Neural Networks - Prolog 2 - Logistic Regression
|
|
- Ζωτικός Δημητρακόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Neural Networks - Prolog 2 - Logistic Regression September 13, 2016 Marcin Junczys-Dowmunt Machine Translation Marathon Introduction to Neural Networks 1.1 Prolog 2: Logistic Regression 2 The Iris Data Set Iris setosa Iris virginica Iris vericolor In [5]: import pandas data = pandas.read_csv("iris.csv", header=none, names=["sepal length", "Sepal width", "Petal length", "Petal width", "Species"]) data[:8] Out[5]: Sepal length Sepal width Petal length Petal width Species Iris-setosa Iris-setosa Iris-virginica Iris-virginica Iris-virginica Iris-versicolor Iris-versicolor Iris-versicolor Set of classes: C = {c 1, c 2,, c k } C = k Training data:x = 1 x (1) 1 x (1) n 1 x (2) 1 x (2) n y = 1 x (m) 1 x (m) n y (1) y (2). y (m) = c 2 c 1. c 1 dim X = m (n + 1) dim y = m 1 Set of classes: C = {c 1, c 2,, c k } C = k 1
2 Training data (with indicator matrix):x = 1 x (1) 1 x (1) n 1 x (2) 1 x (2) n x (m) 1 x (m) n Y = δ(c 1, y (1) )... δ(c k, y (1) ) δ(c 1, y (2) )... δ(c k, y (2) )..... δ(c 1, y (m) )... δ(c k, y (m) ) δ(x, y) = { 1 if x = y 0 otherwise dim X = m (n + 1) dim Y = m k In [6]: import numpy as np m = len(data) X = np.matrix(data[["sepal length", "Sepal width", "Petal length", "Petal width"]]) X = np.hstack((np.ones(m).reshape(m,1), X)) y = np.matrix(data[["species"]]).reshape(m,1) def mapy(y, c): n = len(y) ybi = np.matrix(np.zeros(n)).reshape(n, 1) ybi[y == c] = 1. return ybi def indicatormatrix(y): classes = np.unique(y.tolist()) Y = mapy(y, classes[0]) for c in classes[1:]: Y = np.hstack((y, mapy(y, c))) Y = np.matrix(y).reshape(len(y), len(classes)) return Y Y = indicatormatrix(y) print(y[:10]) [[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]] 2
3 3
4 2.1 Logistic function: g(x) = e x 4
5 2.2 Logistic regression model For a single feature vector: h θ (x) = g( n θ i x i ) = i= e n i=0 θixi More compact in matrix form (batched): h θ (X) = g(xθ) = 2.3 The cost function (binary cross-entropy) Computed across the training batch: e Xθ J(θ) = 1 m m [ y (i) log h θ (x (i) ) + (1 y (i) ) log(1 h θ (x (i) ))] i=1 Essentially the same in matrix form with vectorized elementary functions 5
6 2.4 And its gradient Computed across the training batch for a single parameter: J(θ) θ j = 1 m m (h θ (x (i) ) y (i) )x (i) j i=1 In matrix form: J(θ) = 1 y XT (h θ (X) y) Looks the same as for linear regression, how come? In [10]: def h(theta, X): return 1.0/(1.0 + np.exp(-x*theta)) def J(h,theta,X,y): m = len(y) s1 = np.multiply(y, np.log(h(theta,x))) s2 = np.multiply((1 - y), np.log(1 - h(theta,x))) return -np.sum(s1 + s2, axis=0)/m def dj(h,theta,x,y): return 1.0/len(y)*(X.T*(h(theta,X)-y)) In [14]: # Divide data into train and test set XTrain, XTest = X[:100], X[100:] YTrain, YTest = Y[:100], Y[100:] [[ ]] [[ 0.18 ] [ ] [ ] [ ] [ ]] # Initialize theta with zeroes theta = np.zeros(5).reshape(5,1) # Select only first column for binary classification (setosa vs. rest) YTrain0 = YTrain[:,0] print(j(h, theta, XTrain, YTrain0)) print(dj(h, theta, XTrain, YTrain0)) 2.5 Let s plug them into SGD In [15]: def mbsgd(h, fj, fdj, theta, X, y, alpha=0.01, maxsteps=10000, batchsize = 10): i = 0 b = batchsize m = X.shape[0] while i < maxsteps: start = (i*b) % m end = ((i+1)*b) % m if(end <= start): 6
7 [[ ] [ ] [ ] [ ] [ ]] end = m Xbatch = X[start:end] Ybatch = y[start:end] theta = theta - alpha * fdj(h, theta, Xbatch, Ybatch) i += 1 return theta thetabest = mbsgd(h, J, dj, theta, XTrain, YTrain0, alpha=0.01, maxsteps=10000, batchsize = 10) print(thetabest) 2.6 Let s calculate test set probabilities In [16]: probs = h(thetabest, XTest) probs[:10] Out[16]: matrix([[ e-05], [ e-01], [ e-05], [ e-04], [ e-05], [ e-01], [ e-03], [ e-02], [ e-05], [ e-05]]) 2.7 Are we done already? 2.8 The decision function (binary case) { 1 if P (y = 1 x; θ) > 0.5 c = 0 otherwise In [17]: YTestBi = YTest[:,testClass] P (y = 1 x; θ) = h θ (x) def classifybi(x): prob = h(thetabest, X).item() return (1, prob) if prob > 0.5 else (0, prob) acc = 0.0 for i, rest in enumerate(ytestbi): cls, prob = classifybi(xtest[i]) print(int(ytestbi[i].item()), "<=>", cls, "-- prob:", round(prob, 4)) acc += cls == YTestBi[i].item() print("accuracy:", acc/len(xtest)) 7
8 0 <=> 0 -- prob: <=> 1 -- prob: <=> 0 -- prob: <=> 0 -- prob: <=> 0 -- prob: <=> 1 -- prob: <=> 0 -- prob: <=> 0 -- prob: <=> 0 -- prob: <=> 0 -- prob: <=> 1 -- prob: <=> 1 -- prob: <=> 0 -- prob: <=> 0 -- prob: <=> 0 -- prob: <=> 1 -- prob: <=> 1 -- prob: <=> 0 -- prob: <=> 1 -- prob: <=> 0 -- prob: <=> 0 -- prob: <=> 1 -- prob: <=> 0 -- prob: <=> 0 -- prob: <=> 0 -- prob: <=> 1 -- prob: <=> 0 -- prob: <=> 1 -- prob: <=> 0 -- prob: <=> 1 -- prob: <=> 0 -- prob: <=> 0 -- prob: <=> 0 -- prob: <=> 1 -- prob: <=> 0 -- prob: <=> 1 -- prob: <=> 0 -- prob: <=> 0 -- prob: <=> 1 -- prob: <=> 0 -- prob: <=> 0 -- prob: <=> 1 -- prob: <=> 0 -- prob: <=> 1 -- prob: <=> 0 -- prob: <=> 1 -- prob: <=> 1 -- prob: <=> 0 -- prob: <=> 0 -- prob: <=> 0 -- prob: Accuracy: 1.0 8
9 3 Multi-class logistic regression 3.1 Method 1: One-against-all We create three binary models: h θ1, h θ2, h θ3, one for each class; We select the class with the highest probability. Is this property true? h θc (x) = P (y = c x; θ c ) = 1 c=1,...,3 c=1,...,3 3.2 Softmax Multi-class version of logistic function is the softmax function softmax(k, x 1,..., x n ) = e x k n i=i exi P (y = c x; θ 1,..., θ k ) = softmax(c, θ T 1 x,..., θ T k x) 9
10 Do we now have the following property? c=1,...,3 P (y = c x; θ c ) = 1 In [20]: def softmax(x): return softmaxunsafe(x - np.max(x, axis=1)) def softmaxunsafe(x): return np.exp(x) / np.sum(np.exp(x), axis=1) X = np.matrix([2.1, 0.5, 0.8, 0.9, 3.2]).reshape(1,5) P = softmax(x) print(x) print("suma X =", np.sum(x, axis=1), "\n") print(p) print("suma P =", np.sum(p, axis=1)) [[ ]] Suma X = [[ 7.5]] [[ ]] Suma P = [[ 1.]] In [21]: def trainmaxent(x, Y): n = X.shape[1] thetas = [] for c in range(y.shape[1]): print("training classifier for class %d" % c) YBi = Y[:,c] theta = np.matrix(np.random.normal(0, 0.1,n)).reshape(n,1) thetabest = mbsgd(h, J, dj, theta, X, YBi, alpha=0.01, maxsteps=10000, batchsize = 10) print(thetabest) thetas.append(thetabest) return thetas thetas = trainmaxent(xtrain, YTrain); Training classifier for class 0 [[ ] [ ] [ ] [ ] [ ]] Training classifier for class 1 [[ ] [ ] [ ] [ ] [ ]] Training classifier for class 2 [[ ] [ ] 10
11 [ ] [ ] [ ]] 3.3 Multi-class decision function c = arg max i {1,...,k} P (y = i x; θ 1,..., θ k ) = arg max i {1,...,k} softmax(i, θ1 T x,..., θk T x) In [22]: def classify(thetas, X): regs = np.matrix([(x*theta).item() for theta in thetas]) probs = softmax(regs) return np.argmax(probs), probs print(ytest[:10]) YTestCls = YTest * np.matrix((0,1,2)).t print(ytestcls[:10]) acc = 0.0 for i in range(len(ytestcls)): cls, probs = classify(thetas, XTest[i]) correct = int(ytestcls[i].item()) print(correct, "<=>", cls, " - ", correct == cls, np.round(probs, 4).tolist()) acc += correct == cls print("accuracy =", acc/float(len(xtest))) [[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]] [[ 2.] [ 0.] [ 2.] [ 2.] [ 2.] [ 0.] [ 1.] [ 1.] [ 2.] [ 2.]] 2 <=> 2 - True [[0.0, , ]] 0 <=> 0 - True [[0.9957, , 0.0]] 2 <=> 2 - True [[0.0, , ]] 2 <=> 2 - True [[0.0001, , ]] 2 <=> 2 - True [[0.0, , ]] 0 <=> 0 - True [[0.9995, , 0.0]] 1 <=> 1 - True [[0.0097, , ]] 1 <=> 1 - True [[0.1576, , ]] 2 <=> 2 - True [[0.0, , ]] 11
12 2 <=> 2 - True [[0.0, , ]] 0 <=> 0 - True [[0.9965, , 0.0]] 0 <=> 0 - True [[0.9975, , 0.0]] 1 <=> 1 - True [[0.0149, , ]] 2 <=> 2 - True [[0.0, , ]] 1 <=> 1 - True [[0.0082, 0.852, ]] 0 <=> 0 - True [[0.9992, , 0.0]] 0 <=> 0 - True [[0.9948, , 0.0]] 2 <=> 2 - True [[0.0001, , 0.875]] 0 <=> 0 - True [[0.9948, , 0.0]] 1 <=> 1 - True [[0.0006, , ]] 1 <=> 1 - True [[0.0003, , ]] 0 <=> 0 - True [[0.9992, , 0.0]] 2 <=> 2 - True [[0.0, , ]] 1 <=> 1 - True [[0.0353, , ]] 2 <=> 2 - True [[0.0, , ]] 0 <=> 0 - True [[0.9999, , 0.0]] 1 <=> 1 - True [[0.0006, , ]] 0 <=> 0 - True [[0.9984, , 0.0]] 1 <=> 1 - True [[0.0001, , ]] 0 <=> 0 - True [[0.9994, , 0.0]] 2 <=> 2 - True [[0.0, , ]] 1 <=> 1 - True [[0.0113, 0.907, ]] 2 <=> 2 - True [[0.0, , ]] 0 <=> 0 - True [[0.9928, , 0.0]] 2 <=> 2 - True [[0.0, , ]] 0 <=> 0 - True [[0.9684, , 0.0]] 2 <=> 2 - True [[0.0, , ]] 2 <=> 2 - True [[0.0, , ]] 0 <=> 0 - True [[0.9988, , 0.0]] 1 <=> 1 - True [[0.0137, , ]] 1 <=> 1 - True [[0.0021, , ]] 0 <=> 0 - True [[0.9998, , 0.0]] 1 <=> 1 - True [[0.0023, , ]] 0 <=> 0 - True [[0.9983, , 0.0]] 2 <=> 2 - True [[0.0, , ]] 0 <=> 0 - True [[0.9999, , 0.0]] 0 <=> 0 - True [[0.9992, , 0.0]] 2 <=> 2 - True [[0.0, , ]] 2 <=> 2 - True [[0.0001, , 0.872]] 2 <=> 2 - True [[0.0, 0.06, 0.94]] Accuracy = Method 2: Multi-class training Θ = (θ (1),..., θ (c) ) h Θ (x) = [P (k x, Θ)] k=1,...,c = softmax(θx) The cost function (categorial cross-entropy) J(Θ) = 1 m c δ(y (i), k) log P (k x (i), Θ) m i=1 k=1 12
13 { 1 if x = y δ(x, y) = 0 otherwise And its gradient J(Θ) Θ j,k = 1 m m (δ(y (i), k) P (k x (i), Θ)) x (i) j i=1 J(Θ) = 1 m XT (h θ (X) Y ) Y Indicator matrix In [23]: def h_mc(theta, X): return softmax(x*theta) def J_mc(h, Theta, X, Y): return 0 def dj_mc(h, Theta, X, Y): return 1.0/len(y) * (X.T*(h(Theta, X) - Y)) n = XTrain.shape[1] k = YTrain.shape[1] Theta = np.matrix(np.random.normal(0, 0.1, n*k)).reshape(n,k) ThetaBest = mbsgd(h_mc, J_mc, dj_mc, Theta, XTrain, YTrain, alpha=0.01, maxsteps=50000, batchsize = 10) print(thetabest) def classify(theta, X): probs = h_mc(theta, X) return np.argmax(probs, axis=1), probs YTestCls = YTest * np.matrix((0,1,2)).t acc = 0.0 for i in range(len(ytestcls)): cls, probs = classify(thetabest, XTest[i]) correct = int(ytestcls[i].item()) print(correct, "<=>", cls, " - ", correct == cls, np.round(probs, 4).tolist()) acc += correct == cls print("accuracy =", acc/float(len(xtest))) [[ ] [ ] [ ] [ ] [ ]] 2 <=> [[2]] - [[ True]] [[0.0003, , ]] 0 <=> [[0]] - [[ True]] [[0.9257, , ]] 2 <=> [[2]] - [[ True]] [[0.0006, , ]] 2 <=> [[2]] - [[ True]] [[0.0027, , ]] 2 <=> [[2]] - [[ True]] [[0.0007, , ]] 13
14 0 <=> [[0]] - [[ True]] [[0.9653, , 0.0]] 1 <=> [[1]] - [[ True]] [[0.0344, , ]] 1 <=> [[1]] - [[ True]] [[0.1798, , 0.095]] 2 <=> [[2]] - [[ True]] [[0.0008, , 0.756]] 2 <=> [[2]] - [[ True]] [[0.0011, , ]] 0 <=> [[0]] - [[ True]] [[0.9363, , ]] 0 <=> [[0]] - [[ True]] [[0.9413, , ]] 1 <=> [[1]] - [[ True]] [[0.0535, , ]] 2 <=> [[2]] - [[ True]] [[0.0004, , ]] 1 <=> [[1]] - [[ True]] [[0.0338, , ]] 0 <=> [[0]] - [[ True]] [[0.9653, , 0.0]] 0 <=> [[0]] - [[ True]] [[0.9276, , ]] 2 <=> [[2]] - [[ True]] [[0.0026, , 0.67]] 0 <=> [[0]] - [[ True]] [[0.9276, , ]] 1 <=> [[1]] - [[ True]] [[0.0116, , ]] 1 <=> [[1]] - [[ True]] [[0.006, , ]] 0 <=> [[0]] - [[ True]] [[0.9642, , 0.0]] 2 <=> [[2]] - [[ True]] [[0.0004, 0.154, ]] 1 <=> [[1]] - [[ True]] [[0.0886, , 0.16]] 2 <=> [[2]] - [[ True]] [[0.0007, 0.153, ]] 0 <=> [[0]] - [[ True]] [[0.9879, , 0.0]] 1 <=> [[1]] - [[ True]] [[0.0079, , ]] 0 <=> [[0]] - [[ True]] [[0.9535, , ]] 1 <=> [[1]] - [[ True]] [[0.004, , ]] 0 <=> [[0]] - [[ True]] [[0.9704, , 0.0]] 2 <=> [[2]] - [[ True]] [[0.0, , ]] 1 <=> [[1]] - [[ True]] [[0.0422, , ]] 2 <=> [[2]] - [[ True]] [[0.0001, 0.172, ]] 0 <=> [[0]] - [[ True]] [[0.9091, , ]] 2 <=> [[2]] - [[ True]] [[0.0016, , ]] 0 <=> [[0]] - [[ True]] [[0.8405, , 0.001]] 2 <=> [[2]] - [[ True]] [[0.0004, , ]] 2 <=> [[2]] - [[ True]] [[0.0001, , ]] 0 <=> [[0]] - [[ True]] [[0.9536, , ]] 1 <=> [[1]] - [[ True]] [[0.053, , ]] 1 <=> [[1]] - [[ True]] [[0.0182, , ]] 0 <=> [[0]] - [[ True]] [[0.9823, , 0.0]] 1 <=> [[1]] - [[ True]] [[0.0221, , ]] 0 <=> [[0]] - [[ True]] [[0.9536, , ]] 2 <=> [[2]] - [[ True]] [[0.0013, , ]] 0 <=> [[0]] - [[ True]] [[0.99, 0.01, 0.0]] 0 <=> [[0]] - [[ True]] [[0.9643, , ]] 2 <=> [[2]] - [[ True]] [[0.0003, , ]] 2 <=> [[2]] - [[ True]] [[0.0023, , ]] 2 <=> [[2]] - [[ True]] [[0.0012, , ]] Accuracy = [[ 1.]] 3.5 Feature engineering In [24]: n = 2 sgd = True 14
15 3.6 A more difficult example: The MNIST task 3.7 Reuse all the code In [27]: mnistxtrain, mnistytrain = tomatrix(read(dataset="training"), maxitems=60000) mnistytraini = indicatormatrix(mnistytrain) mnistxtest, mnistytest = tomatrix(read(dataset="testing")) mnistytesti = indicatormatrix(mnistytest) n = mnistxtrain.shape[1] k = mnistytraini.shape[1] mnisttheta = np.matrix(np.random.normal(0, 0.1, n*k)).reshape(n,k) mnistthetabest = mbsgd(h_mc, J_mc, dj_mc, mnisttheta, mnistxtrain, mnistytraini, 15
16 alpha=0.1, maxsteps=20000, batchsize = 20) In [28]: cls, probs = classify(mnistthetabest, mnistxtest) print("accuracy: ", np.sum(cls == mnistytest)/len(mnistytest)) Accuracy: Let s look at a few examples In [29]: np.set_printoptions(precision=2) for i, image in enumerate(mnistxtest[:10]): show(image[:,1:].reshape(28,28)) print(cls[i], mnistytest[i], probs[i]) [[7]] [[ 7.]] [[ 1.17e e e e e e e e e e-03]] [[2]] [[ 2.]] [[ 8.53e e e e e e e e e e-07]] 16
17 [[1]] [[ 1.]] [[ 9.68e e e e e e e e e e-03]] [[0]] [[ 0.]] [[ 9.98e e e e e e e e e e-05]] [[4]] [[ 4.]] [[ 8.38e e e e e e e e e e-02]] 17
18 [[1]] [[ 1.]] [[ 6.27e e e e e e e e e e-04]] [[4]] [[ 4.]] [[ 1.08e e e e e e e e e e-02]] [[9]] [[ 9.]] [[ 8.97e e e e e e e e e e-01]] 18
19 [[6]] [[ 5.]] [[ 4.89e e e e e e e e e e-04]] [[9]] [[ 9.]] [[ 3.99e e e e e e e e e e-01]] 4 OK, but what about Neural Networks? Actually, we already trained a whole bunch of neural networks during the lecture! 19
20 4.1 The Neuron 4.2 What s this? 20
21 4.3 All we need for a single-layer single-neuron regression network: Model: Cost function (MSE): Gradient: J(θ) = 1 m J(θ) θ j = 1 m Optimization algorithm: any variant of SGD 4.4 And that? h θ (x) = n θ i x i i=0 m (h θ (x (i) ) y (i) ) 2 i=1 m (h θ (x (i) ) y (i) )x (i) j i=1 4.5 All we need for a single-layer single-neuron binary classifier: Model: Cost function (binary cross-entropy): h θ (x) = σ( n θ i x i ) = P (c = 1 x, θ) i=0 J(θ) = 1 m m i=1 [y(i) log P (c = 1 x (i), θ) +(1 y (i) ) log(1 P (c = 1 x (i), θ))] 21
22 Gradient: J(θ) θ j = 1 m m (h θ (x (i) ) y (i) )x (i) j i=1 Optimization algorithm: any variant of SGD 4.6 And what are these? 4.7 All we need to train a single-layer multi-class classifier Model: h Θ (x) = [P (k x, Θ)] k=1,...,c where Θ = (θ (1),..., θ (c) ) Cost function J(Θ) (categorial cross-entropy): J(Θ) = 1 m m c δ(y (i), k) log P (k x (i), Θ) i=1 k=1 Gradient J(Θ): J(Θ) Θ j,k = 1 m m (δ(y (i), k) P (k x (i), Θ))x (i) j i=1 Optimization algorithm: any variant of SGD 22
23 4.8 Tomorrow: How do we train this monster? 4.9 Or something like this: 23
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Computing Gradient. Hung-yi Lee 李宏毅
Computing Gradient Hung-yi Lee 李宏毅 Introduction Backpropagation: an efficient way to compute the gradient Prerequisite Backpropagation for feedforward net: http://speech.ee.ntu.edu.tw/~tkagk/courses/mlds_05_/lecture/
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016
Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Elements of Information Theory
Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
6. MAXIMUM LIKELIHOOD ESTIMATION
6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ
Variational Wavefunction for the Helium Atom
Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Tutorial on Multinomial Logistic Regression
Tutorial on Multinomial Logistic Regression Javier R Movellan June 19, 2013 1 1 General Model The inputs are n-dimensional vectors the outputs are c-dimensional vectors The training sample consist of m
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Συστήματα Διαχείρισης Βάσεων Δεδομένων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Example of the Baum-Welch Algorithm
Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)
Section 8.2 Graphs of Polar Equations
Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics
A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions
Code Breaker. TEACHER s NOTES
TEACHER s NOTES Time: 50 minutes Learning Outcomes: To relate the genetic code to the assembly of proteins To summarize factors that lead to different types of mutations To distinguish among positive,
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Meta-Learning and Universality
Meta-Learning and Universality Conference paper at ICLR 2018 Chelsea Finn & Sergey Levine (US Berkeley) Youngseok Yoon Contents The Universality in Meta-Learning Model Construct (Pre-update) Single gradient
Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def
Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι
She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Εξαγωγή χαρακτηριστικών μαστογραφικών μαζών και σύγκριση
Διακριτικές Συναρτήσεις
Διακριτικές Συναρτήσεις Δρ. Δηµήτριος Τσέλιος Επίκουρος Καθηγητής ΤΕΙ Θεσσαλίας Τµήµα Διοίκησης Επιχειρήσεων Θερµικός χάρτης των XYZ ξενοδοχείων σε σχέση µε τη γεωγραφική περιοχή τους P. Adamopoulos New
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
Test Data Management in Practice
Problems, Concepts, and the Swisscom Test Data Organizer Do you have issues with your legal and compliance department because test environments contain sensitive data outsourcing partners must not see?
forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
How to register an account with the Hellenic Community of Sheffield.
How to register an account with the Hellenic Community of Sheffield. (1) EN: Go to address GR: Πηγαίνετε στη διεύθυνση: http://www.helleniccommunityofsheffield.com (2) EN: At the bottom of the page, click
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..
Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
The ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
Lecture 21: Properties and robustness of LSE
Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 4: English a Language of Economy Το περιεχόμενο του μαθήματος διατίθεται με άδεια
Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University
Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Queensland University of Technology Transport Data Analysis and Modeling Methodologies
Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Stabilization of stock price prediction by cross entropy optimization
,,,,,,,, Stabilization of stock prediction by cross entropy optimization Kazuki Miura, Hideitsu Hino and Noboru Murata Prediction of series data is a long standing important problem Especially, prediction
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
len(observed ) 1 (observed[i] predicted[i]) 2
len(observed ) 1 (observed[i] predicted[i]) 2 i=0 len(observed ) 1 (observed[i] predicted[i]) 2 i=0 model1 = pylab.polyfit(xvals, yvals, 1) pylab.plot(xvals, pylab.polyval(model1, xvals), 'r--', label
An Inventory of Continuous Distributions
Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Notes on the Open Economy
Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Ακέραιος προγραμματισμός πολύ-κριτηριακές αντικειμενικές συναρτήσεις Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Διάλεξη 12-13 η /2017
HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:
HOMEWORK# 52258 李亞晟 Eercise 2. The lifetime of light bulbs follows an eponential distribution with a hazard rate of. failures per hour of use (a) Find the mean lifetime of a randomly selected light bulb.
ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ
ΕΘΝΙΚΟ ΜΕΣΟΒΙΟ ΠΟΛΤΣΕΧΝΕΙΟ ΣΜΗΜΑ ΑΓΡΟΝΟΜΩΝ-ΣΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΣΟΜΕΑ ΣΟΠΟΓΡΑΦΙΑ ΕΡΓΑΣΗΡΙΟ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ
Τελική Εξέταση =1 = 0. a b c. Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. HMY 626 Επεξεργασία Εικόνας
Τελική Εξέταση. Logic Operations () In the grid areas provided below, draw the results of the following binary operations a. NOT(NOT() OR ) (4) b. ( OR ) XOR ( ND ) (4) c. (( ND ) XOR ) XOR (NOT()) (4)
MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81
1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then
Ανάκτηση Πληροφορίας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Λανθάνουσα Σημασιολογική Ανάλυση (Latent Semantic Analysis) Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό