COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES"

Transcript

1 Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of Research a Techology - Excellece, Bhopal (MP Iia, eetuvishu@gmailcom Govt Nehru PG College Agar Malwa (MP Iia, rmsc@reiffmailcom Abstract I this paper we obtai commo raom fixe poit theorems for weakly compatible raom operators uer geeralize cotractive coitio i symmetric space I this paper we geeralize the result of Beg a Abbas [4] Keywors : Symmetric space, weakly compatible, raom operators Mathematical subject classificatio (000 : 47H0, 54H5 Itrouctio : I recet years, the stuy of raom fixe poits have attracte much attetio, some of the recet literatures i raom fixe poit may be ote i [,, 3, 4, 5, 7, 9] I metric space some theorems ca be prove without usig some of the efiig properties of metric Hicks [6] establishe some commo fixe poit theorems i symmetric space Recetly Beg a Abbas [4] prove some raom fixe poit theorems for weakly compatible raom operator uer geeralize cotractive coitio i symmetric space Prelimiaries : Throughout this paper, ( Ω, Σ eotes a measurable space (Σ - sigma algebra A symmetric o a set X is a o - egative real value fuctio o X X such that for all x, y X we have (a (x, y = 0 if a oly if x = y a (b (x, y = (y, x Let be a symmetric o a set X For ε > 0 a x X, B(x, ε eotes the spherical ball cetre at x with raius ε, efie as the set { y X:(x,y < ε } A topology t ( o X is give by U t ( if a oly if for each x U, B (x, ε U for some ε > 0 Copyright 03 SciResPub

2 Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN Note that lim (x, x = 0 iff x x i the topology t ( Let F be a subset of X A mappig ξ : Ω X is measurable if ξ (U Σ for each ope subset U of X The mappig T : Ω F F is a raom map if a oly if for each fixe x F, the mappig T (, x : F Ω is measurable The mappig T is cotiuous if for each the mappig T(ω, : F X is cotiuous A measurable mappig ξ: Ω X is a raom fixe poit of raom operator T: Ω F X if a oly if T(ω, ω = ω for each ω Ω We eote the set of raom fixe poits of a raom map T by RF (T a the set of all measurable mappig from Ω ito a symmetric space by M( Ω,X Let φ + + : R R be a fuctio satisfyig the coitio 0 ( t < t, < φ for each t > 0 Defiitio Raom operators S, T : Ω X X are sai to be commutative if S(ω, a T(ω, are commutative for each Defiitio [5] Let X be a Polish space, that is separable complete metric space Mappig f,g: X X are compatible if lim ( fg x, gfx 0, = provie that lim f (x a lim g(x exists i X a lim f (x = lim g (x Raom operators S, T : Ω X X are compatible if S (ω, a T (ω, are compatible for each Defiitio 3 Let X be a Polish space Raom operators S,T : Ω X X are weakly compatible if ω = ω for some ξ Μ(Ω, X the T(ω, S(ω, ω = S(ω, Τ(ω,ω for every Defiitio 4[8] Let { x } a { } y X The space X is sai to satisfy the followig axioms: (W lim ( x, x = lim ( x, y = 0 implies that x = y y be two sequeces i a symmetric space (X, a x, (W lim ( x, x = lim ( x, y = 0 implies that ( y, x = 0 Copyright 03 SciResPub

3 Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN Defiitio 5 Let { x } a { } y be two sequeces i a symmetric space (X, a x X The space X is sai to satisfy axioms (H E ; if lim ( ( x,x = lim y,x = 0 implies that lim ( x, y 0 = Defiitio 6 Let be a symmetric fuctio o X Two raom mappigs S a T from Ω X X are sai to satisfy property (I if there exists a sequece { } ξ, some M ( Ω, X lim ( ( ξ i M (,X T( ω, ξ ( ω, ω = lim S( ω, ξ ( ω, ω = 0 for every Ω such that for Theorem 3 Let (X, be a separable symmetric space that satisfies (W a (H E Let T,S: Ω X CB(X be two weakly compatible raom multivalue operators satisfyig the property (I Moreover, for all x,y X we have ( T( ω,x,t( ω, y φ( max { (s( ω,x, S( ω, y, ( s( ω, x, T( ω, y, ( S( ω, y, T( ω, y, ( S( ω,x,t( ω,y + ( S( ω,y,t( ω,x } for every Ω for every ω If T ( ω,x S ( ω,x a oe of T( ω,x or (,X, the T a S have uique commo raom fixe poit S ω is a complete subspace of X Proof Sice raom multivalue operators T a S satisfy the property (I, so there exists a sequece { ξ } i M ( Ω, X such that : lim ( ξ ( ω = lim ( S( ω, ξ ( ω, ω = 0 ξ M ( Ω,X Therefore by property ( H E, we have lim Suppose (,X ( T( ω ξ ( ω, ξ ( ω = 0 for every S ω is a complete subspace of X for every ω Ω Let for every, for some ξ : Ω X be the limit of the sequece of measurable mappigs { ( } ( { } ( S ω, ξ ( ω a S ω, ξ ( ω S ω,x for every a N Now sice X is Copyright 03 SciResPub

4 Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN separable, therefore ξ M ( Ω, X Moreover ξ ( ω S( ω,x for every This allows obtaiig the measurable mappigs Now we show that T (, ξ ( ω = ξ ( ω If ot the for some Cosier ξ : Ω X such that ξ ( ω = ξ ( ω ω for every ( { ( ω ξ ω ( ω ξ ω ϕ ( ω ξ ω ω ξ ω T(, (,T, ( max S(, (,S(, (, ( S( ω, ξ ( ω, ξ ( ω, ( S( ω, ξ ( ω, T( ωξ ( ω, ( ( S(, (,T (, ( S(, (,T (, ( } ω ξ ω ω ξ ω + ω ξ ω ω ξ ω < max{ ( ω,s( ω, ξ ( ω, ( ω, T( ω, ξ ( ω, Takig ( ω ξ ω ω ξ ω ( ξ ω ω ξ ω + ( ω ξ ω ( ω ξ ω S(, (,T(, (, (,T(, ( S(, (,T, ( we have ( T( ω, ξ ( ω, T( ω, ξ ( ω < max ( 0,0,0, 0 ( (,T(, ( + ξ ω ω ξ ω or ( T ( ω, ω, ω < ( ξ ( ω, ω which is a cotraictio, so T (, ξ ( ω = ξ ( ω ω for every The weak compatibility of raom mappigs T a S implies that S( ω, ω = S( ω,t( ω, ω, The T( ω,t( ω, ω = T( ω,s( ω, ω = S( ω,t( ω, ω = S( ω,s( ω, ω for every Let us show that T( ω,t( ω, ω = ω for each If ot, the for some, cosier ( { (T( ω, ω, T( ω, ω ϕ Max (S( ω, ω,s( ω, ω ( S( ω, ξ ( ω, ξ ( ω, (s( ω, ω, ω, Copyright 03 SciResPub

5 Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN [ (S(, (,T, ( S(, (,T, ( ] ( ω ξ ω ( ω ξ ω + ( ω ξ ω ( ω ξ ω } ( max { (T(, (, T(, (,(T(, (,T (, ( ϕ ω ξ ω ω ξ ω ω ξ ω ω ξ ω T(, (,T, (, [ (T(, (,T, ( ( ω ξ ω ( ω ξ ω ( ω ξ ω ( ω ξ ω + ( T( ω, ω, ω ]} ( { ( ϕ max T( ω, ξ ( ω,t( ω, ξ ( ω,0,(t( ω, ξ ( ω,t( ω, ξ ( ω } ϕ ( T( ω, ω, ω < ( T ( ω, ω, ω ie ( T( ω, ω,t( ω, ω < (T( ω, ω, ω which is a cotraictio, so T (, ξ ( ω T ( ω, ξ ( ω = T( ω, ξ ( ω ξ ( ω Therefore T (, ξ ( ω whe (,X ω is a raom fixe poit of T Now = for every ω is a commo raom fixe poit of T a S The proof is similar T ω is suppose to be a complete subspace of X for every, as T( ω,x S( ω,x for each ω Ω To prove the uiqueess of commo raom fixe poit, let η, η : Ω X be two commo raom fixe poits of raom operators T a S such that η ( ω η ( ω for some, cosier ( η ( ω, ω = ( T( ω, ω, T( ω, ω ( { ϕ max (S( ω, ω,s( ω, ω,(s( ω, ω,t( ω, ω, (S( ω, ω,t( ω, ω, [ (S( ω, η ( ω,t( ω, η ( ω + (S( ω, η ( ω,t( ω, η ( ω } ] Copyright 03 SciResPub

6 Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN { ( ϕ(max ( ω, ω,( ω, ω, ω, ω, φ < ( η ( ω, η ( ω + ( η ( ω, η ( ω } ( η ( ω, ω ( ω, ω ie ( η ( ω, η ( ω < ( η ( ω, ω This cotraictio shows η ( ω = η ( ω for every Theorem 3 Let (X, be a separable symmetric space that satisfies (W, (W a (H E Let (A, S a (B, T be two pairs of weakly compatible raom operators from Ω X X such that oe of the pairs (A, S or (B, T satisfies the property (I Moreover ( A( ω,x,b( ω,y ϕ(max { (A( ω,x,s( ω,x,(b( ω,yt( ω,y, for every Ω ( S (,x, y, ( ω (A( ω,x,t( ω,y + (B( ω,y,s( ω,x} ω If A (,X T (,X ab(,x S (,X T (,X,S (,X,B (,X or A (,X ω ω ω ω a oe of ω ω ω ω is a complete subspace of X for every, the A, B, T, a S have uique commo raom fixe poit Proof : Suppose the pair (B,T of raom mappigs satisfies the property (I So there exists a sequece { ξ } i (, X M Ω such that lim (B(, (, ( ω ξ ω ξ ω = lim ( T( ω, ξ ( ω, ω = 0 for every for some ξ M( Ω,X As { B ( ω, ξ ( ω } is a sequece of measurable mappigs a (, ξ ( ω B(,X B ω ω for every a N obtaiig the sequece of measurable mappigs for every Ω ω Hece lim ( S( ω, η ( ω, ω = 0, ow the fact B (,X S (,X ω ω allows η : Ω X such that B( ω, ξ ( ω = S( ω, η ( ω for every Now we show that (A(ω,η (ω, ω = 0 for every ω Ω Copyright 03 SciResPub

7 Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN For this cosier ( A( ω, η ( ω, B ( ω, ξ ( ω every Let ( { ϕ max (A( ω, η ( ω,s( ω, η ( ω,(b( ω, ξ ( ω,t( ω, ξ ( ω, ( ω η ω ω ξ ω S(, (,T(, (, ( (A( ω, η ( ω,t( ω, ξ ( ω + ( B( ω, ξ ( ω, B( ω, ω } ( { ϕ max (A( ω, η ( ω,b( ω, ξ ( ω,(b( ω, ξ ( ω,t( ω, ξ ( ω, φ ( (A( ω, η ( ω, ξ ( ω 0 } + ( (B( ω, ξ ( ω, ξ ( ω for every ( A ( ω, η ( ω, B ( ω, ξ ( ω < ( B( ω, ξ ( ω, ξ ( ω Therefore by property (H E, we have Hece: ( ( lim B( ω, ξ ( ω, T ω, ξ ( ω = 0 for every lim ( B ( ω, ξ ( ω, A ( ω, η ( ω = 0 for every By (W, we euce that lim ( A ( ω, η ( ω, ω = 0, (, X for every S ω is a complete subspace of X Now S(, η ( ω S( ω, X suppose for ω for every ξ : Ω X be the limit of the sequece of measurable mappigs { S ( ω, η ( ω } Sice X is separable, therefore ξ M(,X Moreover ( ω S (, X Ω obtaiig the measurable mappig lim ξ ω for every This allows ξ : Ω X such that ξ ( ω = ξ ( ω Now cosier ( A ( ω, η ( ω, ω = lim ( B ( ω, ξ ( ω, S( ω, ξ ( ω = lim = lim ( ξ ( ω, S( ω, ω ( η ( ω, ω Copyright 03 SciResPub

8 Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN Thus, = 0 for every ( ω ξ ω ω ξ ω ϕ { ω ξ ω ω ξ ω A(, (,B(, ( (max (A(, (,S(, (, ( B ( ω, ξ ( ω, ξ ( ω, ( S( ω, ω, T( ω, ξ ( ω (A(, (,T(, ( B(, (,S(, ( ( ω ξ ω ω ξ ω + ( ω ξ ω ω ξ ω } for each This immeiately gives : ( lim A( ω, ω,b( ω, ξ ( ω = 0 for every By (W, we have A( ω, ω = S( ω, ω for every S The weak compatibility of raom operators A a S implies that ( ω, A ( ω, ω = A( ω, S( ω, ξ ( ω for every Now A (, A ( ω, ω = A( ω, ξ ( ω = A( ω, ξ ( ω = ω A ω for every As A (, ξ ( ω A ( ω, X (,X X ω for every Ω ω for every Ω ( ( A ω, ω = T ω, ξ ( ω for every some We ow show that for every cosier ( ω ξ ω ( ω ξ ω A(, (, B, ( ω where ξ M( Ω, X ω allows obtaiig (, the assumptio ξ M Ω,X such that, B ( ω, ξ ( ω = ξ ( ω If ot, the for ϕ(max{(a( ω, ω,s( ω, ω,(b( ω, ξ( ω,t( ω, ξ( ω, (S( ω, ω,t( ω, ξ( ω, ((A(, (,T(, ( ω ξ ω ω ξ ω + ω ξ ω ω ξ ω } (B(, (,S(, ( ϕ(max{(a( ω, ω,a( ω, ω,(b( ω, ξ( ω,a( ω, ω, (A( ω, ω,t( ω, ξ( ω, Copyright 03 SciResPub

9 Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN ( { ((A(, (,T(, ( ϕ max 0,(B( ω, ξ ( ω,a( ω, ω,0, ω ξ ω ω ξ ω + ω ξ ω ω ξ ω } 0 (B(, (,A(, ( ( + ω ξ ω ω ξ ω } ( { ϕ max (A( ω, ω,b( ω, ξ ( ω, A(, (,B(, ( ( ω ξ ω ω ξ ω } ( ( ϕ A( ω, ω,b ω, ω ( ( < A( ω, ω, B ω, ξ ( ω ie ( A( ω, ω, B ( ω, ξ( ω < ( A( ω, ω,b( ω, ξ( ω which is a cotraictio Hece ( (B(, (,A(, ( B ω, ξ ( ω = T( ω, ξ ( ω = A( ω, ω = S( ω, ω for every The weak compatibility of raom operators B a T implies that ( B ω,t( ω, ξ ( ω = T( ω,b( ω, ξ ( ω for every, ( ω ω ξ ω = ( ω ω ξ ω = ( ω ω ξ ω T,T(, ( T,B(, ( B,T(, ( B (,B(, ( Let us show that A (, A( ω, ω = A ( ω, ξ ( ω ω If ot, the for some = ω ω ξ ω for each ω for each Ω, cosier ( A( ω, ω,a( ω,a( ω, ω = ( A( ω,a( ω, ω,b( ω, ξ( ω ϕ(max { (A( ω,a( ω, ω,s( ω,a( ω, ω, (B( ω, ξ( ω,t( ω, ξ( ω,(s( ω,a( ω, ω,t( ω, ξ( ω ( ( (A( ω,a( ω, ξ ( ω,t( ω, ξ ( ω + (B( ω, ξ ( ω, S ω,a( ω, ω } Copyright 03 SciResPub

10 Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN ϕ(max { (A( ω,a( ω, ω,a( ω,a( ω, ω, ( A( ω, ω,a( ω, ω, ( A( ω,a( ω, ω,a( ω, ω ( (A( ω,a( ω, ξ ( ω,a( ω, ξ ( ω + A ( ω, ω, A ( ω, A( ω, ξ ( ω } φ(max { 0, 0, (A ( ω, A ( ω, ξ ( ω, A ( ω, ξ ( ω, ( ω ω ξ ω ω ξ ω } A(,A(, (,A(, ( < ϕ ( A( ω,a( ω, ω,a( ω, ω < ( A( ω,a( ω, ω,a( ω, ω which is a cotraictio Therefore ( A ( ω,a ( ω, ω = A ( ω, ξ ( ω = A( ω, ω for every So A (, ξ ( ω a commo raom fixe poit of raom operators A a S Similarly, B(, ξ ( ω raom fixe poit of raom operators B a T Sice A (, ξ ( ω = B ( ω, ξ ( ω, thus A (, ω proof is similar whe for every A ( ω,x or B (,X ω is ω is commo ω for every ω is commo raom fixe poit of raom operators A, B, S a T The, T( ω, X is complete subspace of X The cases i which ω is a complete subspace of X for every are similar to the cases i which ( ω X or S( ω X, respectively, is a complete subspace of X, sice A (,X T T ( ω,x a B ( ω,x B (,X ω for every ω UNIQUENESS: To establish the uiqueess of commo raom fixe poit of raom operators, let ξ a η be two commo raom fixe poits of the raom operators such that ( ω ω cosier ( ξ ( ω, ω = ( A ( ω, ω, B ( ω, ω φ (max{ (A ( ω, ω, ω, (B( ω, ω, ω, ( S( ω, ω, T( ω, ω, ( (A( ω, ω, ω + ( B ( ω, ω, ω } ξ for some Copyright 03 SciResPub

11 Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN φ (max{ ( ω, ω, ( ω, ω, ( ω, ω, φ φ ( ( ξ ( ω, ω + ( ω, ω } ( max{ 0, 0, ( ω, ω } ( ω, ω ( ξ ( ω, ω < ( ω, ω which is a cotraictio So the result follows REFERENCES Bashah, VH a Sayye, F Raom fixe poit of raom multivalue o expasive o-self raom operators, Joural of Applie Mathematics a Stochastic Aalysis, Vol 006, Article ID 43796, Pages -9 Bashah, VH a Gagrai, S, Commo raom fixe poit of raom multivalue operators o Polish spaces, Jour Chugcheog Math Soc, Vol 8 (, (005, Bashah, VH a Shrivastava, N, Semi compatibility a raom fixe poits o Polish spaces, Varahmihir Joural of Math Sci Vol 6, No (006, Beg, I a Abbas, M Commo raom fixe poit of compatible raom operators, Iter, Joural of Mathematics a Mathematical Sciece Volume 006, Article ID 3486, pages -5 5 Beg, I a Shahza, N Raom fixe poit of raom multivalue operator o Polish spaces, o liear Aalysis 0 (993, o 7, Hicks, TL a Rhoaes, BE Fixe poit theory i symmetric spaces with applicatios to probabilistic spaces, Noliear Aalysis 36 (999 No 3, Plubtig, S a Kumar, P Copyright 03 SciResPub

12 Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN Raom fixe poit theorems for multivalue o expasive o-self-raom operators joural of applie mathematics a stochastic aalysis, Vol 006, Article ID 43796, pages -9 8 Wilso, WA O semi - metric spaces, America Joural of Mathematics, 53 (93, o, Xu, HK, Multivalue o-expasive mappigs i Baach spaces, oliear aalysis 43 (00, o 6, Copyright 03 SciResPub

A COMMON RANDOM FIXED POINT THEOREM FOR SIX RANDOM MULTIVALUED OPERATORS SATISFYING A RATIONAL INEQUALITY

A COMMON RANDOM FIXED POINT THEOREM FOR SIX RANDOM MULTIVALUED OPERATORS SATISFYING A RATIONAL INEQUALITY International Journal of Advanced Computer and Mathematical Sciences ISSN 2230-9624. Vol4, Issue3, 2013, pp188-198 http://bipublication.com A COMMON RANDOM FIXED POINT THEOREM FOR SIX RANDOM MULTIVALUED

Διαβάστε περισσότερα

Data Dependence of New Iterative Schemes

Data Dependence of New Iterative Schemes Mathematics Volume : 4 Issue : 6 Jue 4 ISSN - 49-555X Data Depedece of New Iterative Schemes KEYWORDS CR Iteratio Data Depedece New Multistep Iteratio Quasi Cotractive * Aarti Kadia Assistat Professor

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Intuitionistic Fuzzy Ideals of Near Rings

Intuitionistic Fuzzy Ideals of Near Rings International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

12. Radon-Nikodym Theorem

12. Radon-Nikodym Theorem Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology. Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 71 77. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.13793 Some new generalized topologies via hereditary

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for

Διαβάστε περισσότερα

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp.115-126. α, β, γ ORTHOGONALITY ABDALLA TALLAFHA Abstract. Orthogonality in inner product spaces can be expresed using the notion of norms.

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities Hidawi Publishig Corporatio Joural of Iequalities ad Applicatios Volume 2008, Article ID 598632, 13 pages doi:10.1155/2008/598632 Research Article Fiite-Step Relaxed Hybrid Steepest-Descet Methods for

Διαβάστε περισσότερα

Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings

A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings International Journal of Computational Science and Mathematics. ISSN 0974-3189 Volume 3, Number 1 (2011), pp. 61-71 International Research Publication House http://www.irphouse.com A Note on Characterization

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1. Vol. 35 ( 205 ) No. 4 J. of Math. (PRC), (, 243002) : a.s. Marov Borel-Catelli. : Marov ; Borel-Catelli ; ; ; MR(200) : 60F5 : O2.4; O236 : A : 0255-7797(205)04-0969-08 Shao-McMilla,. Shao 948 [],, McMilla

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5 Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

dim(u) = n 1 and {v j } j i

dim(u) = n 1 and {v j } j i SOLUTIONS Math B4900 Homework 1 2/7/2018 Unless otherwise specified, U, V, and W denote vector spaces over a common field F ; ϕ and ψ denote linear transformations; A, B, and C denote bases; A, B, and

Διαβάστε περισσότερα

F A S C I C U L I M A T H E M A T I C I

F A S C I C U L I M A T H E M A T I C I F A S C I C U L I M A T H E M A T I C I Nr 46 2011 C. Carpintero, N. Rajesh and E. Rosas ON A CLASS OF (γ, γ )-PREOPEN SETS IN A TOPOLOGICAL SPACE Abstract. In this paper we have introduced the concept

Διαβάστε περισσότερα

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1) GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk

Διαβάστε περισσότερα

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano 235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića

Διαβάστε περισσότερα

Operation Approaches on α-γ-open Sets in Topological Spaces

Operation Approaches on α-γ-open Sets in Topological Spaces Int. Journal of Math. Analysis, Vol. 7, 2013, no. 10, 491-498 Operation Approaches on α-γ-open Sets in Topological Spaces N. Kalaivani Department of Mathematics VelTech HighTec Dr.Rangarajan Dr.Sakunthala

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

A NEW SUZUKI TYPE COMMON COUPLED FIXED POINT RESULT FOR FOUR MAPS IN S b -METRIC SPACES

A NEW SUZUKI TYPE COMMON COUPLED FIXED POINT RESULT FOR FOUR MAPS IN S b -METRIC SPACES JOURNAL OF INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4866 ISSN (o) 2303-4947 wwwimviblorg /JOURNALS / JOURNAL Vol 8(208) 03-9 DOI: 0725/JIMVI8003R Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Common Random Fixed Point Theorems under Contraction of rational Type in Multiplicative Metric Space

Common Random Fixed Point Theorems under Contraction of rational Type in Multiplicative Metric Space Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 13 Number 7 2017) pp. 3703-3726 Research India Publications http://www.ripublication.com Common Random Fixed Point Theorems under Contraction

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Intuitionistic Supra Gradation of Openness

Intuitionistic Supra Gradation of Openness Applied Mathematics & Information Sciences 2(3) (2008), 291-307 An International Journal c 2008 Dixie W Publishing Corporation, U. S. A. Intuitionistic Supra Gradation of Openness A. M. Zahran 1, S. E.

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,

Διαβάστε περισσότερα

ON RANDOM COINCIDENCE POINT AND RANDOM COUPLED FIXED POINT THEOREMS

ON RANDOM COINCIDENCE POINT AND RANDOM COUPLED FIXED POINT THEOREMS Palestine Journal of Mathematics Vol. 4(2) (2015), 348 359 Palestine Polytechnic University-PPU 2015 ON RANDOM COINCIDENCE POINT AND RANDOM COUPLED FIXED POINT THEOREMS Animesh Gupta Erdal Karapınar Communicated

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Online Appendix I. 1 1+r ]}, Bψ = {ψ : Y E A S S}, B W = +(1 s)[1 m (1,0) (b, e, a, ψ (0,a ) (e, a, s); q, ψ, W )]}, (29) exp( U(d,a ) (i, x; q)

Online Appendix I. 1 1+r ]}, Bψ = {ψ : Y E A S S}, B W = +(1 s)[1 m (1,0) (b, e, a, ψ (0,a ) (e, a, s); q, ψ, W )]}, (29) exp( U(d,a ) (i, x; q) Online Appendix I Appendix D Additional Existence Proofs Denote B q = {q : A E A S [0, +r ]}, Bψ = {ψ : Y E A S S}, B W = {W : I E A S R}. I slightly abuse the notation by defining B q (L q ) the subset

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα