Μέγιστη Ροή Ελάχιστη Τομή
|
|
- ÊὙμέν Μπλέτσας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Μέγιστη Ροή Ελάχιστη Τομή Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
2 Δίκτυα και Ροές Δίκτυο : κατευθυνόμενο γράφημα G(V, E). Πηγή, προορισμός, χωρητικότητα ακμής b e Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 4
3 Δίκτυα και Ροές Δίκτυο : κατευθυνόμενο γράφημα G(V, E). Πηγή, προορισμός, χωρητικότητα ακμής b e. ροή μεγέθους d : Χωρητικότητα: Διατήρηση ροής: Μέγεθος: 4 (4) 4 (6) () 4 (7) (6) 9 ( ) 4 (4) Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07)
4 Μέγιστη Ροή Πρόβλημα Μέγιστης Ροής (Max-Flow): Δεδομένου δικτύου G(V, E,,, b) Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 4 4
5 Μέγιστη Ροή Πρόβλημα Μέγιστης Ροής (Max-Flow): Δεδομένου δικτύου G(V, E,,, b) Υπολόγισε ροή με μέγιστη τιμή. 4 (4) 4 (6) () 4 (7) (6) 4 (4) Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07)
6 Μέγιστη Ροή Πρόβλημα Μέγιστης Ροής (Max-Flow): Δεδομένου δικτύου G(V, E,,, b) Υπολόγισε ροή με μέγιστη τιμή. 4 (4) 4 (6) () 4 (7) (6) 4 (4) Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 6
7 Τομή τομή χωρητικότητας d : Διαμέριση (S, V \ S) με S και V \ S. Χωρητικότητα Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 7
8 Τομή τομή χωρητικότητας d : Διαμέριση (S, V \ S) με S και V \ S. Χωρητικότητα Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 8
9 Τομή τομή χωρητικότητας d : Διαμέριση (S, V \ S) με S και V \ S. Χωρητικότητα Ακμές χωρητικότητας d που χωρίζουν από Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 9
10 Ελάχιστη Τομή Πρόβλημα Ελάχιστης Τομής (Min Cu): Δεδομένου δικτύου G(V, E,,, b) Υπολόγισε τομή με ελάχιστη χωρητικότητα Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 0 4
11 Ελάχιστη Τομή Πρόβλημα Ελάχιστης Τομής (Min Cu): Δεδομένου δικτύου G(V, E,,, b) Υπολόγισε τομή με ελάχιστη χωρητικότητα Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 4
12 Ροές και Τομές Έστω ροή f και τομή (S, V \ S). () (6) 4 (6) () () 4 (6) Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07)
13 Ροές και Τομές Έστω ροή f και τομή (S, V \ S). Κάθε ροή f και τομή (S, V \ S): () (6) 4 (6) () () 4 (6) Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07)
14 Ροές και Τομές Έστω ροή f και τομή (S, V \ S). Κάθε ροή f και τομή (S, V \ S): () (6) 4 (6) () () 4 (6) Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 4
15 Ροές και Τομές Έστω ροή f και τομή (S, V \ S). Κάθε ροή f και τομή (S, V \ S): Μέγιστη ροή ελάχιστη τομή. () (6) () () 4 (6) 4 (6) Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07)
16 Μέγιστη Ροή και Ελάχιστη Τομή Μέγιστη ροή = Ελάχιστη τομή! Max-Flow Min-Cu Θεώρημα. Ακμές ελάχιστης τομής κορεσμένες σε μέγιστη ροή. 4 (4) 4 (6) () 4 (7) (6) 4 (4) Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 6
17 Μέγιστη Ροή και Ελάχιστη Τομή Μέγιστη ροή = Ελάχιστη τομή! Max-Flow Min-Cu Θεώρημα. Ακμές ελάχιστης τομής κορεσμένες σε μέγιστη ροή. Μέγιστη ροή, ελάχιστη τομή: συνεκτικότητα / μεταφορική ικανότητα δικτύου. 4 (4) () 4 (7) (6) 4 (4) 4 (6) Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 7
18 Υπολειμματικό Δίκτυο Δίκτυο G(V, E, b) και ροή f. (6) () () () () () () () Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 8
19 Υπολειμματικό Δίκτυο Δίκτυο G(V, E, b) και ροή f. Υπολειμματικό δίκτυο G f (V, E f, r f ) : Χωρητικότητα (μπρος-ακμές): Ροή (πίσω-ακμές): (6) () () () () () () () Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 9
20 Υπολειμματικό Δίκτυο Δίκτυο G(V, E, b) και ροή f. Υπολειμματικό δίκτυο G f (V, E f, r f ) : Χωρητικότητα (μπρος-ακμές): Ροή (πίσω-ακμές): (6) () () () () () () () Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 0
21 Υπολειμματικό Δίκτυο Δίκτυο G(V, E, b) και ροή f. Υπολειμματικό δίκτυο G f (V, E f, r f ) : Χωρητικότητα (μπρος-ακμές): Ροή (πίσω-ακμές): μονοπάτι στο υπολειμματικό: επαυξητικό μονοπάτι. (6) () () () () () () () Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07)
22 Χαρακτηρισμός Μέγιστης Ροής Μέγιστη ροή ανν όχι επαυξητικό μονοπάτι. (6) () () () () () () () Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07)
23 Χαρακτηρισμός Μέγιστης Ροής Μέγιστη ροή ανν όχι επαυξητικό μονοπάτι. Επαυξητικό μονοπάτι αύξηση ροής όχι μέγιστη ροή. (6) () () () () () () () Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07)
24 Χαρακτηρισμός Μέγιστης Ροής Μέγιστη ροή ανν όχι επαυξητικό μονοπάτι. Επαυξητικό μονοπάτι αύξηση ροής όχι μέγιστη ροή. 4 (6) () () () () () 0 () () Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 4
25 Χαρακτηρισμός Μέγιστης Ροής Μέγιστη ροή ανν όχι επαυξητικό μονοπάτι. Επαυξητικό μονοπάτι αύξηση ροής όχι μέγιστη ροή. Όχι επαυξητικό μονοπάτι : (6) () () () () 0 () () () Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07)
26 Χαρακτηρισμός Μέγιστης Ροής Μέγιστη ροή ανν όχι επαυξητικό μονοπάτι. Επαυξητικό μονοπάτι αύξηση ροής όχι μέγιστη ροή. Όχι επαυξητικό μονοπάτι : Κορυφές προσπελάσιμες από ορίζουν τομή χωρητικότητας ίσης με ροή. (6) () () () () 0 () () () Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 6
27 Χαρακτηρισμός Μέγιστης Ροής Μέγιστη ροή ανν όχι επαυξητικό μονοπάτι. Επαυξητικό μονοπάτι αύξηση ροής όχι μέγιστη ροή. Όχι επαυξητικό μονοπάτι : Κορυφές προσπελάσιμες από ορίζουν τομή χωρητικότητας ίσης με ροή. Μέγιστη ροή και ελάχιστη τομή λόγω Θ. Max-Flow-Min-Cu! (6) () () () () 0 () () () Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 7
28 Αλγόριθμος Ford-Fulkeron Ενόσω επαυξητικό μονοπ. p στο υπολειμματικό, Χωρητικότητα επαυξητικού Αύξηση ροής κατά δ στο p και ενημέρωση υπολειμματικού δικτύου. (6) () () () () () () () Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 8
29 Αλγόριθμος Ford-Fulkeron Ενόσω επαυξητικό μονοπ. p στο υπολειμματικό, Χωρητικότητα επαυξητικού Αύξηση ροής κατά δ στο p και ενημέρωση υπολειμματικού δικτύου. (6) () () () () () () () Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 9
30 Αλγόριθμος Ford-Fulkeron Ενόσω επαυξητικό μονοπ. p στο υπολειμματικό, Χωρητικότητα επαυξητικού Αύξηση ροής κατά δ στο p και ενημέρωση υπολειμματικού δικτύου. 4 (6) () () () () 0 () () () Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 0
31 Αλγόριθμος Ford-Fulkeron Ενόσω επαυξητικό μονοπ. p στο υπολειμματικό, Χωρητικότητα επαυξητικού Αύξηση ροής κατά δ στο p και ενημέρωση υπολειμματικού δικτύου. 4 (6) () () () () 0 () () 4 () Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07)
32 Αλγόριθμος Ford-Fulkeron Ενόσω επαυξητικό μονοπ. p στο υπολειμματικό, Χωρητικότητα επαυξητικού Αύξηση ροής κατά δ στο p και ενημέρωση υπολειμματικού δικτύου. 4 (6) () () () () 0 () () 4 () Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07)
33 Αλγόριθμος Ford-Fulkeron Ενόσω επαυξητικό μονοπ. p στο υπολειμματικό, Χωρητικότητα επαυξητικού Αύξηση ροής κατά δ στο p και ενημέρωση υπολειμματικού δικτύου. (6) () () () () 0 () () 4 () Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07)
34 Αλγόριθμος Ford-Fulkeron Ενόσω επαυξητικό μονοπ. p στο υπολειμματικό, Χωρητικότητα επαυξητικού Αύξηση ροής κατά δ στο p και ενημέρωση υπολειμματικού δικτύου. (6) () () () () 0 () () () Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 4
35 Αλγόριθμος Ford-Fulkeron Ενόσω επαυξητικό μονοπ. p στο υπολειμματικό, Χωρητικότητα επαυξητικού Αύξηση ροής κατά δ στο p και ενημέρωση υπολειμματικού δικτύου. Επαυξητικό μονοπάτι με π.χ. DFS, BFS. Επαύξηση σε χρόνο Ο(m). (6) () () () () () 0 () () Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07)
36 Χρόνος Εκτέλεσης Ακέραιες χωρητικότητες U: Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 6
37 Χρόνος Εκτέλεσης Ακέραιες χωρητικότητες U: Επαύξηση αυξάνει ροή τουλάχιστον κατά. Χρόνος εκτέλεσης Ο(m U). Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 7
38 Χρόνος Εκτέλεσης Ακέραιες χωρητικότητες U: Επαύξηση αυξάνει ροή τουλάχιστον κατά. Χρόνος εκτέλεσης Ο(m U). Δίκτυο με ακέραιες χωρητικότητες έχει ακέραιη μέγιστη ροή. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 8
39 Χρόνος Εκτέλεσης Ακέραιες χωρητικότητες U: Επαύξηση αυξάνει ροή τουλάχιστον κατά. Χρόνος εκτέλεσης Ο(m U). Δίκτυο με ακέραιες χωρητικότητες έχει ακέραιη μέγιστη ροή. Μπορεί εκθετικός χρόνος για 0 0 μεγάλες χωρητικότητες! Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 9
40 Χρόνος Εκτέλεσης Ακέραιες χωρητικότητες U: Επαύξηση αυξάνει ροή τουλάχιστον κατά. Χρόνος εκτέλεσης Ο(m U). Δίκτυο με ακέραιες χωρητικότητες έχει ακέραιη μέγιστη ροή. Μπορεί εκθετικός χρόνος για μεγάλες χωρητικότητες! Μπορεί να μην τερματίσει για άρρητες χωρητικότητες Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 40
41 Βελτιώσεις Edmond-Karp Επαυξητικό μονοπάτι με μέγιστη χωρητικότητα. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 4
42 Βελτιώσεις Edmond-Karp Επαυξητικό μονοπάτι με μέγιστη χωρητικότητα. m επαυξήσεις μέγιστη χωρητικότητα στο μισό. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 4
43 Βελτιώσεις Edmond-Karp Επαυξητικό μονοπάτι με μέγιστη χωρητικότητα. m επαυξήσεις μέγιστη χωρητικότητα στο μισό. Αντί «μέγιστης», «αρκετά μεγάλης» χωρητικότητας: Υπολειμματικό γράφημα μόνο με χωρητικότητες Δ. Αν όχι επαυξητικό μονοπάτι, Δ Δ /. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 4
44 Βελτιώσεις Edmond-Karp Επαυξητικό μονοπάτι με μέγιστη χωρητικότητα. m επαυξήσεις μέγιστη χωρητικότητα στο μισό. Αντί «μέγιστης», «αρκετά μεγάλης» χωρητικότητας: Υπολειμματικό γράφημα μόνο με χωρητικότητες Δ. Αν όχι επαυξητικό μονοπάτι, Δ Δ /. Χρόνος εκτέλεσης Ο(m log U). Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 44
45 Βελτιώσεις Edmond-Karp Επαυξητικό μονοπάτι με μέγιστη χωρητικότητα. m επαυξήσεις μέγιστη χωρητικότητα στο μισό. Αντί «μέγιστης», «αρκετά μεγάλης» χωρητικότητας: Υπολειμματικό γράφημα μόνο με χωρητικότητες Δ. Αν όχι επαυξητικό μονοπάτι, Δ Δ /. Χρόνος εκτέλεσης Ο(m log U). Επαυξητικό μονοπάτι ελάχιστου μήκους (ακμών). Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 4
46 Βελτιώσεις Edmond-Karp Επαυξητικό μονοπάτι με μέγιστη χωρητικότητα. m επαυξήσεις μέγιστη χωρητικότητα στο μισό. Αντί «μέγιστης», «αρκετά μεγάλης» χωρητικότητας: Υπολειμματικό γράφημα μόνο με χωρητικότητες Δ. Αν όχι επαυξητικό μονοπάτι, Δ Δ /. Χρόνος εκτέλεσης Ο(m log U). Επαυξητικό μονοπάτι ελάχιστου μήκους (ακμών). Υπολογισμός με BFS σε χρόνο Ο(m). #επαυξήσεων Ο(n m), χρόνος εκτέλεσης Ο(n m ). Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 46
47 Βελτιώσεις Edmond-Karp Επαυξητικό μονοπάτι με μέγιστη χωρητικότητα. m επαυξήσεις μέγιστη χωρητικότητα στο μισό. Αντί «μέγιστης», «αρκετά μεγάλης» χωρητικότητας: Υπολειμματικό γράφημα μόνο με χωρητικότητες Δ. Αν όχι επαυξητικό μονοπάτι, Δ Δ /. Χρόνος εκτέλεσης Ο(m log U). Επαυξητικό μονοπάτι ελάχιστου μήκους (ακμών). Υπολογισμός με BFS σε χρόνο Ο(m). #επαυξήσεων Ο(n m), χρόνος εκτέλεσης Ο(n m ). Βελτίωση Dinic: υπολογισμός με BFS σε χρόνο Ο(n)! Χρόνος εκτέλεσης Ο(n m). Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 47
48 Βελτιώσεις Edmond-Karp Επαυξητικό μονοπάτι με μέγιστη χωρητικότητα. m επαυξήσεις μέγιστη χωρητικότητα στο μισό. Αντί «μέγιστης», «αρκετά μεγάλης» χωρητικότητας: Υπολειμματικό γράφημα μόνο με χωρητικότητες Δ. Αν όχι επαυξητικό μονοπάτι, Δ Δ /. Χρόνος εκτέλεσης Ο(m log U). Επαυξητικό μονοπάτι ελάχιστου μήκους (ακμών). Υπολογισμός με BFS σε χρόνο Ο(m). #επαυξήσεων Ο(n m), χρόνος εκτέλεσης Ο(n m ). Βελτίωση Dinic: υπολογισμός με BFS σε χρόνο Ο(n)! Χρόνος εκτέλεσης Ο(n m). Καλύτεροι αλγόριθμοι με blocking-flow και puh-relabel τεχνικές έχουν χρόνους O(n m log n) και O(n ) αντιστ. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 48
49 Μέγιστο Ταίριασμα Διμερές γράφημα: υπολογισμός μέγιστου αριθμού ακμών χωρίς κοινά άκρα (ταίριασμα). Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 49
50 Μέγιστο Ταίριασμα Διμερές γράφημα: υπολογισμός μέγιστου αριθμού ακμών χωρίς κοινά άκρα (ταίριασμα). Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07) 0
51 Μέγιστο Ταίριασμα Διμερές γράφημα: υπολογισμός μέγιστου αριθμού ακμών χωρίς κοινά άκρα (ταίριασμα). Μέγιστη ροή: πηγή, προορισμός, προσανατολισμός, χωρητικότητα. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07)
52 Μέγιστο Ταίριασμα Διμερές γράφημα: υπολογισμός μέγιστου αριθμού ακμών χωρίς κοινά άκρα (ταίριασμα). Μέγιστη ροή: πηγή, προορισμός, προσανατολισμός, χωρητικότητα. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07)
53 Μέγιστο Ταίριασμα Διμερές γράφημα: υπολογισμός μέγιστου αριθμού ακμών χωρίς κοινά άκρα (ταίριασμα). Μέγιστη ροή: πηγή, προορισμός, προσανατολισμός, χωρητικότητα. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 07)
Μέγιστη Ροή Ελάχιστη Τομή
Μέγιστη Ροή Ελάχιστη Τομή Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Δίκτυα και Ροές Δίκτυο : κατευθυνόμενο γράφημα G(V, E). Πηγή, προορισμός, χωρητικότητα ακμής b e. ροή μεγέθους
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση
Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες
Κατευθυνόμενο γράφημα Συνάρτηση χωρητικότητας 2 6 20 Ροή δικτύου Συνάρτηση αφετηρίακός κόμβος 0 με τις ακόλουθες ιδιότητες 9 7 τερματικός κόμβος Περιορισμός χωρητικότητας: Αντισυμμετρία: Διατήρηση ροής:
Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αναζήτηση Κατά Βάθος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήµατα Μοντελοποίηση πολλών σηµαντικών προβληµάτων (π.χ. δίκτυα
Ελάχιστο Συνδετικό Δέντρο
Ελάχιστο Συνδετικό Δέντρο Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό Δέντρο
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα
Ελάχιστο Συνδετικό Δέντρο
Ελάχιστο Συνδετικό Δέντρο Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό Δέντρο
Θεωρία και Αλγόριθμοι Γράφων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 13: Προβλήματα Ροών σε Δίκτυα Ιωάννης Μανωλόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creaive
Συντομότερες Διαδρομές
Συντομότερη Διαδρομή Συντομότερες Διαδρομές Διδάσκοντες: Σ Ζάχος, Δ Φωτάκης Επιμέλεια διαφανειών: Δ Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κατευθυνόμενο G(V, E, w) με μήκη Μήκος
Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αναζήτηση Κατά Βάθος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Πιθανοτικοί Αλγόριθμοι
Πιθανοτικοί Αλγόριθμοι ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πιθανοτικοί Αλγόριθμοι Πιθανοτικός
Συντομότερες Διαδρομές
Συντομότερες Διαδρομές Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συντομότερη Διαδρομή Κατευθυνόμενο G(V, E, w) με μήκη Μήκος διαδρομής
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Ελάχιστο Συνδετικό έντρο
Ελάχιστο Συνδετικό έντρο ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα συνεκτικότητα,
Αναζήτηση Κατά Βάθος. Επιµέλεια διαφανειών:. Φωτάκης διαφάνειες για SCC: A. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αναζήτηση Κατά Βάθος Επιµέλεια διαφανειών:. Φωτάκης διαφάνειες για SCC: A. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση
Υπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Συντομότερες ιαδρομές
Συντομότερες ιαδρομές ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Ελάχιστο Συνδετικό Δέντρο
Ελάχιστο Συνδετικό Δέντρο Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό Δέντρο (MST) Συνεκτικό μη-κατευθ. G(V, E, w) με βάρη Βάρος
Ελάχιστο Συνδετικό έντρο
Ελάχιστο Συνδετικό έντρο ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό έντρο (MST) Συνεκτικό μη-κατευθ. G(V, E, w) με βάρη Βάρος
Αναζήτηση Κατά Βάθος. Επιμέλεια διαφανειών: Δ. Φωτάκης Συμπληρώσεις: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αναζήτηση Κατά Βάθος Επιμέλεια διαφανειών: Δ. Φωτάκης Συμπληρώσεις: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση
Συντομότερες ιαδρομές
Συντομότερες ιαδρομές ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Υπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Γιατί κάποια (επιλύσιμα) προβλήματα είναι δύσκολο
Δυϊκότητα. Δημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Δυϊκότητα Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πιστοποίηση Άνω Φράγματος Έχει το ΓΠ εφικτή λύση με κόστος 2; Ναι, π.χ. [0, 1, 3, 0, 2, 0,
Συντομότερες ιαδρομές
Συντομότερες ιαδρομές ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συντομότερη ιαδρομή Κατευθυνόμενο G(V, E, w) με μήκη Μήκος διαδρομής Απόσταση d(u,
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 4 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών
Ταιριάσματα. Γράφημα. Ταίριασμα (matching) τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του
Ταιριάσματα Γράφημα Ταίριασμα (matching) Σύνολο ακμών τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του Θέλουμε να βρούμε ένα μέγιστο ταίριασμα (δηλαδή με μέγιστο αριθμό ακμών) Ταιριάσματα
Βασικές Έννοιες Θεωρίας Γραφημάτων
Βασικές Έννοιες Θεωρίας Γραφημάτων Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων
έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής. Αναπαράσταση
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 5 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών
ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
έντρα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής.
Βασικές Έννοιες Θεωρίας Γραφημάτων
Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση
για NP-Δύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP-Δύσκολα Προβλήματα Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα
Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα Διδάσκοντες: E. Ζάχος, Α. Παγουρτζής Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο
Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων
Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο
4η Γραπτή Ασκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 7 Φεβρουαρίου 2017 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Ασκηση 7 Φεβρουαρίου / 38
4η Γραπτή Άσκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 7 Φεβρουαρίου 2017 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Άσκηση 7 Φεβρουαρίου 2017 1 / 38 Άσκηση 1 Πρέπει να βρούμε όλες τις καλές προτάσεις φίλων για τον
Συντομότερα Μονοπάτια για Όλα τα Ζεύγη Κορυφών
Συντομότερα Μονοπάτια για Όλα τα Ζεύγη Κορυφών Αλγόριθμοι και πολυπλοκότητα Στάθης Ζάχος, Δημήτρης Φωτάκης Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια
Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.
Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων CO.RE.LAB. ΣΗΜΜΥ - Ε.Μ.Π. Άσκηση 1 η : Παιχνίδι επιλογής ακμών Έχουμε ένα ακυκλικό κατευθυνόμενο γράφο, μια αρχική κορυφή και δυο παίκτες. Οι παίκτες διαδοχικά
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα
Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα και 12 26 20 10 9 7 17 14 4 Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο)
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός Επιμέλεια διαφανειών: Δημήτρης Φωτάκης (λίγες προσθήκες: Άρης Παγουρτζής) Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα
7ο εξάμηνο Σ.Η.Μ.Μ.Υ. & Σ.Ε.Μ.Φ.Ε. http://www.corelab.ece.ntua.gr/courses/ 4η εβδομάδα: Εύρεση k-οστού Μικρότερου Στοιχείου, Master Theorem, Τεχνική Greedy: Knapsack, Minimum Spanning Tree, Shortest Paths
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα
ΣΥΝΕΚΤΙΚΟΤΗΤΑ ΓΡΑΦΗΜΑΤΩΝ
Συνεκτικότητα Γραφημάτων 123 ΚΕΦΑΛΑΙΟ 4 ΣΥΝΕΚΤΙΚΟΤΗΤΑ ΓΡΑΦΗΜΑΤΩΝ 4.1 Τοπική και Ολική Συνεκτικότητα Γραφημάτων 4.2 Συνεκτικότητα Μη-κατευθυνόμενων Γραφημάτων 4.3 Συνεκτικότητα Κατευθυνόμενων Γραφημάτων
Εισαγωγικές Έννοιες. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Εισαγωγικές Έννοιες ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Ενότητα 5: Αλγόριθμοι γράφων και δικτύων
Εισαγωγή στην Επιστήμη των Υπολογιστών ο εξάμηνο ΣΗΜΜΥ Ενότητα : Αλγόριθμοι γράφων και δικτύων Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra
u v 4 w G 2 G 1 u v w x y z 4
Διάλεξη :.0.06 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος. Εισαγωγικοί ορισμοί Ορισμός. Γράφημα G καλείται ένα ζεύγος G = (V, E) όπου V είναι το σύνολο των κορυφών (ή κόμβων) και E
Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Σχέσεις Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διμελής Σχέση Διατεταγμένο ζεύγος (α, β):
Κεφάλαιο 3. Γραφήµατα v1.0 ( ) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 3 Γραφήµατα v1.0 (2010-05-25) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων
3η Σειρά Γραπτών Ασκήσεων
1/48 3η Σειρά Γραπτών Ασκήσεων Αλγόριθμοι και Πολυπλοκότητα ΣΗΜΜΥ, Εθνικό Μετσόβιο Πολυτεχνείο 2/48 1 Άσκηση 1: Πομποί και Δέκτες 2 Άσκηση 2: Διακοπές στην Ικαρία 3 Άσκηση 3: Επιστροφή στη Γη 4 Άσκηση
4η Γραπτή Ασκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 3/2/2019 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Ασκηση 3/2/ / 37
4η Γραπτή Άσκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 3/2/2019 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Άσκηση 3/2/2019 1 / 37 Άσκηση 1 Πρέπει να βρούμε όλες τις καλές προτάσεις φίλων για τον i ανάμεσα σε όλους
Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27)
Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: ίκτυα ροής και το πρόβληµα της µέγιστης ροής Η µεθοδολογία Ford-Fulkerson Ο αλγόριθµος Edmonds-Karps ΕΠΛ 232
ΕΠΛ 232: Αλγόριθµοι και Πολυπλοκότητα. Κατ οίκον Εργασία 2A Σκελετοί Λύσεων
ΕΠΛ 232: λγόριθµοι και Πολυπλοκότητα Κατ οίκον Εργασία 2A Σκελετοί Λύσεων 1. ια τη σαφή διατύπωση του αλγόριθµου απαιτούνται τα εξής: ιατήρηση της ροής που κτίζεται από τον αλγόριθµο. ιατήρηση της περίσσειας
Θεωρία Γραφημάτων 4η Διάλεξη
Θεωρία Γραφημάτων 4η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 4η Διάλεξη
Το πρόβλημα μονοδρόμησης (The One-Way Street Problem)
Το πρόβλημα μονοδρόμησης (The One-Way Street Problem) Το πρόβλημα Σχετίζεται με τη διαχείριση της κίνησης οχημάτων στους δρόμους Αν δεν υπήρχαν καθυστερήσεις στην κίνηση στις πόλεις Αποφυγή σπατάλης ενέργειας
Θεωρία Γραφημάτων 2η Διάλεξη
Θεωρία Γραφημάτων 2η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 2η Διάλεξη
Θεωρία Γραφημάτων 10η Διάλεξη
Θεωρία Γραφημάτων 0η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 07 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 0η Διάλεξη
Επίλυση 1 ης Εργασίας. Παραδόθηκαν: 11/12 15%
Επίλυση 1 ης Εργασίας Παραδόθηκαν: 11/12 15% ΘΕΜΑ 1 ΑΠΑΝΤΗΣΗ Α) Συνθήκη συντήρησης της αρχικής ροής Το φορτίο που μεταφέρεται από τον r είναι 3 (r->1=1) + (r->3=0) + (r- >4=2) Το φορτίο που φθάνει στον
Θεωρία Γραφημάτων 2η Διάλεξη
Θεωρία Γραφημάτων 2η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 2η Διάλεξη
Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση
Διμελής Σχέση Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Επιμέλεια διαφανειών: Δ. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διατεταγμένο ζεύγος (α, β): Δύο αντικείμενα
Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες
Κατευθυνόμενο γράφημα Συνάρτηση χωρητικότητας 12 16 2 Ροή δικτύου Συνάρτηση αφετηρίακός κόμβος 13 1 με τις ακόλουθες ιδιότητες 4 14 9 7 4 τερματικός κόμβος Περιορισμός χωρητικότητας: Αντισυμμετρία: Διατήρηση
Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.
Κατευθυνόµενα γραφήµατα Απλό κατευθυνόµενο Γράφηµα G είναι διατεταγµένο Ϲεύγος (V, E), µε: Στοιχεία Θεωρίας Γραφηµάτων (1) σύνολο κορυφών / κόµβων V, Ορέστης Τελέλης tllis@unipi.r Τµήµα Ψηφιακών Συστηµάτων,
Θεωρία Γραφημάτων 9η Διάλεξη
Θεωρία Γραφημάτων 9η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 9η Διάλεξη
ιµελής Σχέση ιατεταγµένο ζεύγος (α, β): ύο αντικείµενα (όχι κατ ανάγκη διαφορετικά) σε καθορισµένη σειρά. Γενίκευση: διατεταγµένη τριάδα (α, β, γ), δι
Σχέσεις ιδάσκοντες: Φ. Αφράτη, Σ. Ζάχος,. Σούλιου Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιµελής Σχέση ιατεταγµένο ζεύγος (α, β):
ΠΛΗ 20, 6 η ΟΣΣ: Δέντρα Εξετάσεις
ΠΛΗ 20, 6 η ΟΣΣ: Δέντρα Εξετάσεις Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο Δέντρα Δέντρο: πρότυπο ιεραρχικής δομής. Αναπαράσταση (ιεραρχικών)
Επιλογή. Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Επιλογή Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα Επιλογής Πίνακας Α[ ] με n στοιχεία (όχι ταξινομημένος). Αριθμός k,
Σχέσεις. ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Σχέσεις ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιμελής Σχέση ιατεταγμένο ζεύγος (α, β): ύο αντικείμενα
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
3η Σειρά Γραπτών Ασκήσεων
1/55 3η Σειρά Γραπτών Ασκήσεων Αλγόριθμοι και Πολυπλοκότητα ΣΗΜΜΥ, Εθνικό Μετσόβιο Πολυτεχνείο 2/55 1 Άσκηση 1: Πομποί και Δέκτες 2 Άσκηση 2: Διακοπές στην Ικαρία 3 Άσκηση 3: Επιστροφή στη Γη 4 Άσκηση
Ουρά Προτεραιότητας: Heap
Δομές Δεδομένων Ουρά Προτεραιότητας: Heap Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο (Αναπαράσταση,)
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθμου Α: Ποσότητα
Κατανεμημένα Συστήματα Ι
Κατανεμημένα Συστήματα Ι Παναγιώτα Παναγοπούλου Χριστίνα Σπυροπούλου 8η Διάλεξη 8 Δεκεμβρίου 2016 1 Ασύγχρονη κατασκευή BFS δέντρου Στα σύγχρονα συστήματα ο αλγόριθμος της πλημμύρας είναι ένας απλός αλλά
Μη Ντετερμινισμός και NP-Πληρότητα
Μη Ντετερμινισμός και NP-Πληρότητα Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μη Ντετερμινιστικές Μηχανές Turing Μη ντετερμινιστική
Μη Ντετερμινισμός και NP-Πληρότητα
Μη Ντετερμινισμός και NP-Πληρότητα Διδάσκοντες: Σ Ζάχος, Δ Φωτάκης Επιμέλεια διαφανειών: Δ Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μη Ντετερμινιστικές
Γράφοι: κατευθυνόμενοι και μη
Γράφοι: κατευθυνόμενοι και μη (V,E ) (V,E ) Γράφος (ή γράφημα): ζεύγος (V,E), V ένα μη κενό σύνολο, Ε διμελής σχέση πάνω στο V Μη κατευθυνόμενος γράφος: σχέση Ε συμμετρική V: κορυφές (vertices), κόμβοι
Συνεκτικότητα Γραφήματος
Συνεκτικότητα Γραφήματος Θεμελιώδης έννοια στη Θεωρία Γραφημάτων. Πληθώρα πρακτικών εφαρμογών, όπως: Αξιόπιστη και ασφαλής επικοινωνία. Δρομολόγηση σε δίκτυα. Πλοήγηση. Συνεκτικότητα Γραφήματος Θεμελιώδης
Παράδειγµα (4) Στοιχεία Θεωρίας Γραφηµάτων (2) Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς. v 2. u 3.
Παράδειγµα (2) s t Στοιχεία Θεωρίας Γραφηµάτων (2) w x Ορέστης Τελέλης z y tllis@unipi.r v u Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Τα δύο γραφήµατα δεν είναι ισόµορφα. Ο κόµβος (αριστερά) είναι
ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΛΓΟΡΙΘΜΟΙ ΓΙΑ ΕΥΡΕΣΗ ΤΗΣ ΜΕΓΙΣΤΗΣ ΡΟΗΣ ΣΕ ΕΝΑ ΔΙΚΤΥΟ ΡΟΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ / ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ» 2 ος ΚΥΚΛΟΣ / Δ ΕΞΑΜΗΝΟ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΛΓΟΡΙΘΜΟΙ ΓΙΑ ΕΥΡΕΣΗ ΤΗΣ ΜΕΓΙΣΤΗΣ ΡΟΗΣ ΣΕ ΕΝΑ ΔΙΚΤΥΟ ΡΟΗΣ Επιβλέπων καθηγητής: κ. Ε. Φούντας :
Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 3 Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων
Μη Ντετερμινισμός και NP-Πληρότητα
Μη Ντετερμινισμός και P-Πληρότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μη Ντετερμινιστικές Μηχανές Turing Μη ντετερμινιστική Μηχ. Turing (ΝTM)
... a b c d. b d a c
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΙΑΚΡΙΤA ΜΑΘΗΜΑΤΙΚΑ ιδάσκοντες: Φωτάκης, Σούλιου η Γραπτή Εργασία Θέµα (Αρχή του Περιστερώνα, 8 µονάδες) α) Σε ένα διάστηµα
Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε
Διάλεξη 4: 20.10.2016 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος 4.1 2-συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός γραφήματος G μοιράζονται το πολύ μία κορυφή. Απόδειξη:
Θεωρία Γραφημάτων 3η Διάλεξη
Θεωρία Γραφημάτων 3η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 3η Διάλεξη
Αλγόριθµοι Γραφηµάτων
Αλγόριθµοι Γραφηµάτων Παύλος Σπυράκης Πανεπιστήµιο Πατρών Τοµέας Θεµελιώσεων και Εφαρµογών της Επιστήµης των Υπολογιστών Ερευνητικό Ακαδηµαϊκό Ινστιτούτο Τεχνολογίας Υπολογιστών Γραφήµατα Μοντελοποίηση
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αρκετά απαιτητικά ερωτήματα,
Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών
Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Εισαγωγή σε βασικές έννοιες Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 1 Περιεχόμενα
Ουρά Προτεραιότητας: Heap
Ουρά Προτεραιότητας: Heap Επιμέλεια διαφανειών: Δ. Φωτάκης (λίγες τροποποιήσεις: Α. Παγουρτζής) Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Δομές Δεδομένων (Αναπαράσταση,)
jτο πλήθος των ταξιδιών που κάνει η αεροσυνοδός µέχρι την j ηµέρα. Σχηµατίζω µία ακολουθία που αποτελείται από τα a.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΙΑΚΡΙΤA ΜΑΘΗΜΑΤΙΚΑ ιδάσκοντες: Φωτάκης, Σούλιου, Θ Λιανέας η Γραπτή Εργασία Θέµα (Αρχή του Περιστερώνα, 8 µονάδες) α)
Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Λεξικό, Union Find ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαχείριση ιαμερίσεων Συνόλου Στοιχεία
Κεφάλαιο 3. Γραφήματα. v1.3 ( ) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 3 Γραφήματα v1.3 (2014-01-30) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισμοί και Εφαρμογές γραφήματα γράφημα G: ένας τρόπος κωδικοποίησης των σχέσεων
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αντιμετώπιση NP- υσκολίας Αν P NP, όχι αλγόριθμος
Approximation Algorithms for the k-median problem
Approximation Algorithms for the k-median problem Ζακυνθινού Λυδία Παυλάκος Γεώργιος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Θεωρία Υπολογισμού 2011-2012 Το πρόβλημα
Στοιχεία Θεωρίας Γραφηµάτων (2)
Στοιχεία Θεωρίας Γραφηµάτων (2) Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (2) 1 / 21 Παράδειγµα (2) s t w x h g
Θεωρία Γραφημάτων 1η Διάλεξη
Θεωρία Γραφημάτων η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 207 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων η Διάλεξη
Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Λεξικό, Union Find ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα (ADT) Λεξικού υναμικά μεταβαλλόμενη
Ουρά Προτεραιότητας: Heap
Ουρά Προτεραιότητας: Heap ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Διάλεξη 4: Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός
Διάλεξη 4: 20.10.2016 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος 4.1 2-συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός γραφήματος G μοιράζονται το πολύ μία κορυφή. Απόδειξη: