לבחינה בסטטיסטיקה ומימון נובמבר 2102

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "לבחינה בסטטיסטיקה ומימון נובמבר 2102"

Transcript

1 כ) כ) הכנה לבחינה בסטטיסטיקה ומימון נובמבר 10 שאלות חמות לקראת בחינת רשות ניירות ערך רבים מהתפקידים בשוק ההון מחייבים רישיון כל שהוא, אם יעוץ השקעות, ניהול השקעות יעוץ פנסיוני או סוכני הביטוח. על המתעניינים בתפקידים אלה לעבור את בחינות רשות ניירות ערך ו/או משרד האוצר בכדי שיוכלו לקבל את הרישיון המיוחל. רשות ניירות ערך מקיימת בחינות הסמכה לקבלת הרישיון פעמיים בשנה. בקרוב תערוך רשות ניירות ערך את הבחינה בסטטיסטיקה ומימון. מכללת מיטב ללימודי שוק ההון, ריכזה עבורכם הנבחנים, מספר שאלות לדוגמא לקראת הבחינה. נתונים לשאלות 0-3: בתאריך / מר ברקוביץ הפקיד 011,111 בתכנית החיסכון. בתאריך /1011/11, חודש לאחר מכן, התחיל לבצע הפקדות של 0,111 ש"ח כל חודש. בתאריך ה /1011/11 הגדיל את סכום הפקדה החודשית ל. /,111 הנח שבשנת /11/ הריבית החודשית במשק הייתה 1.0%, ובשנת /11/ הריבית החודשית במשק הייתה 1./% מהו הסכום שנצבר למר ברקוביץ בסוף שנת /11/? 001,111 א. )04/,111 04/,/60 ב. 111,//0 ג. 11,111/ ד. 040,111 ה. מהו הסכום שצבר מר ברקוביץ בתום השנתיים? 01,111/ א. - )//0,111 //0,1/4 ב. 001,111 ג. 001,111 ד. אף תשובה אינה נכונה ה. מהי הריבית האפקטיבית השנתית שהרוויח מר ברקוביץ? כ- %/ לשנה א. כ- 0% לשנה ב. כ- 0 %/0 לשנה ג. כל התשובות לא נכונות ד. כ 4% לשנה ה..0./.0 ישנן 0 נורות אדומות, / נורות ירוקות ונורה אחת כחולה, אנו צריכים לסדר את הנורות בבתי הנורות בו מקום לשש נורות כמה אפשרויות שונות ישנן? 0/.6 א. 1

2 ב. ג. ד..0 // //1 41 התקיימה תחרות קליעה למטרה בה משחקים עד שפוגעים. עפ"י חוקי המשחק אם לא פגעת ב- 6 ניסיונות, אתה מחוץ למשחק. הסיכוי של ירון אחד מחברי הנבחרת לפגוע הוא 1.4. מה הסיכוי שירון זרק 6 פעמים למטרה בלבד? א ב. 1.0/04 ג. 1.1/04 ד ה. כל התשובות נכונות

3 4. עוקבים אחרי עבודתו של בנקאי במשך 01 יום. הבנקאי מטפל ב- 6 לקוחות: במשך / ימים טיפל הבנקאי בלקוח אחד במשך 6 ימים טיפל הבנקאי ב 6 לקוחות במשך 4 ימים טיפל הבנקאי ב 0 לקוחות במשך יומיים טיפל הבנקאי באפס לקוחות מה השכיח ומה הממוצע בהתאמה? א. השכיח / לקוחות והממוצע 0./ לקוחות ליום ב. השכיח לקוח אחד והממוצע 0/.0 לקוחות ליום ג. השכיח 0 לקוחות והממוצע 6./ לקוחות ליום ד. השכיח 6 לקוחות והממוצע 0.0 לקוחות ליום ה. השכיח / לקוחות והממוצע 0.0 לקוחות ליום Eri A G נתונים לשאלות 7-8: נתון הגרף הבא E B F C D σri באיזה מניה לא יבחר שום משקיע בהכרח? א. E ב. A ג. G ד. D ה. כל התשובות לא נכונות./ אילו מניות יתכנו ויהיו על חזית היעילות? A,B,E,G א. כל התשובות לא נכונות ב. B, G, F ג. C, B, D ד. G, B, E ה../ 0. לפי מודל :CAPM איזו מהטענות הבאות נכונה? א. ב. ג. ד. ה. עבור הסיכון הסיסטמתי לא נדרוש כפיצוי תוספת תשואה מעבר לריבית נטולת סיכון עבור הסיכון הלא סיסטמתי לא נדרוש כפיצוי תוספת תשואה מעבר לריבית נטולת סיכון. תוחלת תיק השקעות מורכב מתוחלת תשואת תיק השוק וסטיית תקן של תיק השוק. הסיכון השיטתי ניתן לצמצום בעזרת גיוון. כל התשובות נכונות. 3

4 במיליוני NPV נתונים לשאלות 01-00: נתונה הטבלה הבאה: IRR K=5% K=0% 00 0/ 0 01 הפרויקטים מוצאים זה את זה. פרויקט א' פרויקט ב' 01. אלו מהטענות הבאות נכונה? א. ב. ג. ד. ה. במחיר הון של 0%=K נעדיף את פרויקט א' במחיר הון של 0%=K נעדיף את פרויקט ב' במחיר הון של %/=K נעדיף את פרויקט א' במחיר הון של %/=K נדחה את / הפרויקטים. כל התשובות לא נכונות באיזה מחיר הון המשקיע יהיה אדיש בין החלופות? %/ א. 00% ב. 01% ג. לא ניתן לדעת ד. %/0 ה..00 COV(R,M) 1.00? 1.00 ERi 00./ 01./ 0/.4 נתונים לשאלות 06-/0: נתונה הטבלה הבאה: a B c ידוע כי תוחלת תשואת תיק השוק היא %/0 מהי ריבית חסרת סיכון? 0% א. 6.0% ב. 4% ג. אין מספיק נתונים ד. 0% ה. מה השונות של תיק השוק? 1.0 א. /.1 ב. 1.0 ג. 1.6 ד. אין מספיק נתונים ה. מהי השונות המשותפת של תיק השוק ומניה? B 1.0 א. 0/.1 ב ג. 0/.1 ד. אין מספיק נתונים ה..0/

5 נתונים לשאלות 01-08: ישנם 0 מסלולי אשראי, להלן נתוני הריביות: עמלת הקצאת אשראי מראש 011 / ,111 01, , % /.0% מסלול א' 0% /% מסלול ב' 0.0% 0.0% מסלול ג' האשראי הוא לתקופה של רבעון וכך כל הנתונים בטבלה. בהנחה שגב' גולן לקחה אשראי של 61,111 במהלך הרבעון, ובחרה במסלול ב', מה הריבית האפקטיבית הגלומה בתכנית? 6% לרבעון. א. 6.0% לרבעון. ב. 0.0% לרבעון. ג. %/./ לרבעון. ד. אין מספיק נתונים. ה. בהנחה שאדון סטפק לקח אשראי של 1,111/ ובחר במסלול מספר 0. מה הריבית ששילם בכל התקופה? כ 6% לכל התקופה א. כ 0% לכל התקופה ב. כ 0% לכל התקופה ג. כ 0.0% לכל התקופה ד. כל התשובות שגויות. ה. איזה מסלול עדיף אם ניקח אשראי של? 011,111 מסלול א' א. מסלול ב' ב. מסלול ג' ג. אדישים בין ב' ל ג' ד. אדישים בין א' ל ג' ה. איזה מסלול עדיף אם ניקח אשראי של? 01,111 כל החלופות זהות א. מסלול א' ב. מסלול ב' ג. מסלול ג' ד. אדישים בין ב' ל ג' ה. מחיר מניה היום. 011 בהסתברות של 1.0, תשואת המניה תעלה ב 01% במהלך השנה. בהסתברות של /.1, מחיר המניה יהיה 1/ בעוד שנה. אחרת מחיר המניה יישאר ללא שינוי. מהי תוחלת תשואת המניה והשונות בהתאמה? תוחלת 0% ושונות 0/0 א. תוחלת 0% ושונות 0/0 ב. תוחלת %/0 ושונות 001 ג. תוחלת 010% ושונות 001 ד. אין מספיק נתונים ה /.0/.00 5

6 בעיר "חולית", בקיץ, תוחלת הגשם היא 01 מ"מ וסטיית התקן /. בחורף, תוחלת הגשם היא 01 מ"מ וסטיית התקן 0. איפה יש יותר סיכוי שירד יותר מ /0 מ"מ גשם? בחורף יותר מבקיץ א. בקיץ יותר מבחורף ב. לא ניתן לדעת ג. הסיכוי שווה בין / העונות ד. כל התשובות נכונות ה../1 6

7 פתרון 01011/ 01/11/ 01011/ 01/11/ 1/ 1.0% 1./% 1 0 0/ 00 /6 חודשים 011,111 0, ,111./, /,111 n=1 PmT = i = 0.5% Fv =? 61,678 סה"כ השווי של ההפקדה הראשונה כעבור שנה /014,04 ובנוסף שווי /0 ההפקדות בגובה 0,111 שהצטברו לסכום של //40,4 ולכן בתום השנה הראשונה לזכותו בחשבון 014,04/+40,4// = 04/,/64 התשובה הנכונה היא ב'. כ 111,/04. כעת אנו יודעים שבתום /11/ היה לברקוביץ בחשבון כ- 111,/04 ולהן הצטרפו תשלומים של 111,/ כל אחד בעזרת ה- CMPD נגלה מה גובה הסכום בחשבונו בתום /11/. CMPD PV = -168,000 N=1 Pmt = -8,000 i = 0.8 Fv =? 85,195. בתום שנתיים לרשותו כ- 0,111//, תשובה ב' נכונה. 7

8 .3 השאלה קצת מציקה כי הדרך היחידה למצוא את שיעור התשואה הפנימי הגלום בתזרים הנ"ל הוא להכניס את כל התהליך )התזרים( ל- CASH ולגלות מהו ה.IRR כיון שהתזרים הינו במונחים חודשיים, התוצאה תהיה ריבית חודשית ולכן נמיר אותה למונחים שנתיים. CASH 1-100,000-5, , , , , , , , , ,060 IRR=SOLVE= % לחודש אין תשובה קרובה מספיק ל- 0%./ ולכן התשובה הנכונה היא ד'. התשובה היא אמדן ולא נורא אם לא יוצא לכולם מס' מדויק, זה קורה עקב חישובים מרובים בדרך ואי לקיחת הספרות שמעבר לנקודה. לפתרון לא ראוי..0.6 ד א העיקר כמובן לא להתרחק מדי ובכך להגיע מדובר כאן בשאלה בקומבינטוריקה. לסדר שישה נורות באופן עקרוני דרוש!4 כלומר 0/1 פעמים אבל יש כאן נורות בצבעים שהם זהים ולכן יש לבטל את הסידורים הפנימיים הללו: 6! השאלה הזו קצת בעייתית. לא להתרגש.! 3! 10 בעצם כדי לשחק 6 פעמים יש לא לקלוע במשך שלוש פעמים. הסיכוי לא לקלוע בכל פעם ובאופן בלתי תלוי לשאר הינו 0-1.4=1.6. 8

9 בגלל אי התלות בין הניסיונות הסיכוי המבוקש הוא : יש עוד דרכים להגיע לפתרון א נמשיך עם שאלות 7-8 אני מזכיר לכם כי כאשר אנחנו בוחנים את שוק ההון נסתכל מנק' מבט של משקיע דוחה סיכון. כלומר אם נשאלנו באיזו מניה לא יבחר להשקיע שום משקיע בהכרח, נחפש את אלו שעפ"י כלל תוחלת שונות הן הגרועות ביותר. מהציור ניתן לראות כי מניה D למשל היא נחותה ממניה E, יש לה תוחלת תשואה נמוכה יותר וסיכון גבוה יותר ולכן זו התשובה הנכונה. אפשר על אותו משקל להגיד כך על מניות B, F, C אך מניות אלו לא באפשרויות בחירה ולכן התשובה הנכונה היא ד'. בשאלה / בעצם נחפש את אלו שלא ניתן לשלול עפ"י כלל תוחלת שונות ובעצם אם ברור שמניה B נחותה ממניה A למשל אזי ברור ש B לא יעילה ולכן התשובה הנכונה היחידה שנותרה לנו היא תשובה ב'. שאלה 9 מודל CAPM אני מזכיר לכם את נוסחת ה- SML בעברית פשוטה פרוש הנוסחא הוא: ERi RF+ (ERm-RF) βi עבור השקעה במניה מסוימת המשקיע ידרוש ריבית נטולת סיכון )RF( ובנוסף פרמיה מסוימת RF( )ERm עבור מקדם הסיכון השיטתי )β( נזכר כי סיכון סיסטמתי )שיטתי( מחושב ע"י βiσm ולכן ברור כי הפיצוי שמקבלים המשקיעים מעבר לריבית נטולת סיכון הוא פיצוי עבור הסיכון הסיסטמתי )שיטתי(. עבור סיכון לא שיטתי לא נדרוש תוספת תשואה כיון שסיכון זה ניתן לצמצום ע"י שילוב מניות בתיק השקעות )גיוון(. תשובה נכונה ב'. 9

10 1 פרויקט א' שאלות פרויקט ב' /% 00% 00% בשאלה זו עלינו לגלות מהו השת"פ של הפרויקט ההפרשי ובעברית פשוטה עלינו למצוא את שיעור הריבית שבה אנחנו אדישים בין החלופות זוהי נקודת החיתוך בין / הישירים. ראשית נמצא את שתי משוואת הקווים הישרים: Y )1,0/( )00,1( Y= -0.9X+1 Y= -0.66X+10 Y )1,01( )00,1( מכאן נובע ש: -0.9x+1= -0.66x +10 הרי נקודת החיתוך נמצאת על גבי / הישרים! =0.53X X=7.89 8% המשמעות של מציאת שת"פ הפרשי הוא שעד מחיר הון של %/ הפרויקט העדיף הוא א' וכאשר מחיר ההון של המשקיע גדול מ- %/ אז ניתן לראות בגרף כי פרויקט ב' יניב ענ"נ גדול יותר. כיון שהמטרה שלנו למצוא את הפרויקט עם הענ"נ הגבוה ביותר, אזי כל עוד מחיר ההון של הפירמה נמוך מ- %/ אזי נעדיף את פרויקט א'. במחיר הון גבוה יותר תעדיף הפירמה את פרויקט ב'. חשוב להבין זאת מהציור של הגרף. 11

11 התשובה לשאלה התשובה לשאלה תשובה נכונה א' זהו בעצם הריבית שמצאנו שבה הענ"נ זהה כ %/. תשובה נכונה א'. פתרון לשאלות 0-01 ERi RF+ (ERm-RF) βi cov( R, m) ii m ERi RF + (ERm-RF) cov(r,m) m כעת נציג בנוסחאות את הנתונים של מניות A ו C E 13.8 Rm RF RF 0.39 m ( E ) 1.6 Rm RF RF 0.33 m חיסור בין המשוואות ייתן לנו את המשוואה הבאה: ולא נשכח כי נתון לנו כי תוחלת תשואת תיק השוק %/0. 1. ERm-RF m * 1.14 /1 m 11 ( ERm-RF) m =1-RF 11

12 = m 0/-RF /1 13.8= RF+ 1-RF RF = RF+ 0(1-RF) (1-RF) 13.8=RF RF=6% התשובה לשאלה 0 הינה תשובה ג'. =1-6 m 11 =0.3 התשובה לשאלה 00 הינה תשובה ג'. כעת נציג את נתוני מניה B בנוסחא שיצרנו ונבודד את השונות המשותפת בין מניה B לבין תיק השוק cov)rb,m( 10.=6+(1-6) cov(b,m) = 0 cov( RB,m) cov( RB,m)=0.1 תשובה לשאלה 06 הינה ב'. פתרון לשאלות רבעונים , = 61,/11 ראשית נגלה מהו הסכום שעליה להחזיר לפקיד הבנק. 1

13 1. לאחר שמצאנו זאת נבין על ציר הזמן מה קרה בפועל רבעונים ,11 וכעת נמצא מהי הריבית האפקטיבית האמיתית שילמה גב' גולן בהנחה שנתייחס כמובן גם לעמלה מראש. 39,00 (1+R) 40, R= R= התשובה הנכונה היא:. 6.0% תשובה ב' , = 50,750 30, = 31,050 על ה 01,111 הראשונים גובים ממנו ריבית של 0.0% על ה 01,111 הנותרים ריבית של 0.0% ולכן אנו מבינים כי על האדון להחזיר לבנק סה"כ: 01,/01+00,101= /0,/11 וכעת נבין על ציר הזמן עם כמה כסף יצא האדון לאחר התייחסות לעמלה מראש. רבעונים 1 /0,161 0 /0,/11 79,040 (1+R) 81,800 13

14 + 50, , R= %=R לרבעון ובמקרה זה גם לכל התקופה. /0. אם ניקח הלוואה של 011,111 בתנאי מסלול א' אזי: סה"כ נחזיר לבנק ,500 (1+R) 103,500 אך בפועל יצאנו רק עם.00,011 נחשב את הריבית האפקטיבית ששילמנו עבור ההלוואה 1.% אם ניקח הלוואה של 011,111 בתנאי מסלול ב' אזי: 01,111 * 0.1/ + 01,111 * 0.10 = 010,011 אך בפועל רק עם 11/,00. נחשב את הריבית האפקטיבית ששילמנו עבור ההלוואה: 00,00 (1+R) 10, % אם ניקח הלוואה של 011,111 בתנאי מסלול ג' אזי 01,111 * ,111 * = 01/,011 אך בפועל יצאנו רק עם. 00,161 PV נחשב את הריבית האפקטיבית : 00,040 (1+R) 10,500 R=3.5% ניתן לראות כי הכי זול לבחור בחלופה ב'. 14

15 50, = 51,50 49,500 (1+R)=51,50.08 חלופה א' R=3.535% 50, = 51,000 49,00 (1+R)=51,000 חלופה ב' R 3.658% 50, = 50,750 49,040 (1+R)=50,750 חלופה ג' R 3.487% ניתן לראות כעת כי אם ניקח הלוואה של 01,111 מסלול ג' הינו הזול ביותר..00 )X) )P) אם מחיר המניה ירד ל 1/ אזי ירידה של 1%/ כי מחירה כעת עומד על 011 ש"ח 01% -/1% / 1% 1.0 E( x) x p( x) 5% לכן התשובה הנכונה היא א'. V( X) ( 0)

16 04. א 16

תרגול פעולות מומצאות 3

תרגול פעולות מומצאות 3 תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה

Διαβάστε περισσότερα

ל הזכויות שמורות לדפנה וסטרייך

ל הזכויות שמורות לדפנה וסטרייך מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות

Διαβάστε περισσότερα

חורף תש''ע פתרון בחינה סופית מועד א'

חורף תש''ע פתרון בחינה סופית מועד א' מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר

Διαβάστε περισσότερα

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת

Διαβάστε περισσότερα

שאלה 1 V AB פתרון AB 30 R3 20 R

שאלה 1 V AB פתרון AB 30 R3 20 R תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשעד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר

Διαβάστε περισσότερα

סטודנטים יקרים. לפניכם ספר מבחנים בקורס ניהול ובחירת תיקי השקעות. הספר הוא חלק מקורס חדשני וראשון מסוגו בארץ בנושא זה, המועבר ברשת האינטרנט.

סטודנטים יקרים. לפניכם ספר מבחנים בקורס ניהול ובחירת תיקי השקעות. הספר הוא חלק מקורס חדשני וראשון מסוגו בארץ בנושא זה, המועבר ברשת האינטרנט. סטודנטים יקרים לפניכם ספר מבחנים בקורס ניהול ובחירת תיקי השקעות. הספר הוא חלק מקורס חדשני וראשון מסוגו בארץ בנושא זה, המועבר ברשת האינטרנט.On-line הקורס באתר כולל פתרונות מלאים לספר התרגילים, וכן את התיאוריה

Διαβάστε περισσότερα

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin( א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π

Διαβάστε περισσότερα

תרגיל 7 פונקציות טריגונומטריות הערות

תרגיל 7 פונקציות טריגונומטריות הערות תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =

Διαβάστε περισσότερα

gcd 24,15 = 3 3 =

gcd 24,15 = 3 3 = מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =

Διαβάστε περισσότερα

סיכום- בעיות מינימוםמקסימום - שאלון 806

סיכום- בעיות מינימוםמקסימום - שאלון 806 סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,

Διαβάστε περισσότερα

ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים (

ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים ( תכנון ניסויים כאשר קיימת אישביעות רצון מהמצב הקיים (למשל כשלים חוזרים בבקרת תהליכים סטטיסטית) נחפש דרכים לשיפור/ייעול המערכת. ניתן לבצע ניסויים על גורם בודד, שני גורמים או יותר. ניסויים עם גורם בודד: נבצע

Διαβάστε περισσότερα

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשעב זהויות טריגונומטריות תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si

Διαβάστε περισσότερα

סטודנטים יקרים. לפניכם ספר תרגילים בקורס מימון. הספר הוא חלק מקורס חדשני וראשון מסוגו בארץ בנושא זה, המועבר ברשת האינטרנט.On-line

סטודנטים יקרים. לפניכם ספר תרגילים בקורס מימון. הספר הוא חלק מקורס חדשני וראשון מסוגו בארץ בנושא זה, המועבר ברשת האינטרנט.On-line סטודנטים יקרים לפניכם ספר תרגילים בקורס מימון. הספר הוא חלק מקורס חדשני וראשון מסוגו בארץ בנושא זה, המועבר ברשת האינטרנט.On-line הקורס באתר כולל פתרונות מלאים לספר התרגילים, וכן את התיאוריה הרלוונטית לכל

Διαβάστε περισσότερα

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p

Διαβάστε περισσότερα

כל הזכויות שמורות ליאיר-יהודה כרמל נ"י. כלים סטטיסטיים לניתוח הסיכון: - שווה ערך ודאי: - שווה ערך ודאי והתאמה לסיכון: - התאמה לסיכון: -

כל הזכויות שמורות ליאיר-יהודה כרמל ני. כלים סטטיסטיים לניתוח הסיכון: - שווה ערך ודאי: - שווה ערך ודאי והתאמה לסיכון: - התאמה לסיכון: - - 3-5 - 5-6 - 7-9 - 9-1 - 1-1 - 14-15 - 15-16 - 17-19 - 1 - - 5-6 - 7-9 - 3-34 - 36-37 - 38-4 - 4-43 - 44-47 - 5-58 - 6-61 - 6 כלים סטטיסטיים לניתוח הסיכון: - שווה ערך ודאי: - שווה ערך ודאי והתאמה לסיכון:

Διαβάστε περισσότερα

גוּל, בּ ש ב יל הת רגוּל... סטודנטים יקרים לפניכם ספר עזר לשימוש במחשבון פיננסי מסוג -.FC-100V/FC-200V

גוּל, בּ ש ב יל הת רגוּל... סטודנטים יקרים לפניכם ספר עזר לשימוש במחשבון פיננסי מסוג -.FC-100V/FC-200V עמוד 1 מתוך 21 סטודנטים יקרים לפניכם ספר עזר לשימוש במחשבון פיננסי מסוג -.FC-100V/FC-200V ספר זה נכתב בשקידה רבה ע"מ לשמש לכם לעזר כדי להכיר מקרוב יותר את השימוש במחשבון הפיננסי בצורה ידידותית למשתמש.

Διαβάστε περισσότερα

תרגול מס' 6 פתרון מערכת משוואות ליניארית

תרגול מס' 6 פתרון מערכת משוואות ליניארית אנליזה נומרית 0211 סתיו - תרגול מס' 6 פתרון מערכת משוואות ליניארית נרצה לפתור את מערכת המשוואות יהי פתרון מקורב של נגדיר את השארית: ואת השגיאה: שאלה 1: נתונה מערכת המשוואות הבאה: הערך את השגיאה היחסית

Διαβάστε περισσότερα

עמוד 1) מבוא 2) ריבית ד) ריבית ריאלית. 7) ערך נוכחי

עמוד 1) מבוא 2) ריבית ד) ריבית ריאלית. 7) ערך נוכחי 1 בס"ד קורס מימון- תוכן עניינים 2 2 2 4 5 6 7 עמוד 1) מבוא 2) ריבית 3) ריבית דריבית 4) ערך עתידי 5) ערך עתידי עם שער ריבית המשתנה מתקופה לתקופה 6) ערך עתידי של סדרת השקעות שוות (ערך עתידי סדרתי) 7) ערך

Διαβάστε περισσότερα

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים TECHNION Iael Intitute of Technology, Faculty of Mechanical Engineeing מבוא לבקרה (034040) גליון תרגילי בית מס 5 d e C() y P() - ציור : דיאגרמת הבלוקים? d(t) ו 0 (t) (t),c() 3 +,P() + ( )(+3) שאלה מס נתונה

Διαβάστε περισσότερα

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא

Διαβάστε περισσότερα

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)

Διαβάστε περισσότερα

x = r m r f y = r i r f

x = r m r f y = r i r f דירוג קרנות נאמנות - מדד אלפא מול מדד שארפ. )נספחים( נספח א': חישוב מדד אלפא. מדד אלפא לדירוג קרנות נאמנות מוגדר באמצעות המשוואה הבאה: כאשר: (1) r i r f = + β * (r m - r f ) r i r f β - התשואה החודשית

Διαβάστε περισσότερα

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה

Διαβάστε περισσότερα

שם התלמיד/ה הכיתה שם בית הספר. Page 1 of 18

שם התלמיד/ה הכיתה שם בית הספר. Page 1 of 18 שם התלמיד/ה הכיתה שם בית הספר ה Page of 8 0x = 3x + שאלה פ תרו את המשוואה שלפניכם. x = תשובה: שאלה בבחירות למועצת תלמידים קיבל רן 300 קולות ונעמה קיבלה 500 קולות. מה היחס בין מספר הקולות שקיבל רן למספר

Διαβάστε περισσότερα

Logic and Set Theory for Comp. Sci.

Logic and Set Theory for Comp. Sci. 234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =

Διαβάστε περισσότερα

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( ) פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד a d U c M ( יהי b (R) a b e ל (R M ( (אין צורך להוכיח). מצאו קבוצה פורשת ל. U בדקו ש - U מהווה תת מרחב ש a d U M (R) Sp,,, c a e

Διαβάστε περισσότερα

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות

Διαβάστε περισσότερα

תרגיל 13 משפטי רול ולגראנז הערות

תרגיל 13 משפטי רול ולגראנז הערות Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון

Διαβάστε περισσότερα

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 12

מתמטיקה בדידה תרגול מס' 12 מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: נוסחאות נסיגה נוסחאות נסיגה באמצעות פונקציות יוצרות נוסחאות נסיגה באמצעות פולינום אופייני נוסחאות נסיגה לעתים מפורש לבעיה קומבינטורית אינו ידוע, אך יחסית קל להגיע

Διαβάστε περισσότερα

(ספר לימוד שאלון )

(ספר לימוד שאלון ) - 40700 - פתרון מבחן מס' 7 (ספר לימוד שאלון 035804) 09-05-2017 _ ' i d _ i ' d 20 _ i _ i /: ' רדיוס המעגל הגדול: רדיוס המעגל הקטן:, לכן שטח העיגול הגדול: / d, לכן שטח העיגול הקטן: ' d 20 4 D 80 Dd 4 /:

Διαβάστε περισσότερα

גבול ורציפות של פונקציה סקלרית שאלות נוספות

גבול ורציפות של פונקציה סקלרית שאלות נוספות 08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך

Διαβάστε περισσότερα

הסתברות שבתחנה יש 0 מוניות ו- 0 נוסעים. הסתברות שבתחנה יש k-t נוסעים ו- 0 מוניות. λ λ λ λ λ λ λ λ P...

הסתברות שבתחנה יש 0 מוניות ו- 0 נוסעים. הסתברות שבתחנה יש k-t נוסעים ו- 0 מוניות. λ λ λ λ λ λ λ λ P... שאלה תורת התורים קצב הגעת נוסעים לתחנת מוניות מפולג פואסונית עם פרמטר λ. קצב הגעת המוניות מפולג פואסונית עם פרמטר µ. אם נוסע מגיע לתחנה כשיש בה מוניות, הוא מייד נוסע במונית. אם מונית מגיעה לתחנה כשיש בתחנה

Διαβάστε περισσότερα

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשעד פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה

Διαβάστε περισσότερα

"קשר-חם" : לקידום שיפור וריענון החינוך המתמטי

קשר-חם : לקידום שיפור וריענון החינוך המתמטי הטכניון - מכון טכנולוגי לישראל המחלקה להוראת הטכנולוגיה והמדעים "קשר-חם" : לקידום שיפור וריענון החינוך המתמטי נושא: חקירת משוואות פרמטריות בעזרת גרפים הוכן ע"י: אביבה ברש. תקציר: בחומר מוצגת דרך לחקירת

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 2

אלגברה ליניארית 1 א' פתרון 2 אלגברה ליניארית א' פתרון 3 4 3 3 7 9 3. נשתמש בכתיבה בעזרת מטריצה בכל הסעיפים. א. פתרון: 3 3 3 3 3 3 9 אז ישנו פתרון יחיד והוא = 3.x =, x =, x 3 3 הערה: אפשר גם לפתור בדרך קצת יותר ארוכה, אבל מבלי להתעסק

Διαβάστε περισσότερα

{ : Halts on every input}

{ : Halts on every input} אוטומטים - תרגול 13: רדוקציות, משפט רייס וחזרה למבחן E תכונה תכונה הינה אוסף השפות מעל.(property המקיימות תנאים מסוימים (תכונה במובן של Σ תכונה לא טריביאלית: תכונה היא תכונה לא טריוויאלית אם היא מקיימת:.

Διαβάστε περισσότερα

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון. Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.

Διαβάστε περισσότερα

PMT. i j ב. ג. ד. ה. ב. ג. ד. ה. אינטרוול זמן. j t

PMT. i j ב. ג. ד. ה. ב. ג. ד. ה. אינטרוול זמן. j t יסודות המימון סיכום 1. מציאת ערך נוכחי של תשלום בודד בעתיד PV i PMT 1 r j t משתמשים בנוסחה כאשר רוצים למצוא ערך נוכחי של תשלום בוד i) הוא הערך הנוכחי אותו רוצים למצוא (ערך נוכחי בתקופה PV j) הוא התשלום

Διαβάστε περισσότερα

קיום ויחידות פתרונות למשוואות דיפרנציאליות

קיום ויחידות פתרונות למשוואות דיפרנציאליות קיום ויחידות פתרונות למשוואות דיפרנציאליות 1 מוטיבציה למשפט הקיום והיחידות אנו יודעים לפתור משוואות דיפרנציאליות ממחלקות מסוימות, כמו משוואות פרידות או משוואות לינאריות. עם זאת, קל לכתוב משוואה דיפרנציאלית

Διαβάστε περισσότερα

s ק"מ קמ"ש מ - A A מ - מ - 5 p vp v=

s קמ קמש מ - A A מ - מ - 5 p vp v= את זמני הליכת הולכי הרגל עד הפגישות שלהם עם רוכב האופניים (שעות). בגרות ע מאי 0 מועד קיץ מבוטל שאלון 5006 מהירות - v קמ"ש t, א. () נסמן ב- p נכניס את הנתונים לטבלה מתאימה: רוכב אופניים עד הפגישה זמן -

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשעו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים: לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( 2016 2015 )............................................................................................................. חלק ראשון: שאלות שאינן להגשה.1

Διαβάστε περισσότερα

פתרון תרגיל דוגמא מרחב המדגם הוא כל הקומבינציות של 20 חודשי הולדת. לכל ילד 12 אפשרויות,לכן. לכן -

פתרון תרגיל דוגמא מרחב המדגם הוא כל הקומבינציות של 20 חודשי הולדת. לכל ילד 12 אפשרויות,לכן. לכן - פתרון תרגיל דוגמא מרחב המדגם הוא כל הקומבינציות של 0 חודשי הולדת לכל ילד אפשרויות,לכן לכן - 0 A 0 מספר קומבינציות שלא מכילות את חודש תשרי הוא A) המאורע המשלים ל- B הוא "אף תלמיד לא נולד באחד מהחודשים אב/אלול",

Διαβάστε περισσότερα

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ משוואות רקורסיביות הגדרה: רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים למשל: T = Θ 1 if = 1 T + Θ if > 1 יונתן יניב, דוד וייץ 1 דוגמא נסתכל על האלגוריתם הבא למציאת

Διαβάστε περισσότερα

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים.

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. א{ www.sikumuna.co.il מהי קבוצה? קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. קבוצה היא מושג יסודי במתמטיקה.התיאור האינטואיטיבי של קבוצה הוא אוסף של עצמים כלשהם. העצמים הנמצאים בקבוצה הם איברי הקבוצה.

Διαβάστε περισσότερα

אלגברה מודרנית פתרון שיעורי בית 6

אלגברה מודרנית פתרון שיעורי בית 6 אלגברה מודרנית פתרון שיעורי בית 6 15 בינואר 016 1. יהי F שדה ויהיו q(x) p(x), שני פולינומים מעל F. מצאו פולינומים R(x) S(x), כך שמתקיים R(x),p(x) = S(x)q(x) + כאשר deg(q),deg(r) < עבור המקרים הבאים: (תזכורת:

Διαβάστε περισσότερα

The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן

The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן .. The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן 03.01.16 . Factor Models.i = 1,..., n,r i נכסים, תשואות (משתנים מקריים) n.e[f j ] נניח = 0.j = 1,..., d,f j

Διαβάστε περισσότερα

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b

Διαβάστε περισσότερα

הרצאה. α α פלוני, וכדומה. הזוויות α ל- β שווה ל-

הרצאה. α α פלוני, וכדומה. הזוויות α ל- β שווה ל- מ'' ל'' Deprmen of Applied Mhemics Holon Acdemic Insiue of Technology PROBABILITY AND STATISTICS Eugene Knzieper All righs reserved 4/5 חומר לימוד בקורס "הסתברות וסטטיסטיקה" מאת יוג'ין קנציפר כל הזכויות

Διαβάστε περισσότερα

סדרות - תרגילים הכנה לבגרות 5 יח"ל

סדרות - תרגילים הכנה לבגרות 5 יחל סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר

Διαβάστε περισσότερα

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תש"ע מועד ב', מיום 14/7/2010 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.

תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תשע מועד ב', מיום 14/7/2010 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן. תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תש"ע מועד ב', מיום 14/7/2010 שאלון: 316, 035806 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 E נתון: 1 רוכב אופניים רכב מעיר A לעיר B

Διαβάστε περισσότερα

גמישויות. x p Δ p x נקודתית. 1,1

גמישויות. x p Δ p x נקודתית. 1,1 גמישויות הגמישות מודדת את רגישות הכמות המבוקשת ממצרך כלשהוא לשינויים במחירו, במחירי מצרכים אחרים ובהכנסה על-מנת לנטרל את השפעת יחידות המדידה, נשתמש באחוזים על-מנת למדוד את מידת השינויים בדרך כלל הגמישות

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.

תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשעא, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן. בB בB תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: 035804 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 מכונית נסעה מעיר A לעיר B על כביש ראשי

Διαβάστε περισσότερα

בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד

בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד סמסטר: א' מועד: א' תאריך: יום ה' 0100004 שעה: 04:00 משך הבחינה: שלוש שעות חומר עזר: אין בבחינה שני פרקים בפרק הראשון 8 שאלות אמריקאיות ולכל אחת מהן מוצעות

Διαβάστε περισσότερα

תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME

תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME הנדסת המישור - תרגילים הכנה לבגרות תרגילים הנדסת המישור - תרגילים הכנה לבגרות באמצעות Q תרגיל 1 מעגל העובר דרך הקודקודים ו- של המקבילית ו- חותך את האלכסונים שלה בנקודות (ראה ציור) מונחות על,,, הוכח כי

Διαβάστε περισσότερα

מבחן מועד ב' בהצלחה! אנא קיראו היטב את ההוראות שלהלן: ודאו כי כל עמודי הבחינה נמצאים בידכם.

מבחן מועד ב' בהצלחה! אנא קיראו היטב את ההוראות שלהלן: ודאו כי כל עמודי הבחינה נמצאים בידכם. 7.8.2017 מבחן מועד ב' תאריך הבחינה: שמות המרצים: מר בועז ארד פרופ' עמוס ביימל מר יהונתן כהן דר' עדן כלמטץ' גב' מיכל שמש אנא קיראו היטב את ההוראות שלהלן: שם הקורס: תכנון אלגוריתמים מספר הקורס: 202-1-2041

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 5

מתמטיקה בדידה תרגול מס' 5 מתמטיקה בדידה תרגול מס' 5 נושאי התרגול: פונקציות 1 פונקציות הגדרה 1.1 פונקציה f מ A (התחום) ל B (הטווח) היא קבוצה חלקית של A B המקיימת שלכל a A קיים b B יחיד כך ש. a, b f a A.f (a) = ιb B. a, b f או, בסימון

Διαβάστε περισσότερα

ב ה צ ל ח ה! /המשך מעבר לדף/

ב ה צ ל ח ה! /המשך מעבר לדף/ בגרות לבתי ספר על יסודיים סוג הבחינה: מדינת ישראל קיץ תשע"א, מועד ב מועד הבחינה: משרד החינוך 035804 מספר השאלון: דפי נוסחאות ל 4 יחידות לימוד נספח: מתמטיקה 4 יחידות לימוד שאלון ראשון תכנית ניסוי )שאלון

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשעו (2016) לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור

Διαβάστε περισσότερα

3-9 - a < x < a, a < x < a

3-9 - a < x < a, a < x < a 1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.

Διαβάστε περισσότερα

םיאלמ תונורתפ 20,19,18,17,16 םינחבמל 1 להי רחש ןולאש הקיטמתמב סוקופ

םיאלמ תונורתפ 20,19,18,17,16 םינחבמל 1 להי רחש ןולאש הקיטמתמב סוקופ פתרונות מלאים למבחנים 0,9,8,7,6 פוקוס במתמטיקה שאלון 3580 שחר יהל העתקה ו/או צילום מספר זה הם מעשה לא חינוכי, המהווה עברה פלילית. פתרון מבחן מתכונת מס' 6 פתרון שאלה א. נקודות A ו- B נמצאות על הפונקציה

Διαβάστε περισσότερα

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות

Διαβάστε περισσότερα

אלגוריתמים / תרגיל #1

אלגוריתמים / תרגיל #1 1 אריאל סטולרמן אלגוריתמים / תרגיל #1 קבוצה 02 (1) טענה: אם בגרף לא מכוון וקשיר יש 2 צמתים מדרגה אי זוגית ושאר הצמתים מדרגה זוגית, זהו תנאי הכרחי ומספיק לקיום מסלול אויילר בגרף. הערות: הוכחה: התוספת כי

Διαβάστε περισσότερα

קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים.

קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל לוח יש את אותה כמות מטען, אך הסימנים הם הפוכים. קבל קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים. על לוח אחד מטען Q ועל לוח שני מטען Q. הפוטנציאל על כל לוח הוא

Διαβάστε περισσότερα

תכנית הכשרה מסחר באופציות

תכנית הכשרה מסחר באופציות תכנית הכשרה מסחר באופציות שיעור 5 B&S)) Black - Scholes מודל B&S תכונות אופציות מודל בלק ושולס B&S מודל כלכלי לתמחור אופציות שפותח ע"י צמד המתמטיקאים פישר בלאק ומיירון שולס בתחילת שנות ה- 70 וזיכה את המחברים

Διαβάστε περισσότερα

גיאומטריה גיאומטריה מצולעים ניב רווח פסיכומטרי

גיאומטריה גיאומטריה מצולעים ניב רווח פסיכומטרי מצולע הוא צורה דו ממדית, עשויה קו "שבור" סגור. לדוגמה: משולש, מרובע, מחומש, משושה וכו'. אלכסון במצולע הוא הקו המחבר בין שני קדקודים שאינם סמוכים זה לזה. לדוגמה: בסרטוט שלפניכם EC אלכסון במצולע. ABCDE (

Διαβάστε περισσότερα

( )( ) ( ) f : B C היא פונקציה חח"ע ועל מכיוון שהיא מוגדרת ע"י. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חח"ע אז ועל פי הגדרת

( )( ) ( ) f : B C היא פונקציה חחע ועל מכיוון שהיא מוגדרת עי. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חחע אז ועל פי הגדרת הרצאה 7 יהיו :, : C פונקציות, אז : C חח"ע ו חח"ע,אז א אם על ו על,אז ב אם ( על פי הגדרת ההרכבה )( x ) = ( )( x x, כךש ) x א יהיו = ( x ) x חח"ע נקבל ש מכיוון ש חח"ע נקבל ש מכיוון ש ( b) = c כך ש b ( ) (

Διαβάστε περισσότερα

פתרון תרגיל בית 6 מבוא לתורת החבורות סמסטר א תשע ז

פתרון תרגיל בית 6 מבוא לתורת החבורות סמסטר א תשע ז פתרון תרגיל בית 6 מבוא לתורת החבורות 88-211 סמסטר א תשע ז הוראות בהגשת הפתרון יש לרשום שם מלא, מספר ת ז ומספר קבוצת תרגול. תאריך הגשת התרגיל הוא בתרגול בשבוע המתחיל בתאריך ג טבת ה תשע ז, 1.1.2017. שאלות

Διαβάστε περισσότερα

קורס: מבוא למיקרו כלכלה שיעור מס. 17 נושא: גמישויות מיוחדות ושיווי משקל בשוק למוצר יחיד

קורס: מבוא למיקרו כלכלה שיעור מס. 17 נושא: גמישויות מיוחדות ושיווי משקל בשוק למוצר יחיד גמישות המחיר ביחס לכמות= X/ Px * Px /X גמישות קשתית= X(1)+X(2) X/ Px * Px(1)+Px(2)/ מקרים מיוחדים של גמישות אם X שווה ל- 0 הגמישות גם כן שווה ל- 0. זהו מצב של ביקוש בלתי גמיש לחלוטין או ביקוש קשיח לחלוטין.

Διαβάστε περισσότερα

החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח.

החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח. החשמלי השדה הקדמה: מושג השדה חשמלי נוצר, כאשר הפיזיקאי מיכאל פרדיי, ניסה לתת הסבר אינטואיטיבי לעובדה שמטענים מפעילים זה על זה כוחות ללא מגע ביניהם. לטענתו, כל עצם בעל מטען חשמלי יוצר מסביבו שדה המשתרע

Διαβάστε περισσότερα

אלקטרומגנטיות אנליטית תירגול #2 סטטיקה

אלקטרומגנטיות אנליטית תירגול #2 סטטיקה Analytical Electromagnetism Fall Semester 202-3 אלקטרומגנטיות אנליטית תירגול #2 סטטיקה צפיפויות מטען וזרם צפיפות מטען נפחית ρ מוגדרת כך שאינטגרל נפחי עליה נותן את המטען הכולל Q dv ρ היחידות של ρ הן מטען

Διαβάστε περισσότερα

אלגברה ליניארית (1) - תרגיל 6

אלגברה ליניארית (1) - תרגיל 6 אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,

Διαβάστε περισσότερα

ניהול סיכום הרבון ""ר ותמיכה באחזקה אחזקה MTBF = 1. t = i i MTTR זמינות BTBM. i i

ניהול סיכום הרבון ר ותמיכה באחזקה אחזקה MTBF = 1. t = i i MTTR זמינות BTBM. i i הקשר בין אחזקה לבין אמינות: דד// אחזקה כדי למצוא משך פעולה בטרם יש צורך לבצע אחזקה במערכת בעלת אמינות או MTBF באמינות נדרשת (בין ל- ) יש לבצע את החישוב הבא: ln r( ln r( MTBF MTBF s MTTR s ( T ) זמן ממוצע

Διαβάστε περισσότερα

אוטומטים- תרגול 8 שפות חסרות הקשר

אוטומטים- תרגול 8 שפות חסרות הקשר אוטומטים- תרגול 8 שפות חסרות הקשר דקדוק חסר הקשר דקדוק חסר הקשר הנו רביעיה > S

Διαβάστε περισσότερα

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה

Διαβάστε περισσότερα

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1 1 טורים כלליים 1. 1 התכנסות בהחלט מתכנס. מתכנס בהחלט אם n a הגדרה.1 אומרים שהטור a n משפט 1. טור מתכנס בהחלט הוא מתכנס. הוכחה. נוכיח עם קריטריון קושי. יהי אפסילון גדול מ- 0, אז אנחנו יודעים ש- n N n>m>n

Διαβάστε περισσότερα

מימון דף נוסחאות + = = 1+ 4 rnekova Revonit. 1 (1 d) reffective. effective. effective. reff. Simple

מימון דף נוסחאות + = = 1+ 4 rnekova Revonit. 1 (1 d) reffective. effective. effective. reff. Simple מימון דף נוסחאות ריבית אפקטיבית ריבית פשוטה = ריבית נקובה = ריבית נומינאלית. המעבר מריבית נקובה לריבית אפקטיבית המחושבת ב N תקופות: rnekov + = + reffective N וכאשר N שואף לאינסוף (הריבית מחושבת באופן רציף):

Διαβάστε περισσότερα

הערכת שווי חברות ערן בן חורין וניר יוסף

הערכת שווי חברות ערן בן חורין וניר יוסף שמורות ה א ו נ י ב ר ס י ט ה ה ע ב ר י ת ב י ר ו ש ל י ם The Hebrew University of Jerusalem בית הספר למנהל עסקים מיסודם של דניאל ורפאל רקאנטי EMBA Accounting Financial Management הערכת שווי חברות ערן בן

Διαβάστε περισσότερα

b2n-1 ב. נשתמש בנוסחת סכום סדרה הנדסית אינסופית יורדת כדי לרשום את הנתון: 1-q = 0.8 b 1-q 1=0.8(1+q) q= 1 4 פתרון לשאלה 2

b2n-1 ב. נשתמש בנוסחת סכום סדרה הנדסית אינסופית יורדת כדי לרשום את הנתון: 1-q = 0.8 b 1-q 1=0.8(1+q) q= 1 4 פתרון לשאלה 2 פתרון מבחן מס' פתרון לשאלה א. להוכיח כי סדרה c היא סדרה הנדסית משמע להוכיח כי היחס בין איברים סמוכים בסדרה הוא מספר n c n +n c מכיוון ש- q הוא מספר קבוע, סדרה = b n+ = bq n =q cn bn- bq n- :b n קבוע. אם

Διαβάστε περισσότερα

את כיוון המהירות. A, B

את כיוון המהירות. A, B קיץ 6 AB, B A א. וקטור שינוי המהירות (בקטע מ A ל B), עפ"י ההגדרה, הוא: (עפ"י הסימונים שבתרשים המהירות בנקודה A, למשל, היא ). נמצא וקטור זה, באופן גרפי, ונזכור כי אין משמעות למיקום הוקטורים:. (הערה עבור

Διαβάστε περισσότερα

לדוגמא : dy dx. xdx = x. cos 1. cos. x dx 2. dx = 2xdx לסיכום: 5 sin 5 1 = + ( ) הוכחה: [ ] ( ) ( )

לדוגמא : dy dx. xdx = x. cos 1. cos. x dx 2. dx = 2xdx לסיכום: 5 sin 5 1 = + ( ) הוכחה: [ ] ( ) ( ) 9. חשבון אינטגרלי. עד כה עסקנו בבעיות של מציאת הנגזרת של פונקציה נתונה. נשאלת השאלה בהינתן נגזרת האם נוכל למצוא את הפונקציה המקורית (הפונקציה שנגזרתה נתונה)? זוהי שאלה קשה יותר, חשבון אינטגרלי דן בבעיה

Διαβάστε περισσότερα

יווקיינ לש תוביציה ןוירטירק

יווקיינ לש תוביציה ןוירטירק יציבות מגבר שרת הוא מגבר משוב. בכל מערכת משוב קיימת בעיית יציבות מהבחינה הדינמית (ולא מבחינה נקודת העבודה). חשוב לוודא שהמגבר יציב על-מנת שלא יהיו נדנודים. קריטריון היציבות של נייקוויסט: נתונה נערכת המשוב

Διαβάστε περισσότερα

x a x n D f (iii) x n a ,Cauchy

x a x n D f (iii) x n a ,Cauchy גבולות ורציפות גבול של פונקציה בנקודה הגדרה: קבוצה אשר מכילה קטע פתוח שמכיל את a תקרא סביבה של a. קבוצה אשר מכילה קטע פתוח שמכיל את a אך לא מכילה את a עצמו תקרא סביבה מנוקבת של a. יהו a R ו f פונקציה מוגדרת

Διαβάστε περισσότερα

הרצאה 7 טרנזיסטור ביפולרי BJT

הרצאה 7 טרנזיסטור ביפולרי BJT הרצאה 7 טרנזיסטור ביפולרי JT תוכן עניינים: 1. טרנזיסטור ביפולרי :JT מבנה, זרם, תחומי הפעולה..2 מודל: S MOLL (אברסמול). 3. תחומי הפעולה של הטרנזיסטור..1 טרנזיסטור ביפולרי.JT מבנה: PNP NPN P N N P P N PNP

Διαβάστε περισσότερα

פתרון 4. a = Δv Δt = = 2.5 m s 10 0 = 25. y = y v = 15.33m s = 40 2 = 20 m s. v = = 30m x = t. x = x 0.

פתרון 4. a = Δv Δt = = 2.5 m s 10 0 = 25. y = y v = 15.33m s = 40 2 = 20 m s. v = = 30m x = t. x = x 0. בוחן לדוגמא בפיזיקה - פתרון חומר עזר: מחשבון ודף נוסחאות מצורף זמן הבחינה: שלוש שעות יש להקפיד על כתיבת יחידות חלק א יש לבחור 5 מתוך 6 השאלות 1. רכב נוסע במהירות. 5 m s לפתע הנהג לוחץ על דוושת הבלם והרכב

Διαβάστε περισσότερα

תאריך עדכון אחרון: 27 בפברואר ניתוח לשיעורין analysis) (amortized הוא טכניקה לניתוח זמן ריצה לסדרת פעולות, אשר מאפשר קבלת

תאריך עדכון אחרון: 27 בפברואר ניתוח לשיעורין analysis) (amortized הוא טכניקה לניתוח זמן ריצה לסדרת פעולות, אשר מאפשר קבלת תרגול 3 ניתוח לשיעורין תאריך עדכון אחרון: 27 בפברואר 2011. ניתוח לשיעורין analysis) (amortized הוא טכניקה לניתוח זמן ריצה לסדרת פעולות, אשר מאפשר קבלת חסמי זמן ריצה נמוכים יותר מאשר חסמים המתקבלים כאשר

Διαβάστε περισσότερα

אוסף שאלות מס. 3 פתרונות

אוסף שאלות מס. 3 פתרונות אוסף שאלות מס. 3 פתרונות שאלה מצאו את תחום ההגדרה D R של כל אחת מהפונקציות הבאות, ושרטטו אותו במישור. f (x, y) = x + y x y, f 3 (x, y) = f (x, y) = xy x x + y, f 4(x, y) = xy x y f 5 (x, y) = 4x + 9y 36,

Διαβάστε περισσότερα

(2) מיונים השאלות. .0 left right n 1. void Sort(int A[], int left, int right) { int p;

(2) מיונים השאלות. .0 left right n 1. void Sort(int A[], int left, int right) { int p; מבני נתונים פתרונות לסט שאלות דומה לשאלות בנושאים () זמני ריצה של פונקציות רקורסיביות () מיונים השאלות פתרו את נוסחאות הנסיגה בסעיפים א-ג על ידי הצבה חוזרת T() כאשר = T() = T( ) + log T() = T() כאשר =

Διαβάστε περισσότερα

1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A )

1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A ) הסתברות למתמטיקאים c ארזים 3 במאי 2017 1 תוחלת מותנה הגדרה 1.1 לכל משתנה מקרי X אינטגרבילית ותת סיגמא אלגברה G F קיים משתנה מקרי G) Y := E (X המקיים: E (X1 A ) = E (Y 1 A ).G מדיד לפי Y.1.E Y

Διαβάστε περισσότερα

חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד.

חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד. חידה לחימום ( M ש- N > (כך מספרים טבעיים Mו- N שappleי appleתוappleים בעלי אותה הזוגיות (שappleיהם זוגיים או שappleיהם אי - זוגיים). המספרים הטבעיים מ- Mעד Nמסודרים בשורה, ושappleי שחקappleים משחקים במשחק.

Διαβάστε περισσότερα

-107- גיאומטריה זוויות מבוא מטרתנו בפרק זה היא לחזור על המושגים שנלמדו ולהעמיק את הלימוד בנושא זה.

-107- גיאומטריה זוויות מבוא מטרתנו בפרק זה היא לחזור על המושגים שנלמדו ולהעמיק את הלימוד בנושא זה. -07- בשנים קודמות למדתם את נושא הזוויות. גיאומטריה זוויות מבוא מטרתנו בפרק זה היא לחזור על המושגים שנלמדו ולהעמיק את הלימוד בנושא זה. זווית נוצרת על-ידי שתי קרניים היוצאות מנקודה אחת. הנקודה נקראת קדקוד

Διαβάστε περισσότερα

רחת 3 קרפ ( שוקיבה תמוקע)שוקיבה תיצקנופ

רחת 3 קרפ ( שוקיבה תמוקע)שוקיבה תיצקנופ - 41 - פרק ג' התנהגות צרכן פונקצית הביקוש(עקומת הביקוש ( - 42 - פרק 3: תחרות משוכללת: התנהגות צרכן מתארת את הקשר שבין כמות מבוקשת לבין מחיר השוק. שיפועה השלילי של עקומת הביקוש ממחיש את הקשר ההפוך הקיים

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 13

מתמטיקה בדידה תרגול מס' 13 מתמטיקה בדידה תרגול מס' 13 נושאי התרגול: תורת הגרפים. 1 מושגים בסיסיים נדון בגרפים מכוונים. הגדרה 1.1 גרף מכוון הוא זוג סדור E G =,V כך ש V ו E. V הגרף נקרא פשוט אם E יחס אי רפלקסיבי. כלומר, גם ללא לולאות.

Διαβάστε περισσότερα

מבוא לרשתות - תרגול מס 5 תורת התורים

מבוא לרשתות - תרגול מס 5 תורת התורים מ( מבוא לרשתות - תרגול מס 5 תורת התורים M / M / תאור המערכת: תור שרת שירות פואסוני הגעה פואסונית הערות: במערכת M/M/ יש חוצץ אינסופי ולכן יכולים להיות בה אינסוף לקוחות, כאשר מקבל שירות והשאר ממתינים. קצב

Διαβάστε περισσότερα

הגדרה: מצבים k -בני-הפרדה

הגדרה: מצבים k -בני-הפרדה פרק 12: שקילות מצבים וצמצום מכונות לעי תים קרובות, תכנון המכונה מתוך סיפור המעשה מביא להגדרת מצבים יתי רים states) :(redundant הפונקציה שהם ממלאים ניתנת להשגה באמצעו ת מצבים א חרים. כיוון שמספר רכיבי הזיכרון

Διαβάστε περισσότερα

מתמטיקה שאלון ו' נקודות. חשבון דיפרנציאלי ואינטגרלי, טריגונומטריה שימוש במחשבון גרפי או באפשרויות התכנות עלול לגרום לפסילת הבחינה.

מתמטיקה שאלון ו' נקודות. חשבון דיפרנציאלי ואינטגרלי, טריגונומטריה שימוש במחשבון גרפי או באפשרויות התכנות עלול לגרום לפסילת הבחינה. בגרות לבתי ספר על-יסודיים מועד הבחינה: תשס"ח, מספר השאלון: 05006 נספח:דפי נוסחאות ל- 4 ול- 5 יחידות לימוד מתמטיקה שאלון ו' הוראות לנבחן משך הבחינה: שעה ושלושה רבעים. מבנה השאלון ומפתח ההערכה: בשאלון זה

Διαβάστε περισσότερα

התפלגות χ: Analyze. Non parametric test

התפלגות χ: Analyze. Non parametric test מבחני חי בריבוע לבדיקת טיב התאמה דוגמא: זורקים קוביה 300 פעמים. להלן התוצאות שהתקבלו: 6 5 4 3 2 1 תוצאה 41 66 45 56 49 43 שכיחות 2 התפלגות χ: 0.15 התפלגות חי בריבוע עבור דרגות חופש שונות 0.12 0.09 0.06

Διαβάστε περισσότερα

הרצאה 3 קומבינטוריקה נוסחת ניוטון משפט מולטינומי. + t עבור ( ) + t

הרצאה 3 קומבינטוריקה נוסחת ניוטון משפט מולטינומי. + t עבור ( ) + t ROBABILITY AND STATISTIS הסתברות וסטטיסטיקה יוג'ין מאת קנציפר Eugee Kazieper All rights reserved 5/6 כל הזכויות שמורות 5/6 הרצאה קומבינטוריקה עצרת של מספר ופונקצית גאמא עקרון הכפל סידורים ובחירות תמורות

Διαβάστε περισσότερα