arxiv: v1 [astro-ph.sr] 24 Dec 2011
|
|
- Πανόπτης Κοντολέων
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Mon. Not. R. Astron. Soc. 000,???? (2011) Printed 30 December 2011 (MN LATEX style file v2.2) arxiv: v1 [astro-ph.sr] 24 Dec 2011 WISE Circumstellar Disks in the Young Sco-Cen Association A.C. Rizzuto 1, M.J. Ireland 1,2, D.B. Zucker 1,2 1 Department of Physics and Astronomy, Macquarie University, Sydney NSW, 2109, Australia 2 Australian Astronomical Observatory, Epping NSW 2121, Australia 30 December INTRODUCTION Many young ( 1-10 Myr) stars of all types, ranging from tens of solar masses down to the smallest brown dwarves and in all environments, are surrounded by circumstellar disks (Strom et al. 1989; Lada et al. 2000; Carpenter et al. 2006). A variety of observations have provided us with an overall timeline of disk evolution. The inner portion of the disk ( 1 AU) dissipates by the age of 10 Myr in all but a small fraction of stars (Mamajek et al. 2004; Silverstone et al. 2006). From the age of 10 Myr onwards, there is an observed decline in the 24µ excess relative to the photosphere for stars of B to K type (Gáspár et al. 2009; Rieke et al. 2005). It has been postulated that planetesimal stirring though stellar ages of 5 to 20 Myr could produce an increase in the strength of the 24µm excess with age (Kenyon & Bromley 2008), however the current data do not show a statistically significant increase (Carpenter et al. 2009). The Sco-Cen association and its three subgroups-upper Scorpius (US), Upper Centaurus Lupus (UCL) and Lower Centaurus Crux (LCC)-provide three important constantage samples within which to study circumstellar disks around young stars. The subgroups have ages of 5, 16, and 17 Myr respectively, and are located less than 150 pc from the Sun (de Zeeuw et al. 1999). Previous studies (Carpenter et al. 2006, 2009) have investigated IRAC, IRS and Spitzer photometric data ranging from 4.5 to 70 µm in the US subgroup. They identified 54 stars with 24µm excesses ABSTRACT We present an analysis of the WISE photometric data for 829 stars in the Sco-Cen OB2 association, using the latest high-mass membership probabilities. We detect infrared excesses associated with 135 BAF-type stars, 99 of which are secure Sco-Cen members. There is a clear increase in excess fraction with membership probability, which can be fitted linearly. We infer that 41±5% of Sco-Cen OB2 BAF stars to have excesses, while the field star excess fraction is consistent with zero. This is the first time that the probability of non-membership has been used in the calculation of excess fractions for young stars. We do not observe any significant change in excess fraction between the three subgroups. Within our sample, we have observed that B-type association members have a significantly smaller excess fraction than A and F-type association members. Key words: circumstellar matter - open clusters and associations: individual (Sco- Cen, Sco OB2) - protoplanetary disks - planets and satellites: formation - stars: earlytype. in their sample of 205 targets and found that disks around BAF-type stars appear to be comprised of dusty debris, while disks associated with K and M-type stars are likely optically thick primordial disks which are remnants of the star formation process. The older Sco-Cen subgroups, UCL and LCC have received considerably less attention; only a handful of studies have observed small numbers of UCL and LCC stars (Su et al. 2006; Carpenter et al. 2009). The recent study by Chen et al. (2011) reports the detection of 41 new disks around F and G-type Sco-Cen stars. New Bayesian membership probabilities for the high mass members (B to F-type) of the Sco-Cen association are now available (Rizzuto et al. 2011), and preliminary photometric data from the WISE mission have been released (Wright et al. 2010). In this paper we present an analysis of the WISE photometry for Sco-Cen members to search for circumstellar disks in three constant-age samples. 2 DATA SAMPLE In this study we take our sample from the Hipparcos Sco- Cen membership study of Rizzuto et al. (2011). All stars with membership probabilities of 5% and greater were crossreferenced with the WISE preliminary data release. This resulted in a sample of 829 stars with spectral types ranging from early B to late F (B-V 0.6), brighter than 9 th visual magnitude and within the area of sky bounded by
2 2 A.C. Rizzuto et al. (285 l 360) and ( 10 b 60). Taking into consideration membership probabilities, this equates to 400 true members. Membership as described in Rizzuto et al. (2011) is based purely on kinematic and positional properties of the targets, and hence the selection is believed to be unbiased with regard to the presence of circumstellar disks. We have chosen to include the low membership probability stars in this study in order to use a potential relationship between excess fraction and probability of membership to infer a more accurate excess fraction for secure members. 3 WISE EXCESSES The WISE mission data provides photometry in four bands, W 1, W 2, W 3 and W 4, with central wavelengths of 3, 4.5, 12 and 22 µm respectively (Wright et al. 2010). In this study we present an analysis of three WISE colours: W 1-W 2, W 1-W 3, and W 1-W 4. Inspection of the WISE photometry for band W 2 shows a clear bias at the bluest end of our membership sample towards poorly fitted point-spread-functions, resulting in untrustworthy W 2 photometry. For this reason the long wavelength colours were constructed with W 1, which shows a uniform distribution across spectral type of poor photometry fits. Analysis of these three colours will provide three different classes of detected excesses: (1) excesses in all colours, (2) excesses in only the short wavelength filters, and (3) excess in only the longer or longest wavelengths. It is expected that a disk-produced excess detected at bluer colours will also be detected at longer colours, hence, excesses in only the blue colours will indicate contaminated photometry. Stellar photospheric emission is expected to vary linear with 2MASS (J-K s) colour. To determine the photospheric colours, we have applied an iterative fitting procedure. Objects which were clear outliers in the particular WISE colour were first removed and then the software package mpfit was used to fit a line to the sample. Objects separated from the fitted line by more than twice the dispersion of the residuals were then removed as outliers. The process was then repeated until no further objects were removed. This fitting procedure was carried out using only the stars with greater than 60% membership probability in order to ensure that the fitted photosphere line was that of the young Sco-Cen stars. During this fitting procedure, objects with a WISE photometric fit reduced χ 2 greater than 4 in the relevant bands were excluded, as they are likely to be extended sources with poor photometry. The criterion adopted for excess detection in the three colours was 8% for W 1-W 2, 13% for W 1-W 3 and 30% for W 1-W 4 above the expected photosphere line, plus the error on the WISE photometry. These detection thresholds were chosen conservatively such that the detections are likely to be significant even if the photosphere fit is underestimated by 10%. The colour-colour diagrams for the three WISE colours and the fits can be seen in Figure 1. Given excess detections in the three WISE colours we can remove from the sample those stars with suspect photometry. There were 19 objects with a detected excess in W 1-W 2 only, 3 in W 1-W 3 only, and 3 in W 1-W 2 and W 1- W 4 only. The 19 objects which show an excess only in the W 1-W 2 colour are likely caused by the saturation be- (a) W 1 -W 2 (b) W 1 -W 3 (c) W 1 -W 4 Figure 1. The colour-colour diagrams for the three WISE colours defined above. The blue line represents the corresponding excess detection threshold above which objects are considered to have a detectable excess. The photosphere grouping is clearly seen in each colour with fitted slopes and intercepts of (0.012,-0.18), (0.019,-0.018) and (0.22,-0.016) respectively. Blue diamonds indicate stars with detectable excesses.
3 WISE Circumstellar Disks in the Young Sco-Cen Association 3 haviour of the WISE photometry fits. When partial saturation occurs in band W 2 (brighter than 6.5 mags), the WISE photometry fitting procedure produces a systematic overestimation of the flux (Cutri et al. 2011). All 19 of these objects are in the W 2 magnitude range where flux overestimation is expected and hence we have treated these objects in our sample as having no detectable excess. In addition, we remove those objects with poor photometry fits (χ 2 > 4) in the W 1 and W 4 bands, as the remainder of the analysis makes use of the W 1-W 4 excess only; there were 95 such objects. HIP and 81891, which only show an excess in W 1-W 3 both have poor photometry fits in band W 4, and so are removed from the sample. HIP shows a poor photometry fit in the W 1 band (χ 2 = 4.6), which is only marginally above our cut (χ 2 = 4). HIP also shows a strong excess in the W 2-W 4 colour, where the photometry fits are reliable, and hence we have included HIP in our sample with a 22 µm excess. The WISE images of the 173 objects with detected excesses were then visually inspected for the presence of close, unresolved companions and contamination from excessproducing nebulosity. This yielded 27 objects with excesses not likely to be caused by a disk. HIP 68413, and 76063, which have detectable excess in W 1-W 2 and W 1-W 4, but not W 1-W 3, are included in the sample based on the image inspection. The lack of W 1-W 3 excess associated with HIP is most likely due to a large error on W 1-W 3 and the detected W 1-W 2 excess associated with HIP was found to be caused by a clearly visible diffraction spike in the W 2 image. HIP has a W 2 magnitude of 5.6, and so the W 1-W 2 excess associated with this star is most likely due to saturation. Finally, HIP shows a nebulous excess in W 1-W 3 only, and so was removed from the sample. In total, we observe reliable excesses associated with 135 objects: 28 stars in US, 53 in UCL and 54 in LCC. 4 DISCUSSION The sources investigated in this study are BAF-type stars and hence the detected excesses are expected to be produced by dusty debris disks rather than primordial gaseous disks (Carpenter et al. 2009). A clear outcome of our analysis is that the excess fraction in the three subgroups is not uniform with respect to membership probability (p). Figure 2 displays the excess fraction in 10% membership probability bins with p > 20%. We have fitted linear trends to these data. Extrapolation to 100% membership probability (i.e. certain members) along the linear fits results in excess fractions of 0.38±0.1, 0.33±0.08 and 0.46±0.13 for the three subgroups. The extrapolated excess fraction for US is larger than the observed 24 µm excess fraction in the US sample used by Carpenter et al. (2009), which was found to be 0.3 for B7-A9 stars and 0.15 for F-type stars, and is in agreement with the value of 0.33 for F and G-type US stars seen by Chen et al. (2011). For associations at the age of UCL and LCC (16, 17 Myr), Chen et al. (2005) reported a 24 µm excess fraction lower-bound of 0.35, and Rieke et al. (2005) and Su et al. (2006) observe that 60% of young stars (<30 Myr) do not have an excess. These results are consistent with our study. We do not see an increase in the 22 µm excess fraction for the two older subgroups (UCL, LCC). Previous observations have provided some evidence for a peak in the excess fraction as stars age from <10 Myr to the Myr age range (Currie et al. 2008; Gáspár et al. 2009). However, our analysis shows that in the Sco-Cen association, the excess fraction does not change significantly between the three subgroups. A recent study (Pecaut et al. 2011) suggests that the true age of US may in fact be 11 Myr, which offers a potential explanation for the lack of an excess fraction increase between the subgroups. Given the lack of statistically significant differences in excess fraction between the three Sco-Cen subgroups, the association as a whole can be explored. Figure 2d displays the linear excess fraction trend for combined sample. The extrapolated excess fraction was 41±5% for certain members, and consistent with 0% for field stars, with a χ 2 of 1.3 for the fit. We have cross checked our sample with those of the Spitzer MIPS studies of Chen et al. (2011), Carpenter et al. (2009), Su et al. (2006), and Chen et al. (2005) as a basic assessment of the relative success of the WISE photometry in identifying excesses. We see that of those stars in both data sets which passed our photometry tests, six have observed excesses above 30% in the MIPS sample but are not assigned an excess in our study. Of these six stars, five have measured 22 µm flux as a multiple of the photosphere within one-sigma of the corresponding MIPS 24 µm values. The remaining star, HIP 79673, has a WISE flux ratio of 1.23±0.15, while the MIPS value is 1.53±0.05. Chen et al. (2011) indicate that the MIPS photometry for this star is contaminated, and the WISE image shows significant contamination in the form of well-resolved extended emission. This is most likely the cause of the discrepancy. Furthermore, there are two sources with large MIPS flux ratios (5-10 times the photosphere) which did not pass our photometry tests. HIP has very poor WISE photometry fits as well as clear contamination in the images (and in the MIPS data), though the measured flux ratio is similar to that of Chen et al. (2011). The presence of an excess cannot be made clear from the data and so no further comments on this object can be made. Finally, HIP shows a relatively strong excess, however inspection of the images clearly show that the excess is caused by extended emission. Similarly, the Spitzer MIPS images show extended emission with no clear stellar source at 24 µm. The correlation between the presence of a circumstellar disk and membership of the Sco-Cen association is clearly demonstrated in this analysis. It is thus important to consider stars with a detectable 22 µm excess which have lower membership probabilities (p<50%). In the latest Sco-Cen membership study (Rizzuto et al. 2011) a number of de Zeeuw et al. (1999) member stars were assigned low membership probabilities due to inconclusive proper motion data and the lack of a radial velocity measurement. Unresolved multiplicity has long been recognised as an important pitfall in kinematics-based association membership selection methods. An equal mass binary system at the distance of Sco-Cen can produce a proper-motion offset on the order of 2 mas from the true centre-of-mass motion. This is approximately the size of the uncertainties in the proper motion (van Leeuwen 2007), indicating that binary association members can be overlooked. The presence of a circumstel-
4 4 A.C. Rizzuto et al. (a) US Excess Fraction (b) UCL Excess Fraction (c) LCC Excess Fraction (d) Sco-Cen Excess Fraction Figure 2. Excess fraction as a function of membership probability for the three subgroups and the entire association. HIP P F W4 σ Fw4 R(W 2 ) σ R(W2 ) R(W 3 ) σ R(W3 ) R(W 4 ) σ R(W4 ) Excess a Subgroup NNN LCC NNY LCC NYY LCC Table 1. N.B. Complete table online. The and WISE band fluxes as a multiple of the photosphere calculated from the three WISE colours and the 22 µm flux. a This column indicates the detection of an excess in the three colours. The fluxes are in mjy. lar disk can then be used to indicate membership for stars spatially and photometrically consistent, but kinematically inconsistent, with the Sco-Cen subgroups. We thus increase the Bayes factors (see Rizzuto et al. 2011) of stars with between 10% and 50% membership probability and a detected excess by a conservative factor of 4.8 (Table 2). This is the lower bound of the 99% confidence interval of the ratio of excess fractions at 100% and 0% membership probability. Note that including these stars in a sample of Sco-Cen members will necessarily introduce a bias toward disk presence. The subgroup LCC has an anomalous concentration of stars with detectable excess in the 5-10% membership probability range. Three of these stars, HIP 50612, and 53992, are known members of the young open cluster IC2602, which is on the far side of LCC (Robichon et al. 1999), and are thus expected to have low Sco-Cen membership probabilities. Confusion with young background sources for this subgroup, which is on the Galactic plane, further contributes to the anomalous high excess fraction. HIP P HIP P HIP P HIP P Table 2. The 25 excess detections around low probability members and the adjusted probabilities. We have examined the excess fraction properties of our sample in three colour ranges: ( 0.3 <B-V< 0), (0 <B- V< 0.3) and (0.3 <B-V< 0.6). These groupings correspond approximately to B, A and F-type stars according to the colour tables of Allen & Cox (2000). Figure 3 displays plots of the excess fraction against membership probability for
5 WISE Circumstellar Disks in the Young Sco-Cen Association 5 Figure a b Corr χ 2 US 0.38± ± UCL 0.33± ± LCC 0.46± ± All 0.41± ± B 0.18± ± A 0.45± ± F 0.47± ± Table 3. The excess fraction fits for the seven graphs. The fitting was done to the equation y = (a b)p mem + b, where a and b are the excess fractions at p mem = 1.0 and 0 respectively. possible explanation relates to multiplicity. B-type stars have a significantly higher multiplicity fraction compared to later type stars (Kouwenhoven et al. 2005). The presence of a companion can potentially truncate the inner regions of the circumstellar disk through resonances (Artymowicz & Lubow 1994), producing a smaller disk fraction. This has been observed in a recent study of binaries in Taurus-Auriga, particularly with close (<40 AU) companions (Kraus et al. 2011). Among the highest probability members in our sample (>90%) there are six close (<100 AU) multiple systems without disk detections and one close multiple system with a detected excess. A closer, more comprehensive, comparison between disk presence and multiplicity information for the Sco-Cen B-type stars may shed light on this issue, but is beyond the scope of this study. REFERENCES Figure 3. Excess fraction against membership probability for A- type (Black), F-type (Red) and B-type (Blue) stars in our sample. The dashed lines represent the linear fits. the three spectral type ranges. We find the extrapolated excess fractions for the A and F-type stars to be 45±11% and 47±9%, while the B-type stars in our sample show no evidence of a trend in excess fraction with membership probability. The study of Carpenter et al. (2009) also found that A and F-type stars have similar excess fractions at the age of Sco-Cen, with a small increase in excess fraction for the earlier spectral types. However, the earliest star included in the Carpenter et al. (2009) sample is B7, and so no direct comparison can be made to the bluest end of our sample. 5 SUMMARY AND CONCLUSIONS We have analysed the available preliminary WISE photometry for the Sco-Cen stars of the Rizzuto et al. (2011) membership list and detected µm excesses above the expected photosphere emission. We have used Sco-Cen membership probabilities to extrapolate an excess fraction for certain members, and observe that there is no significant difference in excess fraction between the three association subgroups. This agrees with previous studies (Carpenter et al. 2009) and may be explained by the revised US age of 11 Myr (Pecaut et al. 2011). Importantly we find that the excess fraction is significantly lower for the B-type stars in our sample compared to A and F-type association members, which is contrary to the trend seen by Carpenter et al. (2009). It is possible that the lack of a clear trend for the B-type sample could indicate that most of them are in fact young Sco-Cen members despite their kinematics. Another Allen C., Cox A., 2000, Allen s astrophysical quantities. AIP Press Artymowicz P., Lubow S. H., 1994, ApJ, 421, 651 Carpenter J. M., Mamajek E. E., Hillenbrand L. A., Meyer M. R., 2006, ApJ, 651, L49, 2009, ApJ, 705, 1646 Chen C. H., Jura M., Gordon K. D., Blaylock M., 2005, ApJ, 623, 493 Chen C. H., Mamajek E. E., Bitner M. A., Pecaut M., Su K. Y. L., Weinberger A. J., 2011, ApJ, 738, 122 Currie T., Plavchan P., Kenyon S. J., 2008, ApJ, 688, 597 Cutri R. M. et al., 2011, Explanatory Supplement to the WISE Preliminary Data Release Products. Tech. rep. de Zeeuw P. T., Hoogerwerf R., de Bruijne J. H. J., Brown A. G. A., Blaauw A., 1999, AJ, 117, 354 Gáspár A., Rieke G. H., Su K. Y. L., Balog Z., Trilling D., Muzzerole J., Apai D., Kelly B. C., 2009, ApJ, 697, 1578 Kenyon S. J., Bromley B. C., 2008, ApJS, 179, 451 Kouwenhoven M. B. N., Brown A. G. A., Zinnecker H., Kaper L., Portegies Zwart S. F., 2005, A&A, 430, 137 Kraus A. L., Ireland M. J., Hillenbrand L. A., Martinache F., 2011, ArXiv e-prints Lada C. J., Muench A. A., Haisch Jr. K. E., Lada E. A., Alves J. F., Tollestrup E. V., Willner S. P., 2000, AJ, 120, 3162 Mamajek E. E., Meyer M. R., Hinz P. M., Hoffmann W. F., Cohen M., Hora J. L., 2004, ApJ, 612, 496 Pecaut M. J., Mamajek E. E., Bubar E. J., 2011, ArXiv e-prints Rieke G. H. et al., 2005, ApJ, 620, 1010 Rizzuto A. C., Ireland M. J., Robertson J. G., 2011, MN- RAS, 416, 3108 Robichon N., Arenou F., Mermilliod J.-C., Turon C., 1999, A&A, 345, 471 Silverstone M. D. et al., 2006, ApJ, 639, 1138 Strom K. M., Strom S. E., Edwards S., Cabrit S., Skrutskie M. F., 1989, AJ, 97, 1451 Su K. Y. L. et al., 2006, ApJ, 653, 675 van Leeuwen F., ed., 2007, Astrophysics and Space Science Library, Vol. 350, Hipparcos, the New Reduction of the Raw Data Wright E. L. et al., 2010, AJ, 140, 1868
6 6 A.C. Rizzuto et al NNN LCC NNY LCC NYY LCC NYY LCC NNY LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNY LCC NNN LCC NNY LCC NNN LCC NNY LCC NNN LCC NNN LCC NNN LCC NYY LCC NNN LCC NYY LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NYY LCC NNN LCC NNN LCC NNY LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NYY LCC NNN LCC NNN LCC NNN LCC NNN LCC NYY LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC YNN LCC YNN LCC NNN LCC
7 WISE Circumstellar Disks in the Young Sco-Cen Association NYY LCC NNN LCC NYY LCC NNN LCC NNN LCC NNN LCC NYY LCC NNN LCC NNN LCC NNN LCC NNN LCC NYY LCC NNN LCC NNY LCC NNN LCC NNN LCC NNY LCC NNN LCC NNN LCC NYY LCC NNN LCC NNN LCC NNY LCC NNN LCC NNN LCC NNN LCC NNN LCC NYY LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC YNN LCC NYY LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NYY LCC NNN LCC NNN LCC NNN LCC NNN LCC NNY LCC NNN LCC NYY LCC NNN LCC NNN LCC NYY LCC NNN LCC NNN LCC NNN LCC
8 8 A.C. Rizzuto et al NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNY LCC NNN LCC NNN LCC NNY LCC NNY LCC NNY LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC YYY LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NYY LCC NNN LCC NNN LCC NNY LCC NNN LCC NNY LCC NNN LCC NNN LCC NNN LCC NYY LCC NNN LCC NNY LCC NYY LCC NNY LCC NNN LCC YYY LCC NNN LCC NNN LCC NNN LCC NNY LCC NYY LCC NNN LCC NNN LCC
9 WISE Circumstellar Disks in the Young Sco-Cen Association NNN LCC NNN LCC NNY LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNY LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNY LCC NNN LCC NNY LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN LCC NNN UCL NNN LCC NNN UCL NNN UCL NNN LCC NNY LCC NNN LCC NYY LCC NNN UCL NYY LCC NNY LCC NNN LCC NNN UCL NNN LCC NNN LCC NYY LCC NNN LCC NNN LCC NNN LCC NNN UCL NNN UCL NNN UCL NNN UCL NNN LCC NNN LCC NNN UCL NNN UCL
10 10 A.C. Rizzuto et al NNY LCC NNN LCC NNN UCL NNN UCL NNN UCL NNN LCC NNN UCL NNY LCC NNN UCL NNN LCC NNN UCL NNN UCL NYY UCL NNN UCL NNY UCL YYY UCL NNN LCC NNN UCL NNN LCC NNN LCC NNN UCL NNY UCL YNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNY UCL NNN UCL NNN UCL NNN UCL NNN UCL NYY UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NYY UCL NNN UCL NNN UCL NNY UCL NNN UCL NNN UCL NNN UCL NNY UCL NNN UCL NNY UCL YNN UCL NNN UCL NNY UCL NNY UCL NNN UCL NNN UCL
11 WISE Circumstellar Disks in the Young Sco-Cen Association NNN UCL NNN UCL NNN LCC NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNY UCL NNN LCC NNN UCL NNY UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNY UCL NNN US NNN UCL NNN US NNY UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNY UCL NNN UCL NNN UCL NNN UCL NNN US NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NYY UCL
12 12 A.C. Rizzuto et al NNN UCL NNN UCL NNN UCL NNN US NNN UCL NNN UCL NNY UCL NNN UCL NNN UCL NNN US NNN UCL NNN UCL NNN US NNN UCL NNN UCL YNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN US NNN UCL NNN UCL NNN US NNN US NNN UCL NYY UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN US NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNY UCL NNN UCL NNN US NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL YYY UCL NNY UCL NNN UCL NNN US
13 WISE Circumstellar Disks in the Young Sco-Cen Association NNN UCL NNN UCL NNN UCL NNN UCL NYY UCL NNN UCL NNN UCL NNN UCL YNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNY UCL NYY UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN US NNN US NNY UCL NNN UCL NNN UCL NNN UCL NNN UCL NNY UCL NNN US NNN UCL NNN US NNN UCL NNN UCL NNN US NNN UCL NNN UCL NNN US NNN UCL NYY UCL NYY UCL NNN UCL NNN UCL NNN US NYY US NYY UCL NNN UCL NNN UCL NNN US NNN UCL NNN US NNN UCL NNN UCL NNN US NNN UCL NNY US
14 14 A.C. Rizzuto et al NNN UCL NNN US NNN UCL NNN UCL NNN UCL NNN UCL NNN UCL NNN US NNN UCL NNN UCL NNN UCL NNN US NNN US NNN UCL NNN UCL NYY UCL NNY US NNN UCL NNN UCL NNN UCL NNY UCL NNN UCL NNN UCL NNY UCL NNN US NNN US NNN US NNN UCL NNN US NNN US NNN UCL NNN US NYY US NNN US NNN US NNN UCL NNN US NNN US NNN UCL NNN UCL NNN UCL NNY UCL NNN US NNN US NNN US NNN UCL NNN US NNN US NNN US NNN UCL NNY UCL NYY US NNN US NNN US NNN UCL NNN UCL
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙ ΕΥΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ «ΠΑΙ ΙΚΟ ΒΙΒΛΙΟ ΚΑΙ ΠΑΙ ΑΓΩΓΙΚΟ ΥΛΙΚΟ» ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που εκπονήθηκε για τη
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»
I ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΝΟΜΙΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ «ΔΙΟΙΚΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΑ» ΚΑΤΕΥΘΥΝΣΗ: ΟΙΚΟΝΟΜΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο
Αξιολόγηση των Φασματικού Διαχωρισμού στην Διάκριση Διαφορετικών Τύπων Εδάφους ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σπίγγος Γεώργιος
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ-ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΣΚΟΠΗΣΗΣ Αξιολόγηση των Φασματικού Διαχωρισμού στην Διάκριση Διαφορετικών Τύπων Εδάφους ΔΙΠΛΩΜΑΤΙΚΗ
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)
Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)
Capacitors - Capacitance, Charge and Potential Difference
Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ
ΕΘΝΙΚΟ ΜΕΣΟΒΙΟ ΠΟΛΤΣΕΧΝΕΙΟ ΣΜΗΜΑ ΑΓΡΟΝΟΜΩΝ-ΣΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΣΟΜΕΑ ΣΟΠΟΓΡΑΦΙΑ ΕΡΓΑΣΗΡΙΟ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας
Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας ΠΕΡΙΛΗΨΗ Αριστείδης Κοσιονίδης Η κατανόηση των εννοιών ενός επιστημονικού πεδίου απαιτεί
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
Assalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΟΛΟΚΛΗΡΩΜΕΝΗ ΑΝΑΠΤΥΞΗ & ΔΙΑΧΕΙΡΙΣΗ ΤΟΥ ΑΓΡΟΤΙΚΟΥ ΧΩΡΟΥ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Οικονομετρική διερεύνηση
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΣΥΓΚΡΑΤΗΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΟΡΙΣΜΕΝΩΝ ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΣΥΝΔΕΣΜΩΝ ΑΚΡΙΒΕΙΑΣ
On a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo
Bull. Earthq. Res. Inst. Univ. Tokyo Vol. 2.,**3 pp.,,3,.* * +, -. +, -. Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo Kunihiko Shimazaki *, Tsuyoshi Haraguchi, Takeo Ishibe +, -.
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Lecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Διπλωματική Εργασία του φοιτητή του τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Ηλεκτρονικών
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006
ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΙΛΟΛΟΓΙΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΙΛΟΛΟΓΙΑΣ Π.Μ.Σ: «Σύγχρονες Προσεγγίσεις στη γλώσσα και στα κείμενα» ΚΑΤΕΥΘΥΝΣΗ ΓΛΩΣΣΟΛΟΓΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ Το φωνηεντικό
Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016
Section 1: Listening and responding Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Section 1: Listening and Responding/ Aκουστική εξέταση Στο πρώτο μέρος της
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Η θέση ύπνου του βρέφους και η σχέση της με το Σύνδρομο του αιφνίδιου βρεφικού θανάτου. ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Η θέση ύπνου του βρέφους και η σχέση της με το Σύνδρομο του αιφνίδιου βρεφικού θανάτου. Χρυσάνθη Στυλιανού Λεμεσός 2014 ΤΕΧΝΟΛΟΓΙΚΟ
Μετρήσεις ηλιοφάνειας στην Κύπρο
Πτυχιακή εργασία Μετρήσεις ηλιοφάνειας στην Κύπρο Ιωσήφ Μικαίος Λεμεσός, Μάιος 2018 1 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ
Code Breaker. TEACHER s NOTES
TEACHER s NOTES Time: 50 minutes Learning Outcomes: To relate the genetic code to the assembly of proteins To summarize factors that lead to different types of mutations To distinguish among positive,
Right Rear Door. Let's now finish the door hinge saga with the right rear door
Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points.
φ φ φ φ Figure 1 Resampling of a rock-physics model from velocity-porosity to lithology-porosity space. C i are model results for various clay contents. φ ρ ρ δ Figure 2 Bulk modulus constraint cube in
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Nuclear Physics 5. Name: Date: 8 (1)
Name: Date: Nuclear Physics 5. A sample of radioactive carbon-4 decays into a stable isotope of nitrogen. As the carbon-4 decays, the rate at which the amount of nitrogen is produced A. decreases linearly
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ Γηπισκαηηθή Δξγαζία ηνπ Φνηηεηή ηνπ ηκήκαηνο Ζιεθηξνιόγσλ Μεραληθώλ θαη Σερλνινγίαο Ζιεθηξνληθώλ
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics
A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions
Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil
J. Jpn. Soc. Soil Phys. No. +*0, p.- +*,**1 Eh * ** Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil Daisuke MURAKAMI* and Tatsuaki KASUBUCHI** * The United Graduate
; +302 ; +313; +320,.
1.,,*+, - +./ +/2 +, -. ; +, - +* cm : Key words: snow-water content, surface soil, snow type, water permeability, water retention +,**. +,,**/.. +30- +302 ; +302 ; +313; +320,. + *+, *2// + -.*, **. **+.,
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Μεταπτυχιακή διατριβή
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Μεταπτυχιακή διατριβή ΣΥΣΧΕΤΙΣΜΟΙ ΠΡΑΓΜΑΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΥΦΙΣΤΑΜΕΝΩΝ ΦΩΤΟΒΟΛΤΑΪΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΝΑΛΟΓΑ ΜΕ ΤΗ ΤΟΠΟΘΕΣΙΑ
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
"ΦΟΡΟΛΟΓΙΑ ΕΙΣΟΔΗΜΑΤΟΣ ΕΤΑΙΡΕΙΩΝ ΣΥΓΚΡΙΤΙΚΑ ΓΙΑ ΤΑ ΟΙΚΟΝΟΜΙΚΑ ΕΤΗ 2011-2013"
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Επιμέλεια Κρανιωτάκη Δήμητρα Α.Μ. 8252 Κωστορρίζου Δήμητρα Α.Μ. 8206 Μελετίου Χαράλαμπος Α.Μ.
ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ ΣΕ Φ/Β ΠΑΡΚΟ 80KWp
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ
department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι
She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Η ΕΠΙΔΡΑΣΗ ΤΗΣ ΑΙΘΑΝΟΛΗΣ,ΤΗΣ ΜΕΘΑΝΟΛΗΣ ΚΑΙ ΤΟΥ ΑΙΘΥΛΟΤΡΙΤΟΤΑΓΗ ΒΟΥΤΥΛΑΙΘΕΡΑ ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΒΕΝΖΙΝΗΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Η ΕΠΙΔΡΑΣΗ ΤΗΣ ΑΙΘΑΝΟΛΗΣ,ΤΗΣ ΜΕΘΑΝΟΛΗΣ ΚΑΙ ΤΟΥ ΑΙΘΥΛΟΤΡΙΤΟΤΑΓΗ ΒΟΥΤΥΛΑΙΘΕΡΑ ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΒΕΝΖΙΝΗΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
12 2006 Journal of the Institute of Science and Engineering. Chuo University
12 2006 Journal of the Institute of Science and Engineering. Chuo University abstract In order to study the mitigation effect on urban heated environment of urban park, the microclimate observations have
Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου
Σχολή Γεωτεχνικών Επιστημών και Διαχείρισης Περιβάλλοντος Μεταπτυχιακή διατριβή Κτίρια σχεδόν μηδενικής ενεργειακής κατανάλωσης :Αξιολόγηση συστημάτων θέρμανσης -ψύξης και ΑΠΕ σε οικιστικά κτίρια στην
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων Όρια Πιστότητας (Confidence Limits) 2/4/2014 Υπολογ.Φυσική ΣΣ 1 Τα όρια πιστότητας -Confidence Limits (CL) Tα όρια πιστότητας μιας μέτρησης Μπορεί να αναφέρονται
ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΑΝΔΡΕΟΥ ΣΤΕΦΑΝΙΑ Λεμεσός 2012 i ii ΤΕΧΝΟΛΟΓΙΚΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Εξαγωγή χαρακτηριστικών μαστογραφικών μαζών και σύγκριση