μείωσε μ και βασίλευε): ) Με διαμερισμό τοποθέτησε τον pivot στη θέση A[s] Αν s=k, τότε επίστρεψε A[s] Αλλιώς αν s<k, τότε επανάλαβε με την υπολίστα A[s+1], +1],,A[ A[n] Αλλιώς αν s>k, τότε επανάλαβε με την υπολίστα A[1],,A[ A[s-1] Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 7
8 Σημειώσεις στο πρόβλημα της επιλογής Αλγόριθμοι με προταξινόμηση: Ω(nlgn) + Θ(1) = Ω(nlgn) Αλγόριθμοι γρ με διαμερισμό μρ μ (μείωσε και βασίλευε): ) Χειρότερη περίπτωση: T(n) =T(n-1) + (n+1) Θ(n 2 ) Καλύτερη περίπτωση: Θ(n) ( ) Μέση περίπτωση: T(n) =T(n/2) + (n+1) Θ(n) Bonus: βρίσκει επίσης τα k μικρότερα ρ στοιχεία Ειδικές περιπτώσεις max, min: καλύτεροι και απλούστεροι γραμμικοί αλγόριθμοι (ωμή βία) Συμπέρασμα: η προταξινόμηση δεν βοηθά την περίπτωση αυτή Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 8
9 Gaussian απαλοιφή Δίνεται σύστημα δύο εξισώσεων με δύο αγνώστους a 11 x + a 12 y = b 1 a 21 x+a 22 y = b 2 Έχει μία μοναδική λύση εκτός αν οι συντελεστές είναι ανάλογοι Εκφράζουμε τη μία μεταβλητή ως συνάρτηση της άλλης και αντικαθιστούμε για να επιλύσουμε μία εξίσωση Τι συμβαίνει σε σύστημα με n εξισώσεις και n αγνώστους? Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 9
10 Gaussian απαλοιφή (2) Μετασχηματίζουμε τη Ax=b σε A x=b, όπου ο πίνακας A είναι άνω τριγωνικός Η λύση είναι εφικτή με αντικατάσταση προς τα πίσω Βασικές πράξεις Ανταλλαγή εξισώσεων Αντικατάσταση μίας εξίσωσης με ένα πολλαπλάσιο (μη μηδενικό) Αντικατάσταση μίας εξίσωσης με το άθροισμα ή τη διαφορά της εξίσωσης αυτής με το πολλαπλάσιο μίας άλλης Παράδειγμα 2x 1 - x 2 +x 3 =1 4x 1 + x 2 -x 3 = 5 x 1 +x 2 +x 3 =0 Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 10
11 Gaussian απαλοιφή (3) Algorithm GaussElimination for i 1 to n do A[i,n+1] b[i] for i 1 to n-1 do for j i+1 to n do for k i to n+1 do A[j,k] A[j,k]- A[i,k]*A[j,i]/A[i,i] Προβληματική λύση αν το A[i,i] είναι 0 ή πολύ μικρό Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 11
12 Gaussian απαλοιφή (μερική περιστροφή) Algorithm GaussElimination2 for i 1 to n do A[i,n+1] b[i] for i 1 to n-1 do pivotrow i for j i+1 to n do if A[j,i] > A[pivot,i] pivotrow j for k i to n+1 do swap(a[i,k],a[pivotrow,k]) [p, ]) for j i+1 to n do temp A[j,i]/A[i,i] for k I to n+1 do A[j,k] A[j,k]-A[I,k]*temp Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 12
13 LU αποσύνθεση Υποπροϊόν of Gaussian απαλοιφής Παράδειγμα A=LU /2 1/ LUx=b. Συμβολίζουμε y=ux Ly=b Επιλύουμε το Ly=b, και μετά το Ux=y Επιλύουμε όσες φορές χρειάζεται με διαφορετικά άbb Δεν χρειάζεται έξτρα χώρος Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 13
14 Αντιστροφή πίνακα AA -1 =I Ο ιδιάζων (singular) πίνακας δεν έχει αντίστροφο Ένας πίνακας είναι ιδιάζων αν και μόνο αν κάποια από τις γραμμές είναι γραμμικός συνδυασμός άλλων γραμμών Εφαρμογή Gaussian απαλοιφής. Αν προκύψει άνω- τριγωνικός πίνακας χωρίς κάποιο μηδενικό στη διαγώνιο, τότε ο πίνακας δεν είναι ιδιάζων Πως θα βρούμε τον αντίστροφο ενός πίνακα? Ax j =e j Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 14
15 Υπολογισμός της ορίζουσας Ο γνωστός αναδρομικός τύπος Τι συμβαίνει αν το n είναι μεγάλο? Απόδοση? Εφαρμογή Gaussian απαλοιφής Η ορίζουσα ενός άνω-τριγωνικού πίνακα ισούται με το γινόμενο των στοιχείων της διαγωνίου Απόδοση? Ο κανόνας του Cramer Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 15
16 Ταξινόμηση αλγορίθμων αναζήτησης Στοιχειώδεις αλγόριθμοι αναζήτησης Σειριακή αναζήτηση Δυαδική αναζήτηση Αναζήτηση δυαδικού δένδρου Αναζήτηση ισοζυγισμένου δένδρου Δένδρα AVL Κόκκινα-μαύρα δένδρα Πολυκατευθυνόμενα ισοζυγισμένα δένδρα (δένδρα 2-3, δένδρα 2-3-4, B-δένδρα) Κατακερματισμός Ξεχωριστές αλυσίδες Ανοικτές διευθύνσεις Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 16
17 Ισοζυγισμένα δένδρα: δένδρα AVL Σε κάθε κόμβο, η διαφορά των υψών του αριστερού και του δεξιού υποδένδρου είναι το πολύ 1 Η ιδιότητα AVL διατηρείται με περιστροφές, κάθε φορά που το δένδρο δεν είναι ισοζυγισμένο lg n h lg (n + 2) στη μέση περίπτωση: 1.01 lg n για μεγάλα n Μειονέκτημα: θέλει έξτρα χώρο για την διατήρηση του παράγοντα ισοζυγισμού των κόμβων Μία παρόμοια ιδέα: τα κόκκινα-μαύρα δένδρα (τα ύψη των υποδένδρων μπορούν να διαφέρουν μέχρι 2 φορές) Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 17
18 Σωρός Ορισμός: Ο σωρός (heap) είναι ένα δυαδικό δένδρο με τις εξής προϋποθέσεις: Είναι σχεδόν πλήρες: Το κλειδί κάθε κόμβου είναι από τα κλειδιά των παιδιών του Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 18
19 Συνέπειες ορισμού Δεδομένου του n, υπάρχει ένα μοναδικό δυαδικό δένδρο με n κόμβους που είναι σχεδόν πλήρες με h= lg n Η ρίζα έχει το μεγαλύτερο κλειδί Καθένα από τα δύο υποδένδρα είναι επίσης σωροί Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 19
20 Ταξινόμηση με σωρό 1. Κτίζουμε το σωρό 2. Απομακρύνουμε τη ρίζα ανταλλάσουμε με το τελευταίο (δεξιότερο) φύλλο 3. Φτιάχνουμε και πάλι το σωρό (πλην του τελευταίου φύλλου) 4. Επαναλαμβάνουμε μ τα βήματα 2,3 μχρ μέχρι ο σωρός να περιέχει ένα μόνο στοιχείο Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 20
21 Κτίσιμο του σωρού Εισάγουμε τα στοιχεία με τη δεδομένη σειρά στο δυαδικό δένδρο με bfs Ξεκινώντας από τον τελευταίο (δεξιότερο) κόμβο που είναι πατέρας, τακτοποιούμε τον αντίστοιχο σωρό, αν δεν ικανοποιεί τις συνθήκες του ορισμού: 1. Ανταλλάσουμε με το μεγαλύτερο παιδί 2. Τακτοποιούμε το υποδένδρο που βρίσκεται στη θέση του μεγαλύτερου παιδιού Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 21
22 Παράδειγμα Παράδειγμα: , 9, 7, 6, 5, > > 2 8 > Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 22
23 Διαγραφή ρίζας Η ρίζα ρζ του σωρού εξάγεται και ο σωρός τακτοποιείται ως εξής: Η ρίζα ανταλλάσσεται με το τελευταίο φύλλο Η νέα ρίζα συγκρίνεται με κάθε παιδί της και αν ένα από αυτά είναι μεγαλύτερο από τη ρίζα, τότε το ανταλλάσουμε με αυτή Συνεχίζουμε τις συγκρίσεις/ανταλλαγές / με τα παιδιά δά της νέας ρίζας μέχρι να φθάσει σε ένα επίπεδο του δένδρου δ όπου θα είναι μεγαλύτερη από τα αντίστοιχα παιδιά Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 23
24 Αναπαράσταση Χρησιμοποιούμε ένα πίνακα για να υποθηκεύσουμε το σωρό με bfs Παράδειγμα: Το αριστερό παιδί του κόμβου j είναι το 2j Το δεξιό παιδί του κόμβου j είναι το 2j+1 Ο πατέρας του κόμβου j είναι ο j /2 Οι πατρικοί κόμβοι βρίσκονται στις πρώτες n /2 θέσεις Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 24
25 Αλγόριθμος κατασκευής σωρού Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 25
26 Ανάλυση της ταξινόμησης με σωρό Με βάση την προηγούμενη ηδιαφάνεια Η τακτοποίηση του σωρού στο ύψος j απαιτεί 2j συγκρίσεις Για το υποδένδρο στο επίπεδο i εκτελούνται 2(h-i) συγκρίσεις Συνολικά: h-1 Σ 2(h-i) 2 i = 2 ( n lg (n + 1)) = Θ(n) i=00 # nodes at level i Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 26
27 Ανάλυση της ταξινόμησης με σωρό (2) Συνολικά για τον αλγόριθμο: 1. Κτίσιμο σωρού Θ(n) 2. Εξαγωγή ρίζας ανταλλαγή με το τελευταίο φύλλο 3. Τακτοποίηση σωρού (εκτός του τελευταίου φύλλου) Θ(logn) 4. Επανάληψη (n-1) φορές των 2, 3 μέχρι ο σωρός να περιέχει ένα φύλλο Χειρότερη περίπτωση: Θ(n) + Θ( n log n) = Θ(n log n) Μέση περίπτωση επίσης Θ(n log n) Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 27
28 Παράδειγμα Heapsort Να τα ξινομηθεί η λίστα 2, 9, 7, 6, 5, 8 Κτήσιμο σωρού Διαγραφή ρίζας
29 Εισαγωγή σε σωρό Εισαγωγή στοιχείου στην τελευταία θέση του σωρού Σύγκριση με τον πατέρα, αν παραβιάζει ο ορισμός, τότε τους ανταλλάσουμε Συνεχίζουμε τις συγκρίσεις του νέου στοιχείου με τους κόμβους που βρίσκονται στο μονοπάτι προς τη ρίζα μέχρι να ισχύει ο ορισμός του σωρού Παράδειγμα: εισαγωγή του στοιχείου > 10 > Αποτελεσματικότητα: O(log n) Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 29
30 Κατασκευή σωρού Από επάνω προς τα κάτω: Ο σωρός μπορεί να κατασκευασθεί με διαδοχικές εισαγωγές σε ένα αρχικά κενό σωρό Από κάτω προς τα επάνω: Βάζουμε όλα τα στοιχεία στον πίνακα και τα τακτοποιούμε Ποιο είναι καλύτερο? Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 30
31 Ουρά προτεραιότητας Η ουρά προτεραιότητας ρ είναι ένας αφηρημένος τύπος δεδομένων (ADT) ενός αταξινόμητου συνόλου με τις εξής πράξεις: Βρες το στοιχείο με τη μεγαλύτερη προτεραιότητα Δάγρα Διάγραψε το στοιχείο με τη μεγαλύτερη ερη προτεραιότητα α Εισάγαγε ένα στοιχείο με τυχαίο προτεραιότητα Ο σωρός είναι ιδανική δομή για την υλοποίηση ουρών προτεραιότητας Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 31
32 Δυαδική εκθετικοποίηση Ο κανόνας του Horner δεν είναι αποτελεσματικός για τον n υπολογισμό του p(x)=x n at x=a. Εκφυλίζεται σε ωμή βία Έστω η δυαδική αναπαράσταση n=b l b l-1 b i b 1 b 0 n=p(x)=bx = +b l x l l-1 x l-1 + +b 1 x+b 0 για x=2 Algorithm LeftRightBinaryExponentiation product a for i l-1 down to 0 do product product * product if b i 1 then product product*a return product Παράδειγμα: υπολογισμός a 13, n=13=1101 Αποδοτικότητα Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 32
33 Δυαδική εκθετικοποίηση (2) Υπολογισμός a n. Θεωρούμε n = b l 2 l + b l-1 2 l b b 0 και πολλαπλασιάζουμε ανεξαρτήτους όρους Algorithm RightLeftBinaryExponentiation term a if b 0 =1 then product a else product 1 for i 1 to l do term term * term if b i = 1 then product product * term return product Παράδειγμα: υπολογισμός a 13, n=13=1101 Αποδοτικότητα Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 33
34 Μέτρηση μονοπατιών σε γράφο Το πλήθος των διαφορετικών μονοπατιών μήκους k>0 από τον κόμβο i στον κόμβο j ισούται με το στοιχείο (i,j) του πίνακα A k, όπου A ο πίνακας γειτνίασης Παράδειγμα Αποδοτικότητα Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 34
35 Μείωση σε προβλήματα γράφων Εφαρμόζεται σε πλήθος προβλημάτων παιχνιδιών και γρίφων Κτίζουμε το γράφο του χώρου καταστάσεων Παράδειγμα: χωρικός, λύκος, κατσίκα, λάχανο Διασχίζουμε το γράφο εφαρμόζοντας? Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 35
auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 1
Αλγόριθμοι Μετασχημάτισε και Κυριάρχησε http://delab.csd.auth.gr/courses/algorithms/ auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο 1 Μετασχημάτισε και Κυριάρχησε Μπορούμε να επιλύσουμε ένα πρόβλημα
ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 6: Μετασχημάτισε και Κυριάρχησε. Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Τμήμα Πληροφορικής ΑΠΘ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 6: Μετασχημάτισε και Κυριάρχησε Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 / ένδρα Ενα δένδρο είναι
auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Σχεδίαση Αλγορίθμων Διαίρει και Βασίλευε http://delab.csd.auth.gr/courses/algorithms/ auth 1 Διαίρει και Βασίλευε Η γνωστότερη ρημέθοδος σχεδιασμού αλγορίθμων: 1. Διαιρούμε το στιγμιότυπο του προβλήματος
Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Σχεδίαση Αλγορίθμων Διαίρει και Βασίλευε http://delab.csd.auth.gr/~gounaris/courses/ad auth gounaris/courses/ad 1 Διαίρει και Βασίλευε Η γνωστότερη ρημέθοδος σχεδιασμού αλγορίθμων: 1. Διαιρούμε το στιγμιότυπο
Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου
Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού
Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Πολλαπλασιασμός μεγάλων ακεραίων (1) Για να πολλαπλασιάσουμε δύο ακεραίους με n 1 και n 2 ψηφία με το χέρι, θα εκτελέσουμε n 1 n 2 πράξεις πολλαπλασιασμού Πρόβλημα ρβημ όταν έχουμε πολλά ψηφία: A = 12345678901357986429
Ορθότητα Χωρική αποδοτικότητα. Βελτιστότητα. Θεωρητική ανάλυση Εμπειρική ανάλυση. Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1
Ανάλυση Αλγορίθμων Θέματα Θέματα: Ορθότητα Χρονική αποδοτικότητα Χωρική αποδοτικότητα Βελτιστότητα Προσεγγίσεις: Θεωρητική ανάλυση Εμπειρική ανάλυση Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Θεωρητική
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Εξεταστική Ιανουαρίου 2014 Διδάσκων : Ευάγγελος Μαρκάκης 20.01.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες και
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Ουρές Προτεραιότητας Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρά Προτεραιότητας Το πρόβλημα Έχουμε αντικείμενα με κλειδιά και θέλουμε ανά πάσα στιγμή
Εφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Γραμμικά Συστήματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Γραμμικό Σύστημα a11x1 + a12x2 + + a1 nxn = b1 a x + a x + +
Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου
Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού
Ταξινόμηση. 1. Στατιστικά Διάταξης 2. Στατιστικά σε Μέσο Γραμμικό Χρόνο. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη
Ταξινόμηση. Στατιστικά Διάταξης. Στατιστικά σε Μέσο Γραμμικό Χρόνο Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Στατιστικά Διάταξης Με τον όρο στατιστικά διάταξης (order statistics) εννοούμε την περίπτωση
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 13: Αλγόριθμοι-Μεγάλων ακεραίων- Εκθετοποίηση- Πολλαπλασιασμός πινάκων -Strassen Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1
Αλγόριθμοι Ωμή Βία http://delab.csd.auth.gr/courses/algorithms/ auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Ωμή Βία Είναι μία άμεση προσέγγιση που βασίζεται στην εκφώνηση του προβλήματος και
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 9: Στατιστικά Διάταξης- Στατιστικά σε Μέσο Γραμμικό Χρόνο Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 2006 9-1
Σωροί Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ουρές Προτεραιότητας Σωροί υλοποίηση και πράξεις Ο αλγόριθµος ταξινόµησης HeapSort Παραλλαγές Σωρών ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι
Αναζήτηση. 1. Σειριακή αναζήτηση 2. Δυαδική Αναζήτηση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη
Αναζήτηση. Σειριακή αναζήτηση. Δυαδική Αναζήτηση Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Παραδοχή Στη συνέχεια των διαφανειών (διαλέξεων) η ασυμπτωτική έκφραση (συμβολισμός Ο, Ω, Θ) του χρόνου
Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).
Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού Διδάσκων: Μανόλης Κουμπαράκης Εαρινό Εξάμηνο 2016-2017. Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).
Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ουρές Προτεραιότητας Σωροί υλοποίηση και πράξεις Ο αλγόριθμος ταξινόμησης HeapSort
Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ουρές Προτεραιότητας Σωροί υλοποίηση και πράξεις Ο αλγόριθμος ταξινόμησης HeapSort ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-1 Ουρά προτεραιότητας
Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας Η δομή
Ταξινόμηση με συγχώνευση Merge Sort
Ταξινόμηση με συγχώνευση Merge Sort 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 Πληροφορικής 1 Διαίρει και Βασίλευε Η μέθοδος του «Διαίρει και Βασίλευε» είναι μια γενική αρχή σχεδιασμού αλγορίθμων
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 6α: Αναζήτηση Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Ανάλυση Αλγορίθμων Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ανάλυση Αλγορίθμων Η ανάλυση αλγορίθμων περιλαμβάνει τη διερεύνηση του τρόπου
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 3η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Απλοί Αλγόριθμοι & Δομές Δεδομένων Δύο Απλές
Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1
Αλγόριθμοι Χωρικοί-χρονικοί συμβιβασμοί http://delab.csd.auth.gr/courses/algorithms/ Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Χωρικοί-χρονικοί συμβιβασμοί Σε πολλά προβλήματα, ο επιπλέον χώρος
Πελάτες φθάνουν στο ταμείο μιας τράπεζας Eνα μόνο ταμείο είναι ανοικτό Κάθε πελάτης παρουσιάζεται με ένα νούμερο - αριθμός προτεραιότητας Όσο ο
Ουρές προτεραιότητας Πελάτες φθάνουν στο ταμείο μιας τράπεζας Eνα μόνο ταμείο είναι ανοικτό Κάθε πελάτης παρουσιάζεται με ένα νούμερο - αριθμός προτεραιότητας Όσο ο αριθμός είναι μεγάλος, τόσο οι πελάτες
Ουρά Προτεραιότητας (priority queue)
Ουρά Προτεραιότητας (priority queue) Δομή δεδομένων που υποστηρίζει δύο βασικές λειτουργίες : Εισαγωγή στοιχείου με δεδομένο κλειδί. Επιστροφή ενός στοιχείου με μέγιστο (ή ελάχιστο) κλειδί και διαγραφή
Πληροφορική 2. Αλγόριθμοι
Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται
Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort
Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η διαδικασία PercolateDown, Δημιουργία Σωρού O Αλγόριθμος Ταξινόμησης HeapSort Υλοποίηση, Παραδείγματα
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από
Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας Η δομή
Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες
13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας
ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ Δομές Δεδομένων Τι θα δούμε Ουρές προτεραιότητας Πράξεις Διωνυμικές Ουρές Διωνυμικά Δέντρα Διωνυμικοί Σωροί Ουρές Fibonacci Αναπαράσταση Πράξεις Ανάλυση Συγκρίσεις Ουρές προτεραιότητας
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 14: Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης 3) Mergesort Ταξινόμηση με Συγχώνευση 4) BucketSort Ταξινόμηση με Κάδους Διδάσκων:
ΕΝΟΤΗΤΑ 7 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ ΣΩΡΟΙ
ΕΝΟΤΗΤΑ 7 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ ΣΩΡΟΙ Ουρές Προτεραιότητας (Priority Queues) Θεωρούµε ότι τα προς αποθήκευση στοιχεία έχουν κάποια διάταξη (καθένα έχει µια προτεραιότητα). Τα προς αποθήκευση στοιχεία είναι
Στοιχεία Αλγορίθµων και Πολυπλοκότητας
Στοιχεία Αλγορίθµων και Πολυπλοκότητας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Πολυπλοκότητα 1 / 16 «Ζέσταµα» Να γράψετε τις συναρτήσεις
AX=B (S) A A X=A B I X=A B X=A B I X=A B X=A B X=A B X X
. Επίλυση γραμμικού συστήματος με χρήση αντιστρόφου Πρόταση Θεωρούμε ένα τετραγωνικό γραμμικό σύστημα (δηλαδή ο αριθμός των εξισώσεων είναι ίσος με τον αριθμό των αγνώστων) AX=B (S). Αν ο πίνακας Α είναι
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 17 Σωροί (Heaps) έκδοση 10 1 / 19 Heap Σωρός Ο σωρός είναι μια μερικά ταξινομημένη δομή δεδομένων που υποστηρίζει
Ουρά Προτεραιότητας (priority queue)
Ουρά Προτεραιότητας (priority queue) Δομή δεδομένων που υποστηρίζει τις ακόλουθες λειτουργίες PQinsert : εισαγωγή στοιχείου PQdelmax : επιστροφή του στοιχείου με το μεγαλύτερο* κλειδί και διαγραφή του
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Α. SelectionSort Ταξινόμηση με Επιλογή Β. InsertionSort Ταξινόμηση με Εισαγωγή
ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 4: Διαίρει και Βασίλευε. Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Τμήμα Πληροφορικής ΑΠΘ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 4: Διαίρει και Βασίλευε Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν
Εισαγωγή στους Αλγορίθμους Ενότητα 3η
Εισαγωγή στους Αλγορίθμους Ενότητα 3η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Heapsort Using Multiple Heaps
sort sort Using Multiple s. Λεβεντέας Χ. Ζαρολιάγκης Τµήµα Μηχανικών Η/Υ & Πληροφορικής 29 Αυγούστου 2008 sort 1 Ορισµός ify Build- 2 sort Πως δουλεύει Ιδιότητες 3 4 Προβλήµατα Προτάσεις Ανάλυση Κόστους
Διάλεξη 26: Σωροί. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 26: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας -Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι
Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις
Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα.0 Σταύρος Δ. Νικολόπουλος 06-7 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Ταξινόμηση Selection-Sort Bubble-Sort και
Δομές Δεδομένων & Αλγόριθμοι
Σωροί 1 Ορισμοί Ένα δέντρο μεγίστων (δένδρο ελαχίστων) είναι ένα δένδρο, όπου η τιμή κάθε κόμβου είναι μεγαλύτερη (μικρότερη) ή ίση με των τιμών των παιδιών του Ένας σωρός μεγίστων (σωρός ελαχίστων) είναι
Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης
Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης Δένδρα στα οποία κάθε κόμβος μπορεί να αποθηκεύει ένα ή περισσότερα κλειδιά. Κόμβος με d διακλαδώσεις : k 1 k 2 k 3 k 4 d-1 διατεταγμένα κλειδιά d διατεταγμένα παιδιά
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΠΑΤΡΑ) ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΠΑΤΡΑ) ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Γιάννης Κουτσονίκος Επίκουρος Καθηγητής Οργάνωση Δεδομένων Δομή Δεδομένων: τεχνική οργάνωσης των δεδομένων με σκοπό την
Όρια Αλγόριθμων Ταξινόμησης. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη
Όρια Αλγόριθμων Ταξινόμησης Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Όρια Αλγόριθμων Ταξινόμησης Μέχρι στιγμής εξετάσθηκαν μέθοδοι ταξινόμησης µε πολυπλοκότητα της τάξης Θ ) ή Θlog ). Τι εκφράζει
ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 2: Ανάλυση Αλγορίθμων. Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Τμήμα Πληροφορικής ΑΠΘ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 2: Ανάλυση Αλγορίθμων Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν
Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 22: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης - Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου
Ενότητα 7 Ουρές Προτεραιότητας
Ενότητα Ουρές Προτεραιότητας ΗΥ4 - Παναγιώτα Φατούρου Ουρές Προτεραιότητας Θεωρούµε ένα χώρο κλειδιών U και έστω ότι µε κάθε κλειδί Κ (τύπου Key) έχει συσχετισθεί κάποια πληροφορία Ι (τύπου Type). Έστω
9. Κόκκινα-Μαύρα Δέντρα
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 9. Κόκκινα-Μαύρα Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 9/12/2016 Δέντρα,
ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ
ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ Δομές Δεδομένων Παπαγιαννόπουλος Δημήτριος 30 Μαρτίου 2017 18 Μαΐου 2017 papagianno@ceid.upatras.gr 1 Περιεχόμενα Ουρές προτεραιότητας Πράξεις Διωνυμικές Ουρές Διωνυμικά Δέντρα Διωνυμικοί
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 3: Ασυμπτωτικός συμβολισμός Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Δοµές Δεδοµένων. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Ουρές Προτεραιότητας 2
Δοµές Δεδοµένων Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Ουρές Προτεραιότητας 2 Δοµές Δεδοµένων (Αναπαράσταση,) οργάνωση και διαχείριση συνόλων αντικειµένων για αποδοτική ενηµέρωση και ανάκτηση πληροφορίας.
Ουρά Προτεραιότητας: Heap
Ουρά Προτεραιότητας: Heap Επιμέλεια διαφανειών: Δ. Φωτάκης (λίγες τροποποιήσεις: Α. Παγουρτζής) Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Δομές Δεδομένων (Αναπαράσταση,)
Διδάσκων: Κωνσταντίνος Κώστα
Διάλεξη Ε4: Επανάληψη Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Δυαδικά Δένδρα Αναζήτησης Ισοζυγισμένα Δένδρα & 2-3 Δένδρα Διδάσκων: Κωνσταντίνος
Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort. Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012
Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012 3 5 1 Ταξινόμηση - Sorting Πίνακας Α 1 3 5 5 3 1 Ταξινόμηση (Φθίνουσα) Χωρίς Ταξινόμηση Ταξινόμηση
Εξωτερική Ταξινόμηση. Μ.Χατζόπουλος 1
Εξωτερική Ταξινόμηση Μ.Χατζόπουλος 1 Γιατί είναι απαραίτητη; Κλασσικό Πρόβλημα της Πληροφορικής Πολλές φορές θέλουμε να παρουσιάσουμε δεδομένα σε ταξινομημένη μορφή Είναι σημαντική για την απαλοιφή διπλοτύπων
Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1
Σχεδίαση Αλγορίθμων Μείωσε και Βασίλευε http://delab.csd.auth.gr/~gounaris/courses/ad auth gounaris/courses/ad Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Μείωσε και Βασίλευε 1. Μειώνουμε
Εισαγωγή στην Ανάλυση Αλγορίθμων
Εισαγωγή στην Ανάλυση Αλγορίθμων (4) Μεθοδολογία αναδρομικών σχέσεων (Ι) Με επανάληψη της αναδρομής Έστω όπου r και a είναι σταθερές. Βρίσκουμε τη σχέση που εκφράζει την T(n) συναρτήσει της T(n-) την T(n)
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων
ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 4: Αναδρομικές σχέσεις και ανάλυση αλγορίθμων Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας (Priority
Ουρές προτεραιότητας
Ουρές προτεραιότητας Πελάτες... στο ταµείο µιας τράπεζας Κάθε πελάτης µε ένα νούµερο/αριθµός προτεραιότητας! Όσοοαριθµός είναι µεγάλος, τόσο οι πελάτες είναι πιο ενδιαφέροντες(!) ένα µόνο ταµείο ανοικτό
Προγραμματιστικές Τεχνικές
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Προγραμματιστικές Τεχνικές Βασίλειος Βεσκούκης Δρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Ρωμύλος Κορακίτης
Διαίρει-και-Βασίλευε. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2
Διαίρει-και-Βασίλευε Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2 Διαίρει-και-Βασίλευε Γενική µέθοδος σχεδιασµού αλγορίθµων: Διαίρεση σε ( 2) υποπροβλήµατα (σηµαντικά) µικρότερου µεγέθους.
Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε:
Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε: (i) όλα τα περιεχόμενα στο αριστερό υποδέντρο του t είναι
Οι βασικές πράξεις που ορίζουν τον ΑΤ δυαδικό δέντρο αναζήτησης είναι οι ακόλουθες:
υαδικά έντρα Αναζήτησης (Binary Search Trees) Ορισµός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε: (i) όλα τα περιεχόµενα στο αριστερό υποδέντρο του t είναι
Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι
Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή
Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y
Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 8: Γραμμική Αναζήτηση και Δυαδική Αναζήτηση-Εισαγωγή στα Δέντρα και Δυαδικά Δέντρα-Δυαδικά Δέντρα Αναζήτησης & Υλοποίηση ΔΔΑ με δείκτες Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Πεπερασμένες και Διαιρεμένες Διαφορές Εισαγωγή Θα εισάγουμε την έννοια των διαφορών με ένα
ΟιβασικέςπράξειςπουορίζουντονΑΤΔ δυαδικό δέντρο αναζήτησης είναι οι ακόλουθες:
Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε: (i) όλα τα περιεχόμενα στο αριστερό υποδέντρο του t είναι
Κεφάλαιο 8 Ισορροπημένα Δένδρα Αναζήτησης
Κεφάλαιο 8 Ισορροπημένα Δένδρα Αναζήτησης Περιεχόμενα 8.1 Κατηγορίες ισορροπημένων δένδρων αναζήτησης... 155 8.1.1 Περιστροφές... 156 8.2 Δένδρα AVL... 157 8.2.1 Αποκατάσταση συνθήκης ισορροπίας... 158
Διάλεξη 04: Παραδείγματα Ανάλυσης
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1
Σχεδίαση Αλγορίθμων Δυναμικός Προγραμματισμός http://delab.csd.auth.gr/~gounaris/courses/ad Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Δυναμικός προγραμματισμός Ο Δυναμικός Προγραμματισμός
Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο
Σχεδίαση Αλγορίθμων Άπληστοι Αλγόριθμοι http://delab.csd.auth.gr/~gounaris/courses/ad 1 Άπληστοι αλγόριθμοι Προβλήματα βελτιστοποίησης ηςλύνονται με μια σειρά επιλογών που είναι: εφικτές τοπικά βέλτιστες
Διάλεξη 17: Δυαδικά Δέντρα. Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 7: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου Διδάσκων:
auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1
Σχεδίαση Αλγορίθμων Μείωσε και Βασίλευε http://delab.csd.auth.gr/courses/algorithms/ auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Μείωσε και Βασίλευε 1. Μειώνουμε το στιγμιότυπο του προβλήματος
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
Κεφάλαιο 2. Η δομή δεδομένων Σωρός και η Ταξινόμηση Σωρού (The Heap data structure and Heapsort) Έκδοση 1.3, 14/11/2014
Κεφάλαιο 2 Η δομή δεδομένων Σωρός και η Ταξινόμηση Σωρού (The Heap data structure and Heapsort) Έκδοση 1.3, 14/11/2014 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 Σωρός και Ταξινόμηση
Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι
Εισαγωγή ενός νέου στοιχείου. Επιλογή i-οστoύ στοιχείου : Εύρεση στοιχείου με το i-οστό μικρότερο κλειδί
Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με
(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις
Περιεχόμενα. Περιεχόμενα
Περιεχόμενα xv Περιεχόμενα 1 Αρχές της Java... 1 1.1 Προκαταρκτικά: Κλάσεις, Τύποι και Αντικείμενα... 2 1.1.1 Βασικοί Τύποι... 5 1.1.2 Αντικείμενα... 7 1.1.3 Τύποι Enum... 14 1.2 Μέθοδοι... 15 1.3 Εκφράσεις...
8. Σωροί (Heaps)-Αναδρομή- Προχωρημένη Ταξινόμηση
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 8. Σωροί (Heaps)-Αναδρομή- Προχωρημένη Ταξινόμηση 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Πτυχιακή Εξεταστική Ιούλιος 2014 Διδάσκων : Ευάγγελος Μαρκάκης 09.07.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες
Ουρά Προτεραιότητας: Heap
Ουρά Προτεραιότητας: Heap ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ομές εδομένων (Αναπαράσταση,) οργάνωση και διαχείριση συνόλων αντικειμένων για
Διάλεξη 19: Αλγόριθμοι ΤαξινόμησηςII. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 19: Αλγόριθμοι ΤαξινόμησηςII Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Γ. MergeSort Ταξινόμηση με Συγχώνευση Δ. BucketSort Ταξινόμηση με Κάδους Διδάσκων:
Union Find, Λεξικό. Δημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Union Find, Λεξικό Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Διαμερίσεων Συνόλου Στοιχεία σύμπαντος διαμερίζονται σε κλάσεις ισοδυναμίας
(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες:. Φωτάκης. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 7β: Όρια Αλγόριθμων Ταξινόμησης Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos.
Πανεπιστήµιο Αθηνών. Τµήµα Πληροφορικής και Τηλεπικοινωνιών. Παραλληλία. Κ. Χαλάτσης, Εισαγωγή στην Επιστήµη της Πληροφορικής και των Τηλεπικοινωνιών
Αλγόριθµοι-Προγραµµατισµός /2 Παραλληλία οµές εδοµένων Παραλληλία (Parallelism) Παραλληλία, ταυτοχρονισµός Παράλληλος αλγόριθµος - σειριακός αλγόριθµος Παράδειγµα : υπολογισµός κέρδους module σειριακό_κέρδος(λ_α,
Διάλεξη 13: Δέντρα ΙΙΙ - Ισοζυγισμένα Δέντρα, AVL Δέντρα
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 13: Δέντρα ΙΙΙ - Ισοζυγισμένα Δέντρα, AVL Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ισοζυγισμένα Δέντρα - Υλοποίηση AVL-δέντρων
Ουρές Προτεραιότητας: Υπενθύμιση. Σωροί / Αναδρομή / Ταξινόμηση. Υλοποίηση Σωρού. Σωρός (Εισαγωγή) Ορέστης Τελέλης
Ουρές Προτεραιότητας: Υπενθύμιση Σωροί / Αναδρομή / Ταξινόμηση Ορέστης Τελέλης telelis@unipi.gr Τμήμα Ψηφιακών Συστημάτων, Πανεπιστήμιο Πειραιώς (Abstract Data Type) με μεθόδους: Μπορεί να υλοποιηθεί με
Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1
Αλγόριθμοι Δυναμικός Προγραμματισμός http://delab.csd.auth.gr/courses/algorithms/ Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Δυναμικός προγραμματισμός Ο Δυναμικός Προγραμματισμός προτάθηκε από τον