Τηλεπικοινωνιακά Συστήματα Ι
|
|
- Ίησους Μπλέτσας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 5: Διαμόρφωση Πλάτους (1/2) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1
2 Ατζέντα Ορισμοί Είδη Διαμόρφωσης Διαμόρφωση Διπλής Πλευρικής Ζώνης (DSB) Κανονική (συνήθης) διαμόρφωση πλάτους (AM) 2
3 Διαμόρφωση Συνεχούς Κύματος Το διαμορφωμένο φέρον δίνεται από τη σχέση: x c t = A t cos ω c t + φ t A(t): στιγμιαίο πλάτος ή απλά πλάτος φ(t): γωνία φάσης ή απλά φάση Διαμόρφωση Πλάτους: Όταν το πληροφοριακό σήμα m(t) καθορίζει το A(t) Διαμόρφωση Γωνίας: Όταν το πληροφοριακό σήμα m(t) καθορίζει το φ(t) 3
4 Διαμόρφωση Πλάτους Στη διαμόρφωση πλάτους, το διαμορφωμένο φέρον είναι: x c t = A t cos ω c t 4
5 Είδη Διαμόρφωσης Πλάτους Διπλής Πλευρικής Ζώνης Double Side Band (DSB) Κανονική (συνήθης) διαμόρφωση πλάτους (AM) Απλής Πλευρικής Ζώνης Single Side Band (SSB) Υπολειπόμενης Πλευρικής Ζώνης Vestigial Side Band (VSB) 5
6 Διαμόρφωση Διπλής Πλευρικής Ζώνης Double Side Band - DSB 6
7 Ορισμός Το διαμορφωμένο κατά DSB φέρον δίνεται από: x DSB t = m t cos ω c t Φάσμα σήματος DSB: X DSB ω = 1 2 M ω ω c + M ω + ω c Έγινε εφαρμογή της ιδιότητας της ολίσθησης συχνότητας του μετασχηματισμού Fourier (ιδιότητα διαμόρφωσης). 7
8 Δημιουργία Σημάτων DSB Διαμορφωτής DSB: Το πληροφοριακό σήμα m(t) πολλαπλασιάζεται με ένα ημιτονοειδές σήμα υψηλής συχνότητας (φέρον σήμα). Η συχνότητα του φορέα πρέπει να είναι πολύ μεγαλύτερη από τη συχνότητα του πληροφοριακού σήματος ω c ω m. 8
9 Φάσμα Σημάτων DSB (α) Πληροφοριακό σήμα m(t) (β) Φάσμα πληροφοριακού σήματος (α) Διαμορφωμένο σήμα x DSB (t) (β) Φάσμα διαμορφωμένου X DSB (ω) 9
10 Αποδιαμόρφωση Σημάτων DSB (1/4) Αποδιαμορφωτής (ανιχνευτής) DSB: Το διαμορφωμένο σήμα x DSB t πολλαπλασιάζεται με ένα τοπικό φέρον cos ω c t το οποίο παράγεται από έναν τοπικό ταλαντωτή και το αποτέλεσμα d(t) φιλτράρεται από ένα βαθυπερατό φίλτρο (LPF) για να προκύψει το αποδιαμορφωμένο σήμα y(t). Η τεχνική αυτή ονομάζεται σύγχρονη αποδιαμόρφωση ή σύμφωνη ανίχνευση και παρότι είναι μαθηματικά απλή, στην πράξη αντιμετωπίζει σοβαρά προβλήματα. 10
11 Αποδιαμόρφωση Σημάτων DSB (2/4) Ο πολλαπλασιασμός της τοπικής φέρουσας cos ω c t με το διαμορφωμένο DSB σήμα x DSB t = m t cosω c t, δίνει: d t = m t cos ω c t cos ω c t = m t cos 2 ω c t = 1 2 m t m t cos 2ω ct Ο δεύτερος όρος στη δεξιά πλευρά κόβεται από το βαθυπερατό φίλτρο, οπότε το αποδιαμορφωμένο σήμα y(t) δίνεται από: y t = 1 m t 2 Με απλή ενίσχυση κατά 2, λαμβάνουμε πάλι το αρχικό σήμα m(t). 11
12 Αποδιαμόρφωση Σημάτων DSB (3/4) Μ(ω) φάσμα πληροφοριακού σήματος X DSB (ω) φάσμα διαμορφωμένου DSB σήματος D(ω) φάσμα ενδιάμεσου σήματος d(t) 12
13 Αποδιαμόρφωση Σημάτων DSB (4/4) H LPF (ω) φάσμα στην έξοδο του βαθυπερατού φίλτρου (LPF) Y(ω) φάσμα αποδιαμορφωμένου σήματος y(t) 13
14 Προβλήματα Σύμφωνης Ανίχνευσης (1/3) Παραπάνω αποδείξαμε ότι η σύγχρονη αποδιαμόρφωση ή σύμφωνη ανίχνευση είναι μαθηματικά πολύ απλή. Δυστυχώς όμως στην πράξη αντιμετωπίζει σοβαρά προβλήματα και για το λόγο αυτό δεν χρησιμοποιείται. Τα προβλήματα οφείλονται στην παραδοχή που κάναμε ότι ο τοπικός ταλαντωτής του δέκτη παράγει ένα τοπικό φέρον πανομοιότυπο του φέροντος που παράγει ο ταλαντωτής του πομπού. Αυτό στην πραγματικότητα δεν ισχύει, καθώς είναι πολύ πιθανό μεταξύ των δύο φερόντων (πομπού και δέκτη) να υπάρχουν διαφορές στη φάση ή στην συχνότητα. Τα προβλήματα αυτά διερευνώνται στις επόμενες δύο διαφάνειες. Η δυσκολία ανάκτησης (ανίχνευσης αποδιαμόρφωσης) του DSB σήματος, καθιστά ελάχιστα δημοφιλή την τεχνική αυτή. 14
15 Προβλήματα Σύμφωνης Ανίχνευσης (2/3) Αν η τοπική φέρουσα εμφανίζει σφάλμα φάσης (φ), δηλ. είναι cos ω c t + φ, τότε ο πολλαπλασιασμός της με το x DSB t = m t cosω c t, δίνει: d t = m t cos ω c t cos ω c t + φ = 1 2 m t cos φ + cos 2ω ct + φ = = 1 2 m t cos φ m t cos 2ω ct + φ Ο δεύτερος όρος στη δεξιά πλευρά κόβεται από το βαθυπερατό φίλτρο, οπότε: y t = 1 m t cosφ 2 Παρατηρήσεις: Το σφάλμα φάσης προκαλεί εξασθένηση του σήματος εξόδου κατά cosφ. Όταν φ = ± π 2 η έξοδος χάνεται εντελώς. Αν το σφάλμα φάσης φ μεταβάλλεται τυχαία με το χρόνο, τότε και η έξοδος θα μεταβάλλεται τυχαία, κάτι που δεν είναι επιθυμητό. 15
16 Προβλήματα Σύμφωνης Ανίχνευσης (3/3) Αν η τοπική φέρουσα εμφανίζει σφάλμα συχνότητας (Δω), δηλ. είναι cos ω c t + Δω, τότε ο πολλαπλασιασμός της με το x DSB t = m t cosω c t, δίνει: d t = m t cosω c t cos ω c + Δω t = 1 2 m t cos Δω t m t cos2ω ct Ο δεύτερος όρος στη δεξιά πλευρά κόβεται από το βαθυπερατό φίλτρο, οπότε: y t = 1 m t cos Δω t 2 Παρατηρούμε ότι η έξοδος y(t) είναι το πληροφοριακό σήμα m t πολλαπλασιασμένο με ημιτονοειδές χαμηλής συχνότητας. Πρόκειται για φαινόμενο «διακροτήματος» και είναι μια πολύ ανεπιθύμητη παραμόρφωση. 16
17 Συνήθης Διαμόρφωση Πλάτους Amplitude Modulation - AM 17
18 Ορισμός Το σύνηθες σήμα ΑΜ προκύπτει με την πρόσθεση μεγάλου φέροντος σήματος στο σήμα DSB και δίνεται από: x AM t = m t cos ω c t + A cos ω c t = [m t +Α] cos ω c t Φάσμα σήματος ΑΜ: X ΑΜ ω = 1 2 M ω ω c + M ω + ω c + πα δ ω ω c + δ ω + ω c 18
19 Φάσμα Σημάτων ΑΜ (α) Πληροφοριακό σήμα m(t) (β) Φάσμα πληροφοριακού σήματος (α) Διαμορφωμένο σήμα x ΑΜ (t) (β) Φάσμα διαμορφωμένου X ΑΜ (ω) 19
20 Σήμα ΑΜ και η Περιβάλλουσα του 20
21 Δείκτης Διαμόρφωσης Ο δείκτης διαμόρφωσης μ για την ΑΜ ορίζεται ως: μ = min m t A Για σωστή αποδιαμόρφωση πρέπει να ισχύει A min m t άρα: μ 1 Για μ > 1 λέμε ότι η φέρουσα είναι υπερδιαμορφωμένη, πράγμα που έχει ως αποτέλεσμα στην παραμόρφωση της περιβάλλουσας, άρα δεν είναι εφικτή η αποδιαμόρφωση. Η κατάσταση για μ = 1 ονομάζεται ιδανική διαμόρφωση και είναι μία οριακή κατάσταση. 21
22 Ανιχνευτής Περιβάλλουσας Ο ανιχνευτής περιβάλλουσας μια πολύ απλή διάταξη αποδιαμόρφωσης, που αποτελείται από μία δίοδο, έναν πυκνωτή και μία αντίσταση. Στη διάρκεια της θετικής ημιπεριόδου του σήματος x AM (t), η δίοδος έχει θετική πόλωση και ο πυκνωτής φορτίζεται γρήγορα στη μέγιστη τιμή του σήματος x AM (t). Όταν το σήμα x AM (t) πέφτει κάτω από τη μέγιστη τιμή του, η δίοδος παύει να λειτουργεί και ο πυκνωτής εκφορτίζεται αργά. Η τάση στα άκρα του πυκνωτή x c t είναι μία προσέγγιση του πληροφοριακού σήματος m(t). Για σωστή λειτουργία του ανιχνευτή περιβάλλουσας πρέπει ω c ω m. 22
23 Σύμφωνος Ανιχνευτής ΑΜ Το διαμορφωμένο σήμα x ΑΜ t πολλαπλα- σιάζεται με ένα τοπικό φέρον cos ω c t και το αποτέλεσμα d(t) φιλτράρεται από ένα βαθυπερατό φίλτρο (LPF) για να προκύψει το αποδιαμορφωμένο σήμα y(t). d t = x ΑΜ t cosω c t = A + m t cos 2 ω c t = 1 2 A + m t A + m t cos2ω ct Μετά από βαθυπερατό φιλτράρισμα, λαμβάνουμε y t = 1 2 A + m t = 1 2 m t A Ένας πυκνωτής θα καταπιέσει τον όρο συνεχούς ρεύματος 1 A, οπότε η έξοδος θα 2 είναι 1 m t. 2 23
24 Άσκηση 1 Να σχεδιαστεί το κανονικό σήμα ΑΜ για διαμόρφωση απλού τόνου με δείκτες διαμόρφωσης μ = 0.5 και μ = 1. Απάντηση: Για διαμόρφωση απλού τόνου m t διαμόρφωσης είναι: min m t μ = = a m A A = a m cosω m t ο δείκτης α m = μα Άρα m t = μα cosω m t Το διαμορφωμένο ΑΜ σήμα δίνεται από: x ΑΜ t = A + m t cos ω c t = A 1 + μ cosω m t cosω c t Στην επόμενη διαφάνεια φαίνονται τα κανονικά σήματα ΑΜ που αντιστοιχούν σε (α) μ = 0.5 και b μ = 1, αντίστοιχα. 24
25 Άσκηση 1 (συνέχεια) 25
26 Άσκηση 2 Η απόδοση η της συνήθους ΑΜ ορίζεται σαν το ποσοστό της συνολικής ισχύος που μεταφέρεται από τις πλευρικές ζώνες, δηλ. η = (P S /P t ) 100%, όπου Ρ s είναι η ισχύς που μεταφέρεται από τις πλευρικές ζώνες και P t είναι η συνολική ισχύς του σήματος ΑΜ. 1) Να βρεθεί το η για μ = 0.5 (διαμόρφωση 50%) 2) Να δειχθεί ότι για ΑΜ απλού τόνου, το η max είναι 33,3% για μ = 1 Απάντηση: Το σήμα ΑΜ απλού τόνου εκφράζεται σαν: x ΑΜ t = A + m t cosω c t = A cos ω c t + μα cosω m t cosω c t = A cos ω c t μ Α cos ω c ω m t μ Α cos ω c + ω m t Η ισχύς του φορέα είναι: P c = 1 2 A2 26
27 Άσκηση 2 (συνέχεια) Η ισχύς των πλευρικών ζωνών είναι: P s = μ Α μ Α 2 = 1 4 μ2 Α 2 Η συνολική ισχύς Ρ t είναι: Ρ t = P c + P s = 1 2 A μ2 Α 2 = μ2 Α 2 Επομένως, η απόδοση ισχύος (για μ 1) είναι: η = P s P t 100% = 1 4 μ2 Α % = 4 μ2 Α 2 μ μ 2 100% 27
28 Άσκηση 2 (συνέχεια) 1) Για μ = 0.5, ο συντελεστής απόδοσης είναι: η = % = 11.1% 2) Επειδή μ 1, φαίνεται ότι το η max συμβαίνει για μ = 1 και δίνεται από την η = 1 100% = 33.3% 3 28
Τηλεπικοινωνιακά Συστήματα Ι
Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 6: Διαμόρφωση Πλάτους (2/2) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διαμόρφωση Απλής Πλευρικής Ζώνης (SSB) Διαμόρφωση Υπολειπόμενης Πλευρικής Ζώνης (VSB)
Γιατί Διαμόρφωση; Μια κεραία για να είναι αποτελεσματική πρέπει να είναι περί το 1/10 του μήκους κύματος
Γιατί Διαμόρφωση; Μετάδοση ενός σήματος χαμηλών συχνοτήτων μέσω ενός ζωνοπερατού καναλιού Παράλληλη μετάδοση πολλαπλών σημάτων πάνω από το ίδιο κανάλι - Διαχωρισμός συχνότητας (Frequency Division Multiplexing)
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1 3.2: Διαμόρφωση Πλάτους (Amplitude Modulation, AM) 3.3: Διαμόρφωση Πλευρικής Ζώνης με Καταπιεσμένο
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1 3.2: Διαμόρφωση Πλάτους (Amplitude Modulation, AM) 3.3: Διαμόρφωση Πλευρικής Ζώνης με Καταπιεσμένο
Τηλεπικοινωνιακά Συστήματα Ι
Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 8: Διαμόρφωση Γωνίας (2/2) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Εύρος Ζώνης Συχνοτήτων Σημάτων με Διαμόρφωση Γωνίας Δημιουργία Σημάτων Διαμορφωμένων
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 3: Μαθιόπουλος Παναγιώτης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιγραφή ενότητας Διαμόρφωση Πλάτους: Διπλής πλευρικής ζώνης με συνολικό φέρον,
Εισαγωγή στις Τηλεπικοινωνίες
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες Ενότητα : Εισαγωγή στη Διαμόρφωση Πλάτους (AΜ) Όνομα Καθηγητή: Δρ. Ηρακλής Σίμος Τμήμα: Ηλεκτρονικών
Τηλεπικοινωνιακά Συστήματα Ι
Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 7: Διαμόρφωση Γωνίας (1/2) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διαμόρφωση γωνίας Ορισμοί Η έννοια της Στιγμιαίας Συχνότητας Διαμόρφωση Φάσης (Phase
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 3: Διαμόρφωση πλάτους Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Παρουσίαση των χαρακτηριστικών στοιχείων
Συστήματα Επικοινωνιών Ι
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Διαμόρφωση και αποδιαμόρφωση πλάτους AM-DSB-SC και QAM + Περιεχόμενα Διαμόρφωση AM-DSB-SC Φάσμα διαμορφωμένου σήματος
x(t) = m(t) cos(2πf c t)
Διαμόρφωση πλάτους (διπλής πλευρικής) Στοχαστικά συστήματα & επικοινωνίες 8 Νοεμβρίου 2012 1/27 2/27 Γιατί και πού χρειάζεται η διαμόρφωση Για τη χρήση πολυπλεξίας (διέλευση πολλών σημάτων μέσα από το
Συστήματα Επικοινωνιών Ι
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: demestihas@uowm.gr Συστήματα Επικοινωνιών Ι Διαμόρφωση και αποδιαμόρφωση πλάτους SSB και VSB Μετατόπιση συχνότητας Πολυπλεξία FDM + Περιεχόμενα n n n n n n n Διαμόρφωση
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Μπατιστάτος Μιχάλης Εργαστήριο 3 ο : Διαμόρφωση ΑΜ-DSBSC/SSB Βασική
Αρχές Τηλεπικοινωνιών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχές Τηλεπικοινωνιών Ενότητα #9: Μονοπλευρική διαμόρφωση (SSB) Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμών Τ.Ε. Άδειες Χρήσης Το
Το σήμα εξόδου ενός διαμορφωτή συμβατικού ΑΜ είναι:
Άσκηση 1 Το σήμα εξόδου ενός διαμορφωτή συμβατικού ΑΜ είναι: i. Προσδιορίστε το σήμα πληροφορίας και το φέρον. ii. Βρείτε το δείκτη διαμόρφωσης. iii. Υπολογίστε το λόγο της ισχύος στις πλευρικές ζώνες
Αρχές Τηλεπικοινωνιών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχές Τηλεπικοινωνιών Ενότητα #8: Διπλοπλευρική διαμόρφωση (DSB) Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμών Τ.Ε. Άδειες Χρήσης
ΚΕΦΑΛΑΙΟ ΤΡΙΤΟ ΔΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ
ΚΕΦΑΛΑΙΟ ΤΡΙΤΟ ΔΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ 3. Εισαγωγή Συστήματα Αναλογικής Διαμόρφωσης Η ιδέα της αναλογικής διαμόρφωσης στηρίζεται στην αλλαγή κάποιας παραμέτρου ενός ημιτονοειδούς σήματος (t), το οποίο λέγεται
ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ
ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΚΕΦΑΛΑΙΟ.3 ΔΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ ΜΟΝΗΣ ΠΛΕΥΡΙΚΗΣ ΖΩΝΗΣ - ΑΜ SSB (SINGLE SIDEBAND) 1/18 Διαμόρφωση ΑΜ SSB (Single Sideband) Είδαμε ότι η DSB διαμόρφωση διπλασιάζει το εύρος ζώνης του σήματος.
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους Ασκήσεις 3.6, 3.7, 3.9, 3.14, 3.18 καθ. Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr www.netmode.ntua.gr
Διαμόρφωση απλής πλευρικής ζώνης (single-sideband SSB)
Διαμόρφωση απλής πλευρικής ζώνης single-sidebnd SSB Διαμόρφωση κατά πλάτος Ι s osπ s [ x os km km ]os x [ km ] km 0 km m: σήμα βασικής ζώνης σήμα διαμόρφωσης : φέρον σήμα s: διαμορφωμένο σήμα k: ευαισθησία
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I SSB Παραγωγή - Αποδιαμόρφωση FM Διαμόρφωση
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I SSB Παραγωγή - Αποδιαμόρφωση FM Διαμόρφωση ΔΙΠΛΟΠΛΕΥΡΙΚΕΣ - ΜΟΝΟΠΛΕΥΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΑΜ 0 f DSB 0 f SSB 0 f SINGLE
Ορθογωνική διαμόρφωση πλάτους. Quadrature Amplitude Modulation (QAM)
Ορθογωνική διαμόρφωση πλάτους Quadrature Amplitude Modulation (QAM) Ορθογωνική διαμόρφωση πλάτους (QAM) Στη διαμόρφωση QAM δύο σήματα διαμορφώνονται από δύο φέροντα που διαφέρουν σε φάση κατά 90 ο Το φέρον
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΙΑΜΟΡΦΩΣΗ ΑΠΟ ΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ (ΑΜ)
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΙΑΜΟΡΦΩΣΗ ΑΠΟ ΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ (ΑΜ) 1. ιαµόρφωση Πλάτους. Στην άσκηση αυτή θα ασχοληθούµε µε τη ιαµόρφωση Πλάτους (Amplitude Modulation) χρησιµοποιώντας τον ολοκληρωµένο διαµορφωτή
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Μπατιστάτος Μιχάλης Εργαστήριο ο : Διαμόρφωση ΑΜ Βασική Θεωρία Εισαγωγή
ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ
ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΚΕΦΑΛΑΙΟ. ΔΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ ΑΜ DSB-LC (DOUBLE SIDEBAND-LARGE CARRIER) 006 ΜΕΤΑΔΟΣΗ ΠΛΗΡΟΦΟΡΙΑΣ Γ. Οικονόμου ΠΜΣ-ΗΕΠ 1/13 Διαμόρφωση ΑΜ DSB-LC (Large Carrier) Ένα σημαντικό πρόβλημα
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Οικονομίας Διοίκησης και Πληροφορικής Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Αρχές Τηλ/ων Συστημάτων Μπατιστάτος Μιχάλης Εργαστήριο 5 ο : Διαμόρφωση
Γραμμική διαμόρφωση φέροντος κύματος
Γραμμική διαμόρφωση φέροντος κύματος Επικοινωνία στη βασική ζώνη Επικοινωνία στη βασική ζώνη (baseband) χρησιμοποιείται σε Συνδρομητικούς βρόχους (PSTN) Συστήματα PCM μεταξύ τηλεφωνικών κέντρων ισχύς φέρον
Εισαγωγή στις Τηλεπικοινωνίες
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες Ενότητα : Εισαγωγή στη Διαμόρφωση Συχνότητας (FΜ) Όνομα Καθηγητή: Δρ. Ηρακλής Σίμος Τμήμα: Ηλεκτρονικών
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Οικονομίας Διοίκησης και Πληροφορικής Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Αρχές Τηλ/ων Συστημάτων Μπατιστάτος Μιχάλης Εργαστήριο 6 ο : Διαμόρφωση
Διαμόρφωση FM στενής ζώνης. Διαμορφωτής PM
Παραγωγή σημάτων FM Διαμόρφωση FM στενής ζώνης [ π φ π ] st () A cos(2 ft) ()sin(2 t ft) c c c Διαμορφωτής PM m (t) + s(t) A c sin(2 π ft) c +90 0 ~ A c cos(2 π ft) c Διαμόρφωση PM στενής ζώνης 2f c Άμεση
ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε.
ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Ι 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δρ ΒΑΣΙΛΕΙΟΣ ΜΠΟΖΑΝΤΖΗΣ Διαμόρφωση Γωνίας Τα είδη διαμόρφωσης γωνίας τα
Ασκήσεις στα Συστήµατα Ηλεκτρονικών Επικοινωνιών Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ
Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ 1. Ποµπός ΑΜ εκπέµπει σε φέρουσα συχνότητα 1152 ΚΗz, µε ισχύ φέροντος 10KW. Η σύνθετη αντίσταση της κεραίας είναι
Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο Εργαστηριακή Άσκηση 1: Εισαγωγή στη διαμόρφωση πλάτους (ΑΜ) Προσομοίωση σε Η/Υ Δρ.
Αποδιαμόρφωση σημάτων CW με θόρυβο
Αποδιαμόρφωση σημάτων CW με θόρυβο Ορισμοί Το σήμα στη λήψη (μετά το φίλτρο προ-ανίχνευσης) είναι r( t) s( t) n( t) όπου s S, n N R Οι σηματοθορυβικές σχέσεις είναι S S W S SNR SNRb, SNRo N N0B B N Ο ζωνοπερατός
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 2
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 2 3.4: Πολυπλεξία Ορθογωνικών Φερόντων (Quadrature Amplitude Modulation, QAM) 3.5: Μέθοδοι Διαμόρφωσης
Τηλεπικοινωνικακά Συστήματα Ι - Ενδεικτικές Ερωτήσεις Ασκήσεις 1)
Τηλεπικοινωνικακά Συστήματα Ι - Ενδεικτικές Ερωτήσεις Ασκήσεις Δ.Ευσταθίου Τμήμα Μηχανικών Πληροφορικής ΤΕ, ΤΕΙ Κεντρικής Μακεδονίας 1) 1. Ποια από τις παρακάτω συχνότητες δεν εμφανίζεται στην έξοδο ενός
To σήμα πληροφορίας m(t) πρέπει να είναι μονοπολικό (uni-polar) ΝRZ σήμα της μορφής: 0 ---> 0 Volts (11.1) 1 ---> +U Volts
11. ΔΙΑΜΟΡΦΩΣΗ ΚΛΕΙΔΩΜΑΤΟΣ ΠΛΑΤΟΥΣ (Amplitude Shift Keying - ΑSK) 11.1. Αναπαράσταση του ψηφιακού σήματος πληροφορίας To σήμα πληροφορίας πρέπει να είναι μονοπολικό (uni-polar) ΝZ σήμα της μορφής: 0 --->
11.1. Αναπαράσταση του ψηφιακού σήματος πληροφορίας m(t)
11. ΔΙΑΜΟΡΦΩΣΗ ΚΛΕΙΔΩΜΑΤΟΣ ΠΛΑΤΟΥΣ (Amplitude Shift Keying - ΑSK) 11.1. Αναπαράσταση του ψηφιακού σήματος πληροφορίας To σήμα πληροφορίας πρέπει να είναι μονοπολικό (uni-polar) ΝZ σήμα της μορφής: 0 --->
Σήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 10: Γραμμικά Φίλτρα Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Γραμμικά Φίλτρα 1. Ιδανικά Γραμμικά Φίλτρα Ιδανικό Κατωδιαβατό Φίλτρο Ιδανικό Ανωδιαβατό Φίλτρο Ιδανικό Ζωνοδιαβατό
Συστήματα Επικοινωνιών Ι
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Διαμορφώσεις γωνίας Διαμόρφωση Συχνότητας Στενής Ζώνης + Περιεχόμενα n Διαμορφώσεις γωνίας n Διαμόρφωση φάσης PM n Διαμόρφωση
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα: Ασκήσεις για τις ενότητες 2 4: Διαμόρφωση Πλάτους Ιωάννης Βαρδάκας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σελίδα 2 Περιεχόμενα 1. Σκοποί ενότητας...5 2.
ΔΙΑΒΙΒΑΣΗ ΑΝΑΛΟΓΙΚΟΥ ΣΗΜΑΤΟΣ ΜΕ ΔΙΑΜΟΡΦΩΣΗ ΦΕΡΟΝΤΟΣ
ΔΙΑΒΙΒΑΣΗ ΑΝΑΛΟΓΙΚΟΥ ΣΗΜΑΤΟΣ ΜΕ ΔΙΑΜΟΡΦΩΣΗ ΦΕΡΟΝΤΟΣ Συστήματα Διαμόρφωσης Φέροντος ΔΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ (ΑΜPLITUDE MODULATION - AM) ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ (ANGLE( MODULATION - FM-PM PM) u(t)=a (1+m(t))os(πf t)
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 5: Διαμορφώσεις γωνίας Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Παρουσίαση της διαμόρφωσης συχνότητας και
4. Ποιο από τα παρακάτω δεν ισχύει για την ευαισθησία ενός δέκτη ΑΜ; Α. Ευαισθησία ενός δέκτη καθορίζεται από την στάθμη θορύβου στην είσοδό του.
Τηλεπικοινωνικακά Συστήματα Ι - Ενδεικτικές Ερωτήσεις Ασκήσεις Δ.Ευσταθίου Τμήμα Μηχανικών Πληροφορικής ΤΕ, ΤΕΙ Κεντρικής Μακεδονίας 1) 1. Ποιο από τα παρακάτω δεν ισχύει για το χρονικό διάστημα που μηδενίζεται
Ψηφιακές Τηλεπικοινωνίες. Διαμόρφωση Παλμών κατά Πλάτος
Ψηφιακές Τηλεπικοινωνίες Διαμόρφωση Παλμών κατά Πλάτος Διαμόρφωση Παλμών κατά Πλάτος Είπαμε ότι κατά την ψηφιακή μετάδοση μέσα από αναλογικό κανάλι κάθε σύμβολο αντιστοιχίζεται σε μια κυματομορφή σήματος
ΘΕΜΑ 1 ο. α. τα μήκη κύματος από 100m έως 50m ονομάζονται κύματα νύχτας και τα μήκη κύματος από 50m έως 10m ονομάζονται κύματα ημέρας.
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 06/05/016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ 1 ο ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ
Πρακτικές μέθοδοι αποδιαμόρφωσης FM. Ανίχνευση μηδενισμών Διευκρίνιση ολίσθησης φάσης Μετατροπή FM σε ΑΜ Ανάδραση συχνότητας
Αποδιαμόρφωση FM Πρακτικές μέθοδοι αποδιαμόρφωσης FM Ανίχνευση μηδενισμών Διευκρίνιση ολίσθησης φάσης Μετατροπή FM σε ΑΜ Ανάδραση συχνότητας Ανίχνευση μηδενισμών Η έξοδος είναι ανάλογη του ρυθμού των μηδενισμών,
Επικοινωνίες I FM ΔΙΑΜΟΡΦΩΣΗ. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ FM ΔΙΑΜΟΡΦΩΣΗ Σήμα FM Η ακόλουθη εξίσωση δίδει την ισοδύναμη για τη διαμόρφωση συχνότητας έκφραση
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 2
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 2 3.5: Μέθοδοι Διαμόρφωσης Απλής & Υπολειπόμενης (Υποτυπώδους) Πλευρικής Ζώνης (Single-Sideband,
ΜΕΛΕΤΗ, ΑΝΑΠΤΥΞΗ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΑΣΚΗΣΕΩΝ ΑΝΑΛΟΓΙΚΩΝ ΔΙΑΜΟΡΦΩΣΕΩΝ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ SIMULINK ΤΟΥ MATLAB
Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Ο Ε Κ Π Α Ι Δ Ε Υ Τ Ι Κ Ο Ι Δ Ρ Υ Μ Α Σ Ε Ρ Ρ Ω Ν Σ Χ Ο Λ Η Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Ω Ν Ε Φ Α Ρ Μ Ο Γ Ω Ν Τ Μ Η Μ Α Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ & Ε Π Ι Κ Ο Ι Ν Ω Ν Ι Ω Ν ΜΕΛΕΤΗ, ΑΝΑΠΤΥΞΗ ΚΑΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 3: Ψηφιακή Διαμόρφωση Πλάτους Amplitude Shift Keying (ASK) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Ψηφιακή Διαμόρφωση Πλάτους (ASK) Μαθηματική περιγραφή
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 6: Συστήματα Αναλογικής Διαμόρφωσης Σαγκριώτης Εμμανουήλ Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Σκοποί ενότητας 1. Η αναγνώριση της ανάγκης διαμόρφωσης
Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Αναλογικές Διαμορφώσεις Αθανάσιος Κανάτας
3 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΑΥΤΟΕΞΕΤΑΣΗΣ. 1) Nα αναφερθούν κάποια είδη πληροφοριών που χρησιμοποιούνται για επικοινωνία.
3 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΑΥΤΟΕΞΕΤΑΣΗΣ 1) Nα αναφερθούν κάποια είδη πληροφοριών που χρησιμοποιούνται για επικοινωνία. απ. Μπορεί να είναι ακουστικά μηνύματα όπως ομιλία, μουσική. Μπορεί να είναι μια φωτογραφία,
ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΤΩΝ ΕΦΑΡΜΟΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Ιωάννης Γ. Τίγκελης και Δημήτριος Ι. Φραντζεσκάκης
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 3: Εισαγωγή στην Έννοια της Διαμόρφωσης Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Η ανάγκη για διαμόρφωση 2. Είδη διαμόρφωσης 3. Διαμόρφωση με ημιτονοειδές
Άσκηση Να υπολογιστεί ο δείκτης διαμόρφωσης των συστημάτων ΑΜ και FM. Αναλογικές Τηλεπικοινωνίες Γ. Κ. Καραγιαννίδης Αν. Καθηγητής 14/1/2014
Άσκηση 4.16 Ένα ημιτνοειδές σήμα πληροφορίας με συχνότητα διαμορφώνεται κατά ΑΜ και Κατά FM. Το πλάτος του φέροντος είναι το ίδιο και στα δύο συστήματα. Η μέγιστη απόκλιση Συχνότητας στο FM είναι ίση με
ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ
ΑΕΙ ΠΕΙΡΑΙΑ ΤΤ (ΤΕΙ ΠΕΙΡΑΙΑ) ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΥΠ. ΚΑΘΗΓΗΤΗΣ: Ρ. ΗΡΑΚΛΗΣ ΣΙΜΟΣ ΜΑΡΤΙΟΣ 2015 ΑΣΚΗΣΗ
8. ΔΙΑΜΟΡΦΩΣΗ: ΓΕΝΙΚΗ ΘΕΩΡΗΣΗ Ορισμoί Εμπλεκόμενα σήματα
8. ΔΙΑΜΟΡΦΩΣΗ: ΓΕΝΙΚΗ ΘΕΩΡΗΣΗ 8.1. Ορισμoί Ως διαμόρφωση (modulation) χαρακτηρίζεται η μεταβολή μιας παραμέτρου (π.χ. πλάτους, συχνότητας, φάσης κλπ.) ενός σήματος που λέγεται φέρον εξαιτίας της επενέργειας
- Ραδιόφωνο. - Κινητή τηλεφωνία - Ψηφιακή τηλεόραση (π.χ. NOVA)
ΙΑΜΟΡΦΩΣΗ Ο σκοπός ενός τηλεπικοινωνιακού συστήµατος είναι η µεταφορά πληροφορίας µε τη µορφή σήµατος µέσω ενός καναλιού το οποίο χωρίζει τον ποµπό από τον δέκτη. Το κανάλι µπορεί να είναι είτε κάποια
Διαμόρφωση Συχνότητας. Frequency Modulation (FM)
Διαμόρφωση Συχνότητας Frequency Modulation (FM) Τι συμβαίνει με τις γραμμικές διαμορφώσεις; Στη γραμμική διαμόρφωση CW (Carrier Wave) δηλαδή, AM, DSB, SSB, VSB Το πλάτος ενός ημιτονικού φέροντος μεταβάλλεται
Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο Εργαστηριακή Άσκηση 4: Πειραματική μελέτη συστημάτων διαμόρφωσης συχνότητας (FΜ) Δρ.
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Οικονομίας Διοίκησης και Πληροφορικής Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Αρχές Τηλ/ων Συστημάτων Μπατιστάτος Μιχάλης Εργαστήριο 8 ο : Διαμόρφωση
Αποδιαμόρφωση γωνίας με θόρυβο
Αποδιαμόρφωση γωνίας με θόρυβο SNR στην είσοδο του δέκτη Εάν η διαμόρφωση είναι PM ή FM mt ( ) PM s( t) A ccos fct ( t), ( t) t f m( ) d FM Η ισχύς του σήματος στην είσοδο του δέκτη είναι S R Ac / Η ισχύς
1) Να σχεδιαστεί και να σχολιαστεί το γενικό ενός πομπού ΑΜ.
5 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΑΥΤΟΕΞΕΤΑΣΗΣ 1) Να σχεδιαστεί και να σχολιαστεί το γενικό ενός πομπού ΑΜ. Με βάση το γενικό δομικό διάγραμμα ενός πομπού, όπως προέκυψε στο τρίτο κεφάλαιο (σχήμα 5.1.1), η διαδικασία
Συστήματα Επικοινωνιών Ι
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: demestihas@uowm.gr Συστήματα Επικοινωνιών Ι Θόρυβος σε συστήματα διαμόρφωσης συνεχούς κυματομορφής (CW) + Περιεχόμενα n Θόρυβος σε συστήματα διαμόρφωσης συνεχούς κυματομορφής
Συστήματα Επικοινωνιών Ι
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Διαμόρφωση Συχνότητας Ευρείας Ζώνης Εύρος ζώνης μετάδοσης διαμορφωμένων κατά γωνία σημάτων Παραγωγή σημάτων FM + Περιεχόμενα
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Μπατιστάτος Μιχάλης Εργαστήριο 8 ο : Διαμόρφωση Γωνίας Βασική Θεωρία
Ορθογωνική ιαµόρφωση Πλάτους (QAM)
Ορθογωνική ιαµόρφωση Πλάτους (QAM) H πολυπλεξία ορθογωνικών φερόντων (quadraurearrier uliplexing) ή ορθογωνική διαµόρφωση πλάτους (quadraure-apliude odulaion, QAM) επιτρέπει σε δύο διαµορφωµένα DB να καταλάβουν
ΑΣΠΑΙΤΕ / Τμήμα Εκπαιδευτικών Ηλεκτρολόγων Μηχανικών & Εκπαιδευτικών Ηλεκτρονικών Μηχανικών
8. ΔΙΑΜΟΡΦΩΣΗ: ΓΕΝΙΚΗ ΘΕΩΡΗΣΗ 8.1. Ορισμoί Ως διαμόρφωση (modulation) χαρακτηρίζεται η μεταβολή μιας παραμέτρου (π.χ. πλάτους, συχνότητας, φάσης κλπ.) ενός σήματος που λέγεται φέρον εξαιτίας της επενέργειας
FM & PM στενής ζώνης. Narrowband FM & PM
FM & PM στενής ζώνης Narrowband FM & PM Διαμόρφωση γωνίας στενής ζώνης Το διαμορφωμένο κατά γωνία σήμα μπορεί να γραφεί ως [ π φ ] st () = Acos2 ft+ () t c όπου η στιγμιαία φάση είναι φ() t c Δφxt () PM
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 7: Μετατροπή Σήματος από Αναλογική Μορφή σε Ψηφιακή Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετατροπή Αναλογικού Σήματος σε Ψηφιακό Είδη Δειγματοληψίας: Ιδανική
Ηλεκτρονικές Επικοινωνίες - Μάθημα 2 Θεωρία και ασκήσεις για την ύλη στις σελίδες
Ηλεκτρονικές Επικοινωνίες - Μάθημα 2 Θεωρία και ασκήσεις για την ύλη στις σελίδες 102-107 (Να απαντηθούν γραπτά και να παραδοθούν το αργότερο μέχρι την Παρασκευή 28 Νοεμβρίου). Διαμόρφωση πλάτους ΑΜ με
Αναλογικές Τηλεπικοινωνίες
Αναλογικές Τηλεπικοινωνίες Σημειώσεις από τις παραδόσεις Για τον κώδικα σε L A T E X, ενημερώσεις και προτάσεις: https://github.com/kongr45gpen/ece-notes Οκτώβριος-Ιανουάριος 2017 Τελευταία ενημέρωση:
Κύριες λειτουργίες ραδιοφωνικών δεκτών
Εμπορικοί δέκτες Κύριες λειτουργίες ραδιοφωνικών δεκτών Αποδιαμόρφωση λήψη του σήματος πληροφορίας Συντονισμός φέροντος επιλογή του σταθμού Φιλτράρισμα απαλοιφή θορύβου και παρεμβολών Ενίσχυση αντιμετώπιση
7 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΑΥΤΟΕΞΕΤΑΣΗΣ. 1) Ποιος είναι ο ρόλος του δέκτη στις επικοινωνίες.
7 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΑΥΤΟΕΞΕΤΑΣΗΣ 1) Ποιος είναι ο ρόλος του δέκτη στις επικοινωνίες. Ρόλος του δέκτη είναι να ενισχύει επιλεκτικά και να επεξεργάζεται το ωφέλιμο φέρον σήμα που λαμβάνει και να αποδίδει
f o = 1/(2π LC) (1) και υφίσταται απόσβεση, λόγω των ωμικών απωλειών του κυκλώματος (ωμική αντίσταση της επαγωγής).
Συστήματα εκπομπής Το φέρον σήμα υψηλής συχνότητας (f o ) δημιουργείται τοπικά στον πομπό από κύκλωμα αρμονικού (ημιτονικού) ταλαντωτή. Η αρχή λειτουργίας των ταλαντωτών L-C στηρίζεται στην αυτοταλάντωση,
FM & PM στενής ζώνης. Narrowband FM & PM
FM & PM στενής ζώνης Narrowband FM & PM Διαμόρφωση γωνίας στενής ζώνης Το διαμορφωμένο κατά γωνία σήμα μπορεί να γραφεί ως [ π φ ] st () = Acos2 ft+ () t c όπου η στιγμιαία φάση είναι φ() t c Δφxt () PM
Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier 1. Ανάπτυγμα σήματος σε Σειρά Fourier
ΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ. ιαµόρφωση Πλάτους. Περιεχόµενα:
ΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ Περιεχόµενα: ιαµόρφωση/αποδιαµόρφωση Πλάτους ΑΜ ιαµόρφωση DSBS ΟµόδυνηΦώρασηΚυµατοµορφών DSBS ιαµόρφωση QAM ιαµόρφωση SSB ιαµόρφωση VSB Μετατόπιση Συχνότητας Πολυπλεξία ιαίρεσης Συχνότητας
Μοντέλο συστήματος αποδιαμόρφωσης παρουσία θορύβου
Μοντέλο συστήματος αποδιαμόρφωσης παρουσία θορύβου Επίδοση παρουσία θορύβου Η ανάλυση της επίδοσης των συστημάτων διαμόρφωσης παρουσία θορύβου είναι εξαιρετικά σημαντική για τη σχεδίαση των διαφόρων επικοινωνιακών
Αρχές Τηλεπικοινωνιών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχές Τηλεπικοινωνιών Ενότητα #10: Διαμόρφωση συχνότητας (FM) Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμών Τ.Ε. Άδειες Χρήσης Το
Διαμόρφωση Παλμών. Pulse Modulation
Διαμόρφωση Παλμών Pulse Modulation Συστήματα διαμόρφωσης παλμών Είδη διαμόρφωσης παλμών Pulse Amplitude Modulation (PAM): A m(t) Pulse Position Modulation (PPM): T d m(t) Pulse Duration Modulation (PDM)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I Υπερετερόδυνοι Δέκτες
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I Υπερετερόδυνοι Δέκτες Δημήτρης Ευσταθίου, Τμήμα Πληροφορικής και Επικοινωνιών Υπερετερόδυνοι Δέκτες Τα προβλήματα
MIEE ΔΙΕΥΚΡΙΝΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΔΕΚΕΜΒΡΙΟΣ
ΗΜ505Β ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Δρ Θεόδωρος Γ. Κωστής CEng MIEE ΔΙΕΥΚΡΙΝΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΔΕΚΕΜΒΡΙΟΣ 2016 2016-2017 1 / 45 1.ΕΝΕΡΓΕΙΑ & ΙΣΧΥΣ m 1.01 Δύναμη [Newton],[Nt] Kgr Nt Newton 2 sec Μηχανική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 14 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/s15 e-mail:
Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier 1. Μετασχηματισμός Fourier
ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ
www.lucent.com/security ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ 2 η ΟΣΣ / ΠΛΗ22 / ΑΘΗ.4 /07.12.2014 Νίκος Δημητρίου (Σημείωση: Η παρουσίαση αυτή συμπληρώνει τα αρχεία PLH22_OSS2_diafaneies_v1.ppt, και octave_matlab_tutorial_v1.ppt
Δέκτες ΑΜ ΘΟΡΥΒΟΣ ΣΕ ΔΙΑΜΟΡΦΩΣΗ CW
ΘΟΡΥΒΟΣ ΣΕ ΔΙΑΜΟΡΦΩΣΗ Στα συστήματα διαμόρφωσης (otiuou-ve) το κριτήριο της συμπεριφοράς τους ως προς το θόρυβο, είναι ο λόγος σήματος προς θόρυβο στην έξοδο (output igl-tooie rtio). λόγος σήματος προς
Θ.Ε. ΠΛΗ22 ( ) 2η Γραπτή Εργασία
Θ.Ε. ΠΛΗ22 (2012-13) 2η Γραπτή Εργασία Στόχος: Η 2 η εργασία αποσκοπεί στην κατανόηση των συστατικών στοιχείων των αναλογικών διαμορφώσεων, της δειγματοληψίας, και της μετατροπής του αναλογικού σήματος
Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 1: Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Εισαγωγή στα Σήματα 1. Σκοποί της Θεωρίας Σημάτων 2. Κατηγορίες Σημάτων 3. Χαρακτηριστικές Παράμετροι
Συστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Συστήματα διαμόρφωσης παλμών Πολυπλεξία + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΕΠΙΚΟΙΝΩΝΙΕΣ 1
Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΕΠΙΚΟΙΝΩΝΙΕΣ 1 Δρ. ΑΝΑΣΤΑΣΙΟΣ ΠΑΠΑΤΣΩΡΗΣ Καθηγητής ΣΕΡΡΕΣ, ΙΟΥΝΙΟΣ 2015
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΑΣΚΗΣΕΙΣ
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΑΣΚΗΣΕΙΣ Άσκηση 1 Προσδιορίστε τη Σειρά Fourier (δηλαδή τους συντελεστές πλάτους A n και φάσης φ n ) του παρακάτω
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα: Ασκήσεις για τις ενότητες 5 7 Διαμόρφωση Γωνίας FM/PM Ιωάννης Βαρδάκας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σελίδα Περιεχόμενα 1. Σκοποί ενότητας...5.
Συστήµατα Μετάδοσης Πληροφορίας Εκποµπή και Λήψη Αναλογικού Σήµατος Εισαγωγή (/7) Πώς γίνεται τελικά η µετάδοση των δεδοµένων; Πηγές πληροφορίας Αναλογικές»H τιµή (πλάτος) του σήµατος µεταβάλλεται συνεχώς
ΕΠΙΔΡΑΣΗ ΤΟΥ ΘΟΡΥΒΟΥ ΣΤΑ ANΑΛΟΓΙΚΑ ΣΥΣΤΗΜΑΤΑ ΔΙΑΒΙΒΑΣΗΣ ΣΗΜΑΤΟΣ. Προσθετικός Λευκός Gaussian Θόρυβος (Additive White Gaussian Noise-AWGN
ΡΗ 009-10 16/1/009 3:4 μμ ΕΠΙΔΡΑΣΗ ΤΟΥ ΘΟΡΥΒΟΥ ΣΤΑ ANΑΛΟΓΙΚΑ ΣΥΣΤΗΜΑΤΑ ΔΙΑΒΙΒΑΣΗΣ ΣΗΜΑΤΟΣ Προσθετικός Λευκός Gaussian Θόρυβος (Additive White Gaussian Noise-AWGN AWGN) ΕΠΙΔΡΑΣΗ ΤΟΥ ΘΟΡΥΒΟΥ ΣΕ ΜΕΤΑΔΟΣΗ
Σήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 8: Ιδιότητες του Μετασχηματισμού ourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού ourier 1. Ιδιότητες του Μετασχηματισμού ourier 2. Θεώρημα
ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΣΚΗΣΕΙΣ
ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 1 α). Ποιο είναι το εύρος ζώνης του τηλεφωνικού καναλιού (με ακρίβεια). β). Πως εξασφαλίζεται η αμφίδρομη μετάδοση στην τηλεφωνία. γ).ποιο είναι το φυσικό
Αρχές Τηλεπικοινωνιών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχές Τηλεπικοινωνιών Ενότητα #11: Ψηφιακή Διαμόρφωση Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό