Συστήματα Επικοινωνιών ΙI
|
|
- Αναστασούλα Δουμπιώτης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 + Διδάσκων: Δρ. Κ. Δεμέστιχας Συστήματα Επικοινωνιών ΙI Συστήματα διαμόρφωσης παλμών Πολυπλεξία
2 + Ιστοσελίδα nιστοσελίδα του μαθήματος: n
3 + Περιεχόμενα n Συστήματα διαμόρφωσης παλμών n PAM n PDM n PPM n Πολυπλεξία n FDM n TDM n WDM
4 + nσυστήματα διαμόρφωσης παλμών
5 + Είδη διαμόρφωσης παλμών n Διαμόρφωση πλάτους παλμών PAM (Pulse Amplitude Modulation) n τα πλάτη των παλμών μεταβάλλονται ανάλογα με τις τιμές των δειγμάτων του σήματος πληροφορίας n Διαμόρφωση διάρκειας παλμών PDM (Pulse Duration Modulation) n η διάρκεια των παλμών μεταβάλλεται ανάλογα με τις τιμές των δειγμάτων του σήματος πληροφορίας n Διαμόρφωση θέσης παλμών PPM (Pulse Position Modulation) n η θέση των παλμών (σε σχέση με τη θέση τους αν ήταν αδιαμόρφωτοι) μεταβάλλεται ανάλογα με τις τιμές των δειγμάτων του σήματος πληροφορίας Modulation (PWM): T PDM ή PWM PPM T d T A PAM T s t
6 + Είδη διαμόρφωσης παλμών Αναλογικό σήμα PAM PDM PPM
7 + Διαμόρφωση PAM n Φυσική δειγματοληψία n Το διαμορφωμένο PAM σήμα μπορεί να ληφθεί από τεμαχιστή (chopper) n Duty cycle παλμού (κύκλος εργασιών): d f s T s
8 + Διαμόρφωση από τεμαχιστή n Το διαμορφωμένο σήμα PAM είναι το γινόμενο του σήματος επί τη συνάρτηση δειγματοληψίας (σειρά παλμών)
9 + Φάσμα PAM n Η συνάρτηση δειγματοληψίας (σειρά παλμών) είναι περιοδική και αναλύεται σε σειρά Fourier ως n Συνεπώς s επομένως αναλύεται σε σειρά Fou st ( ) fs sinc( nfs)exp( jn2 ft s ) άρα n x () t x()() t s t x ( t) f sinc( nf)exp( jn2 f t) x( t) s s s s n X ( f) f sinc( nf) X( f nf ) s s s s n
10 + Φάσμα PAM X ( f) f sinc( nf) X( f nf ) s s s s n πολλαπλασιασμός με d sinc(nd) ν-οστός λοβός φάσματος n ο πρώτος όρος είναι d. X(f) δηλαδή το φάσμα του σήματος πολλαπλασιασμένο με το duty cycle n αν η δειγματοληψία έχει γίνει με ρυθμό τουλάχιστον ίσο με το ρυθμό Nyquist μπορούμε να ανακτήσουμε το αρχικό σήμα με χρήση κατάλληλου βαθυπερατούφίλτρου
11 + Στιγμιαία δειγματοληψία n Αν και το σήμα PAM μπορεί να παραχθεί μέσω τεμαχιστή, η πιο δημοφιλής μέθοδος είναι η μέθοδος sample-and-hold η οποία οδηγεί σε δείγματα με επίπεδη κορυφή
12 + Φάσμα PAM με δείγματα επίπεδης κορυφής n Φαινόμενο ανοίγματος: Το P(f) δρα ως βαθυπερατό φίλτρο που εξασθενεί τις υψηλές συχνότητες n Το φαινόμενο ανοίγματος μπορεί να αντιμετωπιστεί με τη χρήση εξισωτή (equalizer) n x () t x( nt ) p( tnt ) p s s n xp() t p() t x( nts) ( tnts) n x () t p() t x () t p X ( f) P( f) X ( f) p αν ο κύκλος εργασιών είναι πολύ μικρότερος της μονάδας δεν απαιτείται ισοστάθμιση
13 + Εύρος ζώνης μετάδοσης PAM n To φάσμα της διαμορφωμένης παλμοσειράς PAM περιλαμβάνει πολλές αρμονικές της συχνότητας δειγματοληψίας f s n Για μικρό κύκλο εργασιών ισχύει T s 1 2W BT 1 2 W
14 + Συγχρονισμός σε συστήματα PAM n Τα περισσότερα συστήματα παλμών απαιτούν συγχρονισμό μεταξύ πομπού και δέκτη n Η μέθοδος συγχρονισμού start-stop εμπλέκει τη μετάδοση χρονικών σημαδιών (time marks) επιπρόσθετα των παλμών που μεταφέρουν την πληροφορία n τα χρονικά σημάδια μπορεί να έχουν είτε τη μορφή παλμού με ιδιαίτερα χαρακτηριστικά (π.χ. αυξημένο πλάτος) είτε να δηλώνονται με την απουσία παλμού τη σωστή χρονική στιγμή
15 + Διαμόρφωση PDM n Στη διαμόρφωση PDM τα δείγματα του σήματος πληροφορίας χρησιμοποιούνται για να μεταβάλλουν τη διάρκεια των αντίστοιχων παλμών n με αυτόν τον τρόπο χρησιμοποιώντας το αυξημένο εύρος ζώνης που καταλαμβάνεται από τους παλμούς βελτιώνεται η επίδοση ως προς το θόρυβο n Η κυματομορφή διαμόρφωσης μπορεί να μεταβάλλει το χρόνο εμφάνισης n του μετώπου του παλμού n του τέλους του παλμού n ή και των δύο πλευρών του παλμού
16 + Διαμόρφωση PDM σήμα διαμόρφωσης παλμικό φέρον PDM σήμα το τέλος του παλμού μεταβάλλεται ανάλογα με το σήμα πληροφορίας
17 + Παραγωγή σημάτων PDM n Η πιο απλή μέθοδος παραγωγής σήματος PDM είναι ο καθορισμός του πλάτους (διάρκειας) του παλμού μέσω κατάλληλου τεμαχισμού του αθροίσματος του σήματος πληροφορίας και μιας τριγωνικής μορφής
18 Σήμα PDM + Σήμα PDM Πρακτικά η διαφορά μεταξύ ομοιόμορφης και ομοιόμορφης δειγματοληψίας είναι μικρή εν ανάγκη μπορεί να χρησιμοποιηθεί κύκλωμα S/H n Ηπαλμού διάρκεια του από k-στου παλμού Η διάρκεια του k-οστού εξαρτάται την τιμή του σήματος πληροφορίαςτου τη στιγμή kts σήματος στο kts PDM Αποδιαμόρφωση εξαρτάται από ΑποδιαμόρφωσηΑποδιαμόρφωση PDM 1 x(kt ) PDM 0 k s Προσεγγιστικά, μπορούμε να υποθέσουμε παλμούς Προσεγγιστικά, μπορούμε ναπρέπει υποθέσουμε παλμούς τ0: διάρκεια παλμού όταν τοόπου σήμαμοναδιαίου είναι μ: η τιμή του να είναιτο τέτοια ώστε να είναι μη τμοναδιαίου είναι η διάρκεια όταν πλάτους κεντραρισμένους στοσήμα kt Προσεγγιστικά, μπορούμε να υποθέσουμε παλμούς s 0 πλάτους κεντραρισμένους στοδιάρκεια kts μηδέν εξασφαλίζεται μη αρνητική παλμού με τη διάρκεια του k-στου παλμού ταλλάζει αλλάζει μοναδιαίου πλάτους κεντραρισμένους στο ktτιμή τη διάρκεια του k-στου τk νανα αργά αργάότι η δ k να το μμεπρέπει να έχει που εξασφαλίζει s παλμού από παλμό σεπαλμό παλμό (δηλαδή, να παραμένει σχεδόνσχεδόν από παλμό σε (δηλαδή, να παραμένει με τη διάρκεια του k-στου παλμού τ να αλλάζει αργά παλμού δεν είναι αρνητική σταθερή) k σταθερή) n από Υποθέτοντας παλμούς πλάτους με κέντρο στο kts και τη παλμό σε παλμόμοναδιαίου (δηλαδή, να παραμένει σχεδόν αναλύοντας σε σειρά Fourier αναλύοντας σειράσε Fourier διάρκεια τ να μεταβάλλεται αργά απόσε παλμό παλμό έχουμε σταθερή) κ x p (t ) c0 2cn cos(2 nf st ) αναλύοντας σε σειρά Fourier n2 1 c cos(2 nf t ) x p (t ) c0 n s αναλύοντας σε σειρά Fourier c f sinc(nf ), 1 x (t ) n x p (t ) c0 n 1 cn x (t ) f n 1 0 s 2cn cos(2 cnf nf ),2 n s tx) f(st sinc( ) f s p s n 1 f ssinc(nf s ), s 2 x p (1t ) 0 xf(s t ) n 1 n 1 x (t ) sin( nf0s ) cos(2 nf st ) 2 sin( nf s ) cos(2 nf st ) n sin( nf ) cos(2 nf t )
19 + Σήμα PDM 2 x ( t) f sin( nf)cos(2 nf t) p s s s n1 n 2 f 1 x( t) sin nf 1 x( t) cos(2 nf t) s 0 s 0 s n1 n DC συνιστώσα σήμα πληροφορίας σήματα PM στις αρμονικές της f s n Αν δεν υπάρχει επικάλυψη των φασμάτων των σημάτων PM με το φάσμα του σήματος πληροφορίας, αν δηλαδή ισχύει τ " Τ %, τότε το σήμα πληροφορίας λαμβάνεται με χρήση βαθυπερατού φίλτρου
20 + Διαμόρφωση PPM n Στη διαμόρφωση PPM τα δείγματα του σήματος πληροφορίας χρησιμοποιούνται για να μεταβάλλουν τη θέση των αντίστοιχων παλμών (σε σχέση με τη θέση τους αν ήταν αδιαμόρφωτοι) n πιο αποτελεσματικός τύπος διαμόρφωσης σε σχέση με την PDM καθώς στην PDM παλμοί μεγάλης διάρκειας καταναλώνουν σημαντική ισχύ χωρίς να φέρουν κάποια επιπρόσθετη πληροφορία
21 + Διαμόρφωση PPM m(t) σήμα διαμόρφωσης (a) παλμικό φέρον (b) PDM σήμα (c) PPM σήμα (d) Time
22 + Σήμα PPM n Στο σήμα PPM ο k-οστός παλμός ξεκινά τη στιγμή t ( ) k kts td t0 x kts t d : σταθερή καθυστέρηση t 0 : ελέγχει την ολίσθηση από τη θέση του αδιαμόρφωτου σήματος n Αποδεικνύεται ότι x ( ) [1 p t fs t0x( t)] 1 2cos 2nfst2 nft0x( t) n1
23 + Αποδιαμόρφωση σήματος PPM x ( ) [1 p t fs t0x( t)] 1 2cos 2nfst2 nft0x( t) n1 n Κάθε αρμονική της f s είναι διαμορφωμένη κατά φάση από το σήμα πληροφορίας x(t) και κατά πλάτος από την παράγωγο του n Το αρχικό σήμα μπορεί να ληφθεί από βαθυπερατό φίλτρο και ολοκλήρωση
24 + Εύρος ζώνης μετάδοσης PDM και PPM n Οι διαμορφώσεις PDM και PPM προκειμένου να διατηρήσουν την ακρίβεια της πληροφορίας απαιτούν μικρούς χρόνους ανύψωσης t r των παλμών, κάτι που συνεπάγεται πολύ μεγάλο εύρος ζώνης t T B r s T 1 2t r
25 + Συγχρονισμός σε PDM και PPM PDM PPM
26 + Σύνοψη n Το απαιτούμενο εύρος ζώνης των συστημάτων PDM και PPM είναι σημαντικά μεγαλύτερο σε σχέση με το σύστημα PAM n Τα συστήματα PDM και PPM λόγω του σταθερού πλάτους παλμών είναι ανθεκτικά σε μη γραμμικότητες n Η ικανότητα καταστολής θορύβου, λόγω μεταφοράς της πληροφορίας μέσω της διάρκειας (PDM) ή της θέσης (PPM) των παλμών, είναι παρόμοια με αυτήν των διαμορφώσεων PM και FM
27 + n Πολυπλεξία
28 + Πολυπλεξία με διαίρεση συχνότητας FDM W W W W W W A( f) B( f) C( f) At () Bt () Ct () X f 1 X f 2 X f 3 Μετατόπιση του φασματικού περιεχομένου του σήματος κάθε πηγής σε κατάλληλη περιοχή συχνοτήτων Σ C B A A B C f 3 f f 2 1 κοινό κανάλι f1 f2 f3
29 + Διάταξη δέκτη BPF f 1 X LPF At () κοινό κανάλι BPF f 2 f 1 X LPF Bt () f 2 BPF f 3 X LPF Ct () f 3
30 + Πολυπλεξία με διαίρεση χρόνου ΤDM n Το θεώρημα δειγματοληψίας μας επιτρέπει να μεταδίδουμε όλη την πληροφορία που περικλείεται σε ένα ζωνοπεριορισμένο σήμα, λαμβάνοντας δείγματά του με κατάλληλο ρυθμό n Η μετάδοση αυτών των δειγμάτων πληροφορίας απασχολεί το δίαυλο μετάδοσης για ένα μόνο κλάσμα του διαστήματος δειγματοληψίας σε περιοδική βάση n Με αυτόν τον τρόπο καθίσταται εφικτός ο χρονικός καταμερισμός για τη μετάδοση δειγμάτων και από άλλες ανεξάρτητες πηγές n Το σύστημα πολυπλεξίας με διαίρεση χρόνου (TDM) επιτρέπει τη συνδυασμένη χρήση ενός κοινού διαύλου μετάδοσης από πολλαπλές ανεξάρτητες πηγές πληροφορίας χωρίς αμοιβαία παρεμβολή
31 + Παράδειγμα TDM
32 + Δομικό διάγραμμα του συστήματος TDM
33 + Λειτουργία μεταγωγέα TDM n Η λειτουργία του μεταγωγέα είναι n να παράγει ένα στενού πλάτους δείγμα καθεμίας από τις Ν πληροφορίες εισόδου με ρυθμό ελαφρά υψηλότερο από το ρυθμό Nyquist n να τακτοποιεί αυτά τα N δείγματα μέσα σε ένα διάστημα δειγματοληψίας T s n Επειδή η διάταξη πρέπει να συμπιέσει Ν δείγματα από Ν ανεξάρτητες πηγές πληροφορίας σε χρονικό διάστημα T s, είναι προφανές ότι εισάγεται ένα συντελεστής επέκτασης του εύρους ζώνης Ν
34 + Πολυπλεξία με διαίρεση μήκους κύματος WDM n Συνδυασμένη μετάδοση πολλών ανεξάρτητων οπτικών σημάτων διαφορετικού μήκους κύματος λ μέσω κοινής οπτικής ίνας glass prism υσικής πλευράς, η πολύπλεξη WDM μιας οπτικής ζε
Διαμόρφωση Παλμών. Pulse Modulation
Διαμόρφωση Παλμών Pulse Modulation Συστήματα διαμόρφωσης παλμών Είδη διαμόρφωσης παλμών Pulse Amplitude Modulation (PAM): A m(t) Pulse Position Modulation (PPM): T d m(t) Pulse Duration Modulation (PDM)
Διαμόρφωση Παλμών. Pulse Modulation
Διαμόρφωση Παλμών Pulse Modulation Δειγματοληψία Θεώρημα δειγματοληψίας Ένα βαθυπερατό σήμα πεπερασμένης ενέργειας που δεν περιέχει συχνότητες μεγαλύτερες των W Hertz μπορεί να περιγραφθεί πλήρως από τις
Συστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Εισαγωγή Δειγματοληψία + Περιεχόμενα n Εισαγωγή n αναλογικό η ψηφιακό σήμα; n ψηφιακά συστήματα επικοινωνιών n Δειγματοληψία
Συστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Ψηφιακή μετάδοση στη βασική ζώνη + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ +
Διαμόρφωση Παλμών. Pulse Modulation
Διαμόρφωση Παλμών Pulse Modulation Δειγματοληψία Θεώρημα δειγματοληψίας Ένα βαθυπερατό σήμα πεπερασμένης ενέργειας που δεν περιέχει συχνότητες μεγαλύτερες των W Hertz μπορεί να περιγραφθεί πλήρως από τις
Θεώρημα δειγματοληψίας
Δειγματοληψία Θεώρημα δειγματοληψίας Ένα βαθυπερατό σήμα πεπερασμένης ενέργειας που δεν περιέχει συχνότητες μεγαλύτερες των W Hertz μπορεί να περιγραφθεί πλήρως από τις τιμές του σε χρονικές στιγμές ισαπέχουσες
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 7: Μετατροπή Σήματος από Αναλογική Μορφή σε Ψηφιακή Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετατροπή Αναλογικού Σήματος σε Ψηφιακό Είδη Δειγματοληψίας: Ιδανική
Αρχές Τηλεπικοινωνιών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχές Τηλεπικοινωνιών Ενότητα #12: Δειγματοληψία, κβαντοποίηση και κωδικοποίηση Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμών Τ.Ε.
Συστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Παλμοκωδική διαμόρφωση (PCM) I + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ + Περιεχόμενα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙςΤΗΜΗς & ΤΕΧΝΟΛΟΓΙΑς ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 2 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst233
Εφαρμογή στις ψηφιακές επικοινωνίες
Δειγματοληψία Εφαρμογή στις ψηφιακές επικοινωνίες Γεννήτρια σήματος RF, (up converter Ενισχυτής) Προενισχυτής down-converter Ψηφιοποιητής σήματος RF Μονάδα ψηφ. επεξεργασίας Μονάδα ψηφ. επεξεργασίας 100
Συστήματα Επικοινωνιών Ι
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Διαμόρφωση και αποδιαμόρφωση πλάτους AM-DSB-SC και QAM + Περιεχόμενα Διαμόρφωση AM-DSB-SC Φάσμα διαμορφωμένου σήματος
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Διαμόρφωσης Παλμών
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Διαμόρφωσης Παλμών Καθηγητής Ι. Τίγκελης itigelis@phys.uoa.gr ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Δ/ΨΙΑ) Δειγματοληψία:
Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)
Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι
Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)
Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι
ΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΚΕΦΑΛΑΙΟ 2ο ΑΝΑΛΟΓΙΚΑ - ΨΗΦΙΑΚΑ ΣΗΜΑΤΑ & ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Πληροφορία Επικοινωνία συντελείται με τη μεταβίβαση μηνυμάτων από ένα πομπό σε ένα δέκτη. Μήνυμα
Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Εφαρμογές της Ανάλυσης Fourier 2 Αθανάσιος
Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Εφαρμογές της Ανάλυσης Fourier Αθανάσιος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 5 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst215
Συστήματα Επικοινωνιών Ι
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Διαμορφώσεις γωνίας Διαμόρφωση Συχνότητας Στενής Ζώνης + Περιεχόμενα n Διαμορφώσεις γωνίας n Διαμόρφωση φάσης PM n Διαμόρφωση
Τηλεπικοινωνιακά Συστήματα Ι
Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 6: Διαμόρφωση Πλάτους (2/2) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διαμόρφωση Απλής Πλευρικής Ζώνης (SSB) Διαμόρφωση Υπολειπόμενης Πλευρικής Ζώνης (VSB)
Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2.
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΠΛΗ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑ Το φέρον σε ένα σύστημα DSB διαμόρφωσης είναι c t A t μηνύματος είναι το m( t) sin c( t) sin c ( t) ( ) cos 4 c και το σήμα. Το διαμορφωμένο σήμα διέρχεται
Μετάδοση πληροφορίας - Διαμόρφωση
Μετάδοση πληροφορίας - Διαμόρφωση MYE006: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Διάρθρωση μαθήματος Μετάδοση Βασικές έννοιες Διαμόρφωση ορισμός είδη
ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΤΩΝ ΕΦΑΡΜΟΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Ιωάννης Γ. Τίγκελης και Δημήτριος Ι. Φραντζεσκάκης
Συστήματα Επικοινωνιών Ι
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Διαμόρφωση Συχνότητας Ευρείας Ζώνης Εύρος ζώνης μετάδοσης διαμορφωμένων κατά γωνία σημάτων Παραγωγή σημάτων FM + Περιεχόμενα
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 3: Εισαγωγή στην Έννοια της Διαμόρφωσης Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Η ανάγκη για διαμόρφωση 2. Είδη διαμόρφωσης 3. Διαμόρφωση με ημιτονοειδές
Συστήματα Επικοινωνιών Ι
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: demestihas@uowm.gr Συστήματα Επικοινωνιών Ι Διαμόρφωση και αποδιαμόρφωση πλάτους SSB και VSB Μετατόπιση συχνότητας Πολυπλεξία FDM + Περιεχόμενα n n n n n n n Διαμόρφωση
Κεφάλαιο 7. Ψηφιακή Διαμόρφωση
Κεφάλαιο 7 Ψηφιακή Διαμόρφωση Ψηφιακή Διαμόρφωση 2 Διαμόρφωση βασικής ζώνης H ψηφιακή πληροφορία μεταδίδεται απ ευθείας με τεχνικές διαμόρφωσης παλμών βασικής ζώνης, οι οποίες δεν απαιτούν τη χρήση ημιτονοειδούς
Μορφοποίηση και ιαµόρφωση Σηµάτων Βασικής Ζώνης
Μορφοποίηση και ιαµόρφωση Σηµάτων Βασικής Ζώνης Μορφοποίηση - Κωδικοποίηση πηγής Μορφοποίηση παλµών βασικής ζώνης Μορφοποίηση & µετάδοση βασικής ζώνης Mορφοποίηση-κωδικοποίηση πηγής Mορφοποίηση παλµών
Συστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI FSK, MSK Πυκνότητα φάσματος ισχύος βασικής ζώνης + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/
Τηλεπικοινωνιακά Συστήματα Ι
Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 5: Διαμόρφωση Πλάτους (1/2) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Ορισμοί Είδη Διαμόρφωσης Διαμόρφωση Διπλής Πλευρικής Ζώνης (DSB) Κανονική (συνήθης)
ΑΣΠΑΙΤΕ / Τμήμα Εκπαιδευτικών Ηλεκτρολόγων Μηχανικών & Εκπαιδευτικών Ηλεκτρονικών Μηχανικών
8. ΔΙΑΜΟΡΦΩΣΗ: ΓΕΝΙΚΗ ΘΕΩΡΗΣΗ 8.1. Ορισμoί Ως διαμόρφωση (modulation) χαρακτηρίζεται η μεταβολή μιας παραμέτρου (π.χ. πλάτους, συχνότητας, φάσης κλπ.) ενός σήματος που λέγεται φέρον εξαιτίας της επενέργειας
Μετάδοση πληροφορίας - Διαμόρφωση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Μετάδοση πληροφορίας - Διαμόρφωση MYE006-ΠΛΕ065: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Βασικές έννοιες μετάδοσης Διαμόρφωση ορισμός
Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)
Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι
Γιατί Διαμόρφωση; Μια κεραία για να είναι αποτελεσματική πρέπει να είναι περί το 1/10 του μήκους κύματος
Γιατί Διαμόρφωση; Μετάδοση ενός σήματος χαμηλών συχνοτήτων μέσω ενός ζωνοπερατού καναλιού Παράλληλη μετάδοση πολλαπλών σημάτων πάνω από το ίδιο κανάλι - Διαχωρισμός συχνότητας (Frequency Division Multiplexing)
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 4 : Σήματα Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 4 : Σήματα Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα ομιλίας Είδη /Κατηγορίες Σημάτων Στοιχειώδη Σήματα Χαρακτηριστικές Τιμές Σημάτων Τεχνικές
Θ.Ε. ΠΛΗ22 ( ) 2η Γραπτή Εργασία
Θ.Ε. ΠΛΗ22 (2012-13) 2η Γραπτή Εργασία Στόχος: Η 2 η εργασία αποσκοπεί στην κατανόηση των συστατικών στοιχείων των αναλογικών διαμορφώσεων, της δειγματοληψίας, και της μετατροπής του αναλογικού σήματος
Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο Εργαστηριακή Άσκηση 1: Εισαγωγή στη διαμόρφωση πλάτους (ΑΜ) Προσομοίωση σε Η/Υ Δρ.
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 4 : Σήματα Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 4 : Σήματα Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα ομιλίας Είδη /Κατηγορίες Σημάτων Στοιχειώδη
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 9 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst215
Μετάδοση σήματος PCM
Μετάδοση σήματος PCM Θόρυβος κατά τη μετάδοση Εύρος ζώνης μετάδοσης Το (διαμορφωμένο) σήμα PCM όταν μεταδίδεται μέσω του διαύλου είναι ένα σήμα συνεχούς χρόνου και έχει το δικό του εύρος ζώνης Το εύρος
8. ΔΙΑΜΟΡΦΩΣΗ: ΓΕΝΙΚΗ ΘΕΩΡΗΣΗ Ορισμoί Εμπλεκόμενα σήματα
8. ΔΙΑΜΟΡΦΩΣΗ: ΓΕΝΙΚΗ ΘΕΩΡΗΣΗ 8.1. Ορισμoί Ως διαμόρφωση (modulation) χαρακτηρίζεται η μεταβολή μιας παραμέτρου (π.χ. πλάτους, συχνότητας, φάσης κλπ.) ενός σήματος που λέγεται φέρον εξαιτίας της επενέργειας
Ψηφιακές Τηλεπικοινωνίες. Διαμόρφωση Παλμών κατά Πλάτος
Ψηφιακές Τηλεπικοινωνίες Διαμόρφωση Παλμών κατά Πλάτος Διαμόρφωση Παλμών κατά Πλάτος Είπαμε ότι κατά την ψηφιακή μετάδοση μέσα από αναλογικό κανάλι κάθε σύμβολο αντιστοιχίζεται σε μια κυματομορφή σήματος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 14 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/s15 e-mail:
Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Αναλογικές Διαμορφώσεις Αθανάσιος Κανάτας
Συναρτήσεις Συσχέτισης
Συναρτήσεις Συσχέτισης Για ένα σήµα ενέργειας ορίζεται η συνάρτηση αυτοσυσχέτισης R + ( τ = ( τ ( τ = ( ( τ d = ( + τ + ( d Για ένα σήµα ισχύος ορίζεται η µέση χρονική συνάρτηση αυτοσυσχέτισης R ( τ =
Συστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Διαφορική Παλμοκωδική Διαμόρφωση + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ +
ΕΑΠ/ΠΛΗ-22/ΑΘΗ.3 1 η τηλεδιάσκεψη 03/11/2013. επικαιροποιημένη έκδοση Ν.Δημητρίου
ΕΑΠ/ΠΛΗ-/ΑΘΗ.3 1 η τηλεδιάσκεψη 03/11/013 επικαιροποιημένη έκδοση Ν.Δημητρίου Συμπληρωματικές υποδείξεις Octave Εκκίνηση με την εντολή octave -i --line-editing Μετατροπή γραφήματος σε name.jpg print -djpg
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΠΑΛΜΟΚΩΔΙΚΗ ΔΙΑΜΟΡΦΩΣΗ - PCM (ΜΕΡΟΣ Α)
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΠΑΛΜΟΚΩΔΙΚΗ ΔΙΑΜΟΡΦΩΣΗ - PCM (ΜΕΡΟΣ Α) 3.1. ΣΚΟΠΟΣ ΑΣΚΗΣΗΣ Σκοπός της εργαστηριακής αυτής άσκησης είναι η μελέτη της παλμοκωδικής διαμόρφωσης που χρησιμοποιείται στα σύγχρονα τηλεπικοινωνιακά
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης Καθηγητής Ι. Τίγκελης itigelis@phys.uoa.gr ΚΒΑΝΤΙΣΗ Διαδικασία με την
Επικοινωνίες I FM ΔΙΑΜΟΡΦΩΣΗ. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ FM ΔΙΑΜΟΡΦΩΣΗ Σήμα FM Η ακόλουθη εξίσωση δίδει την ισοδύναμη για τη διαμόρφωση συχνότητας έκφραση
Εισαγωγή στις Τηλεπικοινωνίες
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες Ενότητα : Εισαγωγή στη Διαμόρφωση Πλάτους (AΜ) Όνομα Καθηγητή: Δρ. Ηρακλής Σίμος Τμήμα: Ηλεκτρονικών
Τηλεπικοινωνιακά Συστήματα Ι
Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 10: Παλμοκωδική Διαμόρφωση, Διαμόρφωση Δέλτα και Πολύπλεξη Διαίρεσης Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Παλμοκωδική Διαμόρφωση (PCM) Παλμοκωδική Διαμόρφωση
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 11: Ψηφιακή Διαμόρφωση Μέρος Α Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή διαμόρφωσης παλμών κατά
Αρχές Τηλεπικοινωνιών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχές Τηλεπικοινωνιών Ενότητα #11: Ψηφιακή Διαμόρφωση Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
Στοχαστικά Σήματα και Τηλεπικοινωνιές
Στοχαστικά Σήματα και Τηλεπικοινωνιές Ενότητα 9: Συγχρονισμός Συμβόλων Καθηγητής Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής Σκοποί ενότητας Στην ενότητα αυτή παρουσιάζεται
Ψηφιακή μετάδοση στη βασική ζώνη. Baseband digital transmission
Ψηφιακή μετάδοση στη βασική ζώνη Baseband digital transmission Ψηφιακά σήματα Το ψηφιακό σήμα δεν είναι τίποτε άλλο από μια διατεταγμένη σειρά συμβόλων παραγόμενη από μια διακριτή πηγή πληροφορίας Η πηγή
ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c
ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER x(t+kτ) = x(t) = π/ω f = / x(t) = = 8 c j t e ω c = (a-jb ) Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c. Αυτός γίνεται κατορθωτός αν
Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt
Προχωρημένα Θέματα Τηλεπικοινωνιών Συγχρονισμός Συμβόλων Εισαγωγή Σε ένα ψηφιακό τηλεπικοινωνιακό σύστημα, η έξοδος του φίλτρου λήψης είναι μια κυματομορφή συνεχούς χρόνου y( an x( t n ) n( n x( είναι
ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε.
ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Ι 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δρ ΒΑΣΙΛΕΙΟΣ ΜΠΟΖΑΝΤΖΗΣ Διαμόρφωση Γωνίας Τα είδη διαμόρφωσης γωνίας τα
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 3 ο : Πολυπλεξία με διαίρεση
Δίκτυα Απευθείας Ζεύξης
Δίκτυα Απευθείας Ζεύξης Επικοινωνία μεταξύ δύο υπολογιστώνοιοποίοιείναι απευθείας συνδεδεμένοι Φυσικό Επίπεδο. Περίληψη Ζεύξεις σημείου προς σημείο (point-to-point links) Ανάλυση σημάτων Μέγιστη χωρητικότητα
Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Μετασχηματισμός Furier Αθανάσιος Κανάτας
Συστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI M-κά συστήματα διαμόρφωσης: Μ-PSK, M-FSK, M-QAM, DPSK + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Οικονομίας Διοίκησης και Πληροφορικής Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Αρχές Τηλ/ων Συστημάτων Μπατιστάτος Μιχάλης Εργαστήριο 8 ο : Διαμόρφωση
Ψηφιακές Επικοινωνίες
Ψηφιακές Επικοινωνίες Ενότητα 3: Μαθιόπουλος Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Μέρος Α 3 Διαμόρφωση βασικής ζώνης (1) H ψηφιακή πληροφορία μεταδίδεται απ ευθείας με τεχνικές
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1 3.2: Διαμόρφωση Πλάτους (Amplitude Modulation, AM) 3.3: Διαμόρφωση Πλευρικής Ζώνης με Καταπιεσμένο
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Μπατιστάτος Μιχάλης Εργαστήριο 8 ο : Διαμόρφωση Γωνίας Βασική Θεωρία
Πρακτικές μέθοδοι αποδιαμόρφωσης FM. Ανίχνευση μηδενισμών Διευκρίνιση ολίσθησης φάσης Μετατροπή FM σε ΑΜ Ανάδραση συχνότητας
Αποδιαμόρφωση FM Πρακτικές μέθοδοι αποδιαμόρφωσης FM Ανίχνευση μηδενισμών Διευκρίνιση ολίσθησης φάσης Μετατροπή FM σε ΑΜ Ανάδραση συχνότητας Ανίχνευση μηδενισμών Η έξοδος είναι ανάλογη του ρυθμού των μηδενισμών,
Άσκηση Να υπολογιστεί ο δείκτης διαμόρφωσης των συστημάτων ΑΜ και FM. Αναλογικές Τηλεπικοινωνίες Γ. Κ. Καραγιαννίδης Αν. Καθηγητής 14/1/2014
Άσκηση 4.16 Ένα ημιτνοειδές σήμα πληροφορίας με συχνότητα διαμορφώνεται κατά ΑΜ και Κατά FM. Το πλάτος του φέροντος είναι το ίδιο και στα δύο συστήματα. Η μέγιστη απόκλιση Συχνότητας στο FM είναι ίση με
ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΣΥΣΤΗΜΑΤΑ ΔΙΑΜΟΡΦΩΣΗΣ ΠΑΛΜΩΝ
ΚΕΦΑΛΑΙΟ ΕΚΤΟ ΣΥΣΤΗΜΑΤΑ ΔΙΑΜΟΡΦΩΣΗΣ ΠΑΛΜΩΝ 6. Εισαγγή Τα συστήματα, που αναλύθηκαν μέχρι τώρα (AM και FM), χρησιμοποιούνται συνήθς στις περιπτώσεις, που το κανάλι είναι ασύρματο και η μετατόπιση του αρχικού
Μετάδοση σήματος PCM
Μετάδοση σήματος PCM Συγχρονισμός ΌπωςσεόλατασυστήματαTDM, απαιτείται συγχρονισμός μεταξύ πομπού και δέκτη Εάν τα ρολόγια στον πομπό και τον δέκτη διαφέρουν, αυτό θα οδηγήσει σε παραμορφώσεις του σήματος
Ο μετασχηματισμός Fourier
Ο μετασχηματισμός Fourier είναι από τα διαδεδομένα εργαλεία μετατροπής δεδομένων και συναρτήσεων (μιας ή περισσοτέρων διαστάσεων) από αυτό που ονομάζεται περιοχή χρόνου (time domain) στην περιοχή συχνότητας
x(t) = m(t) cos(2πf c t)
Διαμόρφωση πλάτους (διπλής πλευρικής) Στοχαστικά συστήματα & επικοινωνίες 8 Νοεμβρίου 2012 1/27 2/27 Γιατί και πού χρειάζεται η διαμόρφωση Για τη χρήση πολυπλεξίας (διέλευση πολλών σημάτων μέσα από το
Επικοινωνίες I FM ΔΙΑΜΟΡΦΩΣΗ. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ FM ΔΙΑΜΟΡΦΩΣΗ Σήμα FM Η ακόλουθη εξίσωση δίδει την ισοδύναμη για τη διαμόρφωση συχνότητας έκφραση
FM & PM στενής ζώνης. Narrowband FM & PM
FM & PM στενής ζώνης Narrowband FM & PM Διαμόρφωση γωνίας στενής ζώνης Το διαμορφωμένο κατά γωνία σήμα μπορεί να γραφεί ως [ π φ ] st () = Acos2 ft+ () t c όπου η στιγμιαία φάση είναι φ() t c Δφxt () PM
Αντοχή (ruggedness) στο θόρυβο μετάδοσης Αποτελεσματική αναγέννηση (regeneration) Δυνατότητα ομοιόμορφου σχήματος (uniform format) μετάδοσης Όμως:
ΨΗΦΙΑΚΗ ΑΝΑΠΑΡΑΣΤΑΣΗ Πλεονεκτήματα: Αντοχή (ruggedness) στο θόρυβο μετάδοσης Αποτελεσματική αναγέννηση (regeneration) Δυνατότητα ομοιόμορφου σχήματος (uniform format) μετάδοσης Όμως: Αύξηση απαίτησης εύρους
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Μπατιστάτος Μιχάλης Εργαστήριο ο : Διαμόρφωση ΑΜ Βασική Θεωρία Εισαγωγή
Μοντέλο συστήματος αποδιαμόρφωσης παρουσία θορύβου
Μοντέλο συστήματος αποδιαμόρφωσης παρουσία θορύβου Επίδοση παρουσία θορύβου Η ανάλυση της επίδοσης των συστημάτων διαμόρφωσης παρουσία θορύβου είναι εξαιρετικά σημαντική για τη σχεδίαση των διαφόρων επικοινωνιακών
Διαμόρφωση FM στενής ζώνης. Διαμορφωτής PM
Παραγωγή σημάτων FM Διαμόρφωση FM στενής ζώνης [ π φ π ] st () A cos(2 ft) ()sin(2 t ft) c c c Διαμορφωτής PM m (t) + s(t) A c sin(2 π ft) c +90 0 ~ A c cos(2 π ft) c Διαμόρφωση PM στενής ζώνης 2f c Άμεση
Συστήματα Επικοινωνιών Ι
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Συναρτήσεις συσχέτισης/αυτοσυσχέτισης Φίλτρα Μετασχηματισμός Hilbert + Περιεχόμενα n Συνάρτηση αυτοσυσχέτισης n Συνάρτηση
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1 3.2: Διαμόρφωση Πλάτους (Amplitude Modulation, AM) 3.3: Διαμόρφωση Πλευρικής Ζώνης με Καταπιεσμένο
FM & PM στενής ζώνης. Narrowband FM & PM
FM & PM στενής ζώνης Narrowband FM & PM Διαμόρφωση γωνίας στενής ζώνης Το διαμορφωμένο κατά γωνία σήμα μπορεί να γραφεί ως [ π φ ] st () = Acos2 ft+ () t c όπου η στιγμιαία φάση είναι φ() t c Δφxt () PM
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 13 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Wepage: http://eclass.uop.gr/courses/tst15
ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.
3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού
Μάθημα Εισαγωγή στις Τηλεπικοινωνίες
Μάθημα Εισαγωγή στις Τηλεπικοινωνίες Τεχνικές Μετάδοσης : Διαμόρφωση και πολυπλεξία Μάθημα 10 ο 11 ο 12 ο ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τομέας Επικοινωνιών και Επεξεργασίας Σήματος Τμήμα Πληροφορικής
Μάθηµα 12 ο : Πολλαπλή πρόσβαση µε διαίρεση κώδικα (CDMA, code division multiple access)
Μάθηµα 2 ο : Πολλαπλή πρόσβαση µε διαίρεση κώδικα (CDMA, code division multiple access) Στόχοι: Στο τέλος αυτού του µαθήµατος ο σπουδαστής θα γνωρίζει: Τa λειτουργικά χαρακτηριστικά της τεχνικής πολλαπλής
Εξίσωση Τηλεπικοινωνιακών Διαύλων
Εξίσωση Τηλεπικοινωνιακών Διαύλων ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΜΔΕ ΠΡΟΗΓΜΈΝΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΉΜΑΤΑ ΚΑΙ ΔΙΚΤΥΑ Ενότητα η Φίλτρα Nyquis Νικόλαος Χ. Σαγιάς Επίκουρος
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3 5.6: Μέση Τιμή, Συναρτήσεις Συσχέτισης (Correlation) & Συνδιασποράς (Covariance)
Δέκτες ΑΜ ΘΟΡΥΒΟΣ ΣΕ ΔΙΑΜΟΡΦΩΣΗ CW
ΘΟΡΥΒΟΣ ΣΕ ΔΙΑΜΟΡΦΩΣΗ Στα συστήματα διαμόρφωσης (otiuou-ve) το κριτήριο της συμπεριφοράς τους ως προς το θόρυβο, είναι ο λόγος σήματος προς θόρυβο στην έξοδο (output igl-tooie rtio). λόγος σήματος προς
Σήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 10: Γραμμικά Φίλτρα Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Γραμμικά Φίλτρα 1. Ιδανικά Γραμμικά Φίλτρα Ιδανικό Κατωδιαβατό Φίλτρο Ιδανικό Ανωδιαβατό Φίλτρο Ιδανικό Ζωνοδιαβατό
Συστήματα Επικοινωνιών Ι
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Αναπαράσταση Σημάτων και Συστημάτων στο πεδίο της συχνότητας + Περιεχόμενα n Εισαγωγή n Ανάλυση Fourier n Μετασχηματισμός
ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ
Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 9 ο : Δειγματοληψία και Ανασύσταση
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I SSB Παραγωγή - Αποδιαμόρφωση FM Διαμόρφωση
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I SSB Παραγωγή - Αποδιαμόρφωση FM Διαμόρφωση ΔΙΠΛΟΠΛΕΥΡΙΚΕΣ - ΜΟΝΟΠΛΕΥΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΑΜ 0 f DSB 0 f SSB 0 f SINGLE
Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 1: Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Εισαγωγή στα Σήματα 1. Σκοποί της Θεωρίας Σημάτων 2. Κατηγορίες Σημάτων 3. Χαρακτηριστικές Παράμετροι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 6 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst215
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 8 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15
Τα ηλεκτρονικά σήματα πληροφορίας διακρίνονται ανάλογα με τη μορφή τους σε δύο κατηγορίες : Αναλογικά σήματα Ψηφιακά σήματα
ΕΝΟΤΗΤΑ 2 2.0 ΗΛΕΚΤΡΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΑΡΧΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΕΙΣΑΓΩΓΗ Ηλεκτρικό σήμα ονομάζεται η τάση ή το ρεύμα που μεταβάλλεται ως συνάρτηση του χρόνου. Στα ηλεκτρονικά συστήματα επικοινωνίας, οι πληροφορίες
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Θ.Ε. ΠΛΗ22 ( ) 2η Γραπτή Εργασία
Θ.Ε. ΠΛΗ 0-3 η Γραπτή Εργασία Στόχος: Η η ΑΠΑΝΤΗΣΕΙΣ εργασία αποσκοπεί στην κατανόηση των συστατικών στοιχείων των αναλογικών διαμορφώσεων, της δειγματοληψίας, και της μετατροπής του αναλογικού σήματος
Ιατρικά Ηλεκτρονικά. Χρήσιμοι Σύνδεσμοι. ΙΑΤΡΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΔΙΑΛΕΞΗ 5α. Σημειώσεις μαθήματος: E mail:
Ιατρικά Ηλεκτρονικά Δρ. Π. Ασβεστάς Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/courses/tio127/ E mail: pasv@teiath.gr 2 1 Περιοδικά