ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΔΗΜΙΟΥΡΓΙΚΩΝ ΕΡΓΑΣΙΩΝ
|
|
- Θέκλα Κουντουριώτης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΔΗΜΙΟΥΡΓΙΚΩΝ ΕΡΓΑΣΙΩΝ Τίτλος: Η αλγεβρική σκέψη του Διόφαντου. Τάξη: Α Λυκείου Μάθημα: Άλγεβρα Ενότητα: 3.3 Εξισώσεις 2 ου βαθμού και 4.2 Ανισώσεις 2 ου βαθμού Η ιδέα: Από το βιβλίο του Γιάννη Θωμαΐδη μπορούν να αντληθούν προβλήματα από τα Αριθμητικά του Διόφαντου με σκοπό να περιπλανηθούν οι μαθητές στον τρόπο σκέψης του Διόφαντου και να εμβαθύνουν στη σημασία των εννοιών του αγνώστου και της εξίσωσης για την επίλυση μαθηματικών προβλημάτων, στη μετάφραση από τη φυσική γλώσσα στη συμβολική γλώσσα της άλγεβρας, στις έννοιες των ρητών και άρρητων λύσεων μιας εξίσωσης κ.ά. Βιβλιογραφία Θωμαΐδης, Ι. (2011). Εξισώσεις και ανισώσεις δευτέρου βαθμού στα Αριθμητικά του Διόφαντου, Μία μελέτη για την ιστορία της Άλγεβρας. Θεσσαλονίκη: Εκδόσεις ΖΗΤΗ. (Το βιβλίο του Γιάννη Θωμαΐδη έχει βραβευθεί από την Ακαδημία Αθηνών).
2 Τίτλος: Το πρόβλημα με τα δύο περιστέρια και τους δύο πύργους. Τάξη: Β Λυκείου Μάθημα: Γεωμετρία Ενότητα: 8.1 Όμοια ευθύγραμμα σχήματα και 8.2 Κριτήρια ομοιότητας Η ιδέα: Πρόκειται για ένα ιστορικό πρόβλημα που περιέχεται στο βιβλίο Liber Abaci (1202 μ.χ.) του Leonardo Pisano (Fibonacci). Η διερεύνηση του μαθηματικού προβλήματος μπορεί να συνδυαστεί με την αναζήτηση ιστορικών στοιχείων για τον Fibonacci και για το Liber Abaci. Μπορούν να αναδειχθούν δύο σημαντικά θέματα που σχετίζονται με την Ιστορία των Μαθηματικών: Α) Η μετάδοση των Ελληνικών μαθηματικών από το Βυζάντιο στη Δύση την περίοδο των Σταυροφοριών και Β) Μία εννοιολογική αλλαγή της έννοιας του αριθμού που και σηματοδοτεί την ανάπτυξη ενός νέου είδους μαθηματικών. Βιβλιογραφία Θωμαΐδης, Ι., Πούλος, Α. (2000). Διδακτική της Ευκλείδειας Γεωμετρίας. Θεσσαλονίκη: Εκδόσεις ΖΗΤΗ. (Το βιβλίο περιέχει πολλές προτάσεις για θέματα Συνθετικών-Δημιουργικών εργασιών που συνοδεύονται από προτεινόμενη βιβλιογραφία και είναι ένα εξαιρετικό βοήθημα για τον εκπαιδευτικό για τις Δημιουργικές Εργασίες.) Το πρόβλημα: Ανάμεσα σε δύο πύργους που έχουν ύψη 30 και 40 μέτρα αντίστοιχα και απέχουν μεταξύ τους 50 μέτρα, υπάρχει ένα σιντριβάνι. Δύο πουλιά που πετούν από τους δύο πύργους προς τα κάτω, με την ίδια ταχύτητα, φθάνουν στο σιντριβάνι ταυτόχρονα. Πόσο απέχει το σιντριβάνι από τους δύο πύργους;
3 Τίτλος: Διαγράμματα Voronoi. Τάξη: Α Λυκείου Μάθημα: Γεωμετρία Ενότητα: 3.7 Μεσοκάθετος, 3.17 Απλές γεωμετρικές κατασκευές, 4.5 Αξιοσημείωτοι κύκλοι τριγώνου, 5 ο Κεφάλαιο, 5.12 Αξιοσημείωτες ευθείες και κύκλοι τριγώνου. Η ιδέα: Δίνεται στους μαθητές το ανοικτό πρόβλημα: Αν έχουμε μία διασπορά σημείων στο επίπεδο (θα τα λέμε τόπους), πως μπορούμε να χωρίσουμε το επίπεδο σε περιοχές έτσι ώστε κάθε τόπος να έχει τη δική του περιοχή η οποία να αποτελείται από εκείνα τα σημεία του επιπέδου που είναι τα πλησιέστερα σε αυτό τον τόπο; με τη διευκρίνιση ότι ο χωρισμός του επιπέδου σε περιοχές πρέπει να είναι μία πλακόστρωση (tessellation), δηλαδή αφενός να καλύπτει όλο το επίπεδο ώστε να μην μείνουν περιοχές που δεν ανήκουν σε κανένα τόπο και αφετέρου να μην υπάρχουν επικαλύψεις, δηλαδή να μην υπάρχουν περιοχές που να ανήκουν ταυτόχρονα σε δύο τόπους. Ζητείται από τους μαθητές να διερευνήσουν διαδοχικά τις περιπτώσεις με δύο σημεία, με τρία σημεία, με τέσσερα σημεία και στη συνέχεια να γενικεύσουν και να διατυπώσουν μία μέθοδο λύσης για περισσότερα σημεία, η οποία δίνει ως αποτέλεσμα ένα διάγραμμα Voronoi. Προεκτάσεις: Στη συνέχεια ομάδες μαθητών μπορούν να διερευνήσουν κάποια από τα παρακάτω θέματα: Διαγράμματα Voronoi, ένα πρότυπο ανάπτυξης στον φυσικό κόσμο. Η ιστορική εξέλιξη του προβλήματος που διαπραγματεύονται τα διαγράμματα Voronoi. Βιογραφικά στοιχεία του Voronoi, του δασκάλου του Markov και των μαθητών του Delaunay και Sierpinski, ώστε να αναδειχθεί μία εικόνα του πλαισίου της εποχής. Εφαρμογές των διαγραμμάτων Voronoi στην Αρχιτεκτονική και στον Πολεοδομικό Σχεδιασμό. Εφαρμογές των διαγραμμάτων Voronoi στις Εικαστικές και Εφαρμοσμένες Τέχνες. Δημιουργία εικαστικών έργων με την τεχνική των διαγραμμάτων Voronoi στο χέρι και στον υπολογιστή. Εφαρμογές των διαγραμμάτων Voronoi σε άλλα πεδία (Αστρονομία, Κρυσταλλογραφία, Βιολογία, Φυσιολογία, Χημεία, Φυσική, Μετεωρολογία, Γεωγραφία, Ιατρική, Διακριτή και Υπολογιστική Γεωμετρία, Σχεδιασμός Αλγορίθμων, Προβλήματα Βελτιστοποίησης). Ενδεικτική βιβλιογραφία Αργυρόπουλος, Η. (n.d.). Ευκλείδεια Γεωμετρία, Τεύχος Α. Αθήνα: Ινστιτούτο Τεχνολογίας Υπολογιστών και Εκδόσεων «ΔΙΟΦΑΝΤΟΣ». Aurenhammer, F., Klein. R. (2000). Voronoi Diagrams. In J. R. Sack & J. Urrutia (eds) Handbook of Computational Geometry. Amsterdam: Elsevier Science. Aurenhammer, F., Klein. R., & Lee, D. (2013). Voronoi Diagrams and Delaunay Tringulations. Singapore: World Scientific.
4 Miller, G., Sheehy, D. (2013). A new approach to output-sensitive, Voronoi Diagrams and Delaunay Triangulations. Proceedings of the 29th Annual Symposium on Computational Geometry, p DOI: / Κουτάκη Παντερμάκη, Ε. (2009). Κατασκευή Υπερβαλλουσών Καμπυλών για Κυρτά Πολυγωνικά Αντικείμενα με τη Βοήθεια Διαγραμμάτων Voronoi. Μεταπτυχιακή Εργασία στο Διατμηματικό Μεταπτυχιακό Πρόγραμμα Σπουδών «Μαθηματικά και Εφαρμογές τους». Σχολή Θετικών Επιστήμων, Πανεπιστήμιο Κρήτης.
5 Τίτλος: Η αναζήτηση της μαθηματικής αλήθειας. Τάξη: Α Λυκείου Μάθημα: Γεωμετρία Ενότητα: 1.1 Το αντικείμενο της Ευκλείδειας Γεωμετρίας, 1.2 Ιστορική αναδρομή στη γένεση και ανάπτυξη της Γεωμετρίας, 4.2 Τέμνουσα δύο ευθειών, Ευκλείδειο αίτημα. Η ιδέα: Προτείνεται στους μαθητές η διερεύνηση της ισχύος των 5 αξιωμάτων καθώς και κάποιων εμβληματικών προτάσεων της Ευκλείδειας Γεωμετρίας, όπως το μήκος κύκλου και το άθροισμα των γωνιών τριγώνου, στην περίπτωση του καμπυλωμένου χώρου δύο διαστάσεων της επιφάνειας της σφαίρας, με σκοπό την ανάδειξη της ιδέας ότι οι μαθηματικές ιδέες δεν είναι στατικές, απόλυτες και αιώνιες, αλλά δυναμικές, σχετικές και εξελίξιμες. Μπορεί, επιπροσθέτως, να διερευνηθεί η ιστορική εξέλιξη της σφαιρικής γεωμετρίας προκειμένου να διερευνηθεί το ερώτημα γιατί σφαιρική γεωμετρία; και να αναδειχθεί η αναγκαιότητα της ανάπτυξης μη ευκλείδειων γεωμετριών. Εποπτικό υλικό: Είναι χρήσιμο να υπάρχουν κάποιες σφαίρες (Υδρόγειος σφαίρα, μπάλες αθλητικές ή παιχνίδια, κατά προτίμηση χωρίς σχέδια ή πλαστικές διαφανείς) και μαρκαδόροι πίνακα που σβήνουν για να μπορούν να πειραματιστούν οι ομάδες των μαθητών στη φάση της διερεύνησης του προβλήματος. Ενδεικτική Βιβλιογραφία Ελληνόγλωσση Αργυρόπουλος, Η. κ.ά. (2013). Ευκλείδεια Γεωμετρία. Αθήνα: ΙΤΥΕ Διόφαντος. Αυγολούπης, Σ. & Σειραδάκης, Γ. (2004). Παρατηρησιακή αστρονομία. Θεσσαλονίκη: Πλανητάριο Θεσσαλονίκης. Boyer, C. & Mertzbach, U. (1989). Η Ιστορία των Μαθηματικών. Αθήνα: Εκδόσεις Γ. Α. Πνευματικού. Davis, P.J. & Hersh, R. (1980). Η μαθηματική Εμπειρία. Αθήνα: Τροχαλία. Καρπούζος, Α. (2013). Η τέταρτη διάσταση στη τέχνη και στη φυσική. Αθήνα: Εργαστήριο Σκέψης. Κολέζα, E. (2006). Μαθηματικά και σχολικά μαθηματικά. Αθήνα: Ελληνικά Γράμματα. Ντούνη, Χ. & Δημαράκη, Α. (2005). Ναυτιλία, Τόμος Β : Αστρονομική Ναυτιλία. Αθήνα: Ίδρυμα Ευγενίδου. Osserman, R. (1998). H ποίηση του σύμπαντος. Μια μαθηματική εξερεύνηση του κόσμου. Αθήνα: Κάτοπρτο. Πετράκης, Ι. (2008). Πλάτων, Μένων. Αθήνα: Πόλις. Σταμάτης, Ε. (1975). Ευκλείδου Γεωμετρία Στοιχεία. Αθήνα: ΟΕΔΒ.
6 Ξενόγλωσση Bagrow, L. (2010). History of Cartography. New Brunswick, NJ: Transactions Publishers. Brummelen, G.V. (2013). Heavenly Mathematics: The Forgotten Art of Spherical Trigonometry. New Jersey: Princeton University Press. Daidzic, N. E. (2017). Long and short-range air navigation on spherical Earth. International Journal of Aviation, Aeronautics, and Aerospace, 4(1). Evans, J. (1998). History and Practice of Ancient Astronomy. New York: Oxford University Press. Forbes, G. (1909). History of Astronomy. London: Plain Label Books. Poincaré, H. (1905). Science and Hypothesis. New York: The Walter Scott Publishing. Rawlins, D. (1982). The Eratosthenes Strabo Nile Map. Is It the Earliest Surviving Instance of Spherical Cartography? Did It Supply the 5000 Stades Arc for Eratosthenes' Experiment? Archive for History of Exact Sciences, v.26, Smith, J.R. (1997). Introduction to Geodesy. The History and Concepts of Modern Geodesy. New York: John Wiley and Sons, Inc.
YΠΟΔΕΙΓΜΑ Ι. ΣΤΟΙΧΕΙΑ ΥΠΕΥΘΥΝΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΙΔΙΚΟΤΗΤΑ ΘΕΜΑΤΙΚΟΣ ΠΥΛΩΝΑΣ Τερψιάδης Νικόλαος ΠΕ03 Θετικές Επιστήμες
YΠΟΔΕΙΓΜΑ Ι ΣΧΕΔΙΟ ΥΠΟΒΟΛΗΣ ΔΗΜΙΟΥΡΓΙΚΗΣ ΕΡΓΑΣΙΑΣ του Εκπαιδευτικού ΣΤΟΙΧΕΙΑ ΥΠΕΥΘΥΝΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΙΔΙΚΟΤΗΤΑ ΘΕΜΑΤΙΚΟΣ ΠΥΛΩΝΑΣ Τερψιάδης Νικόλαος ΠΕ03 Θετικές Επιστήμες ΣΤΟΙΧΕΙΑ ΣΥΜΜΕΤΕΧΟΝΤΩΝ
Ενδεικτική θεματολογία δημιουργικών εργασιών στην Α και Β τάξη του Γενικού Λυκείου
Ενδεικτική θεματολογία δημιουργικών εργασιών στην Α και Β τάξη του Γενικού Λυκείου Α. Προτεινόμενες θεματικές ενότητες Τίτλοι από το Ι.Ε.Π. ΑΛΓΕΒΡΑ 5ο 5.1: Ακολουθίες Η ακολουθία Fibonacci στην Φύση και
ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ
ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ ΔΙΔΑΚΤΕΑ ΥΛΗ Ι. Εισαγωγή Το μάθημα «Άλγεβρα και Στοιχεία Πιθανοτήτων» περιέχει σημαντικές μαθηματικές έννοιες, όπως, της απόλυτης τιμής, των προόδων, της συνάρτησης κ.ά.,
Άλγεβρα Α ΕΠΑΛ Εξεταστέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.
Άλγεβρα Α ΕΠΑΛ Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.2ο: Οι Πραγματικοί Αριθμοί 2.1 Οι Πράξεις και οι Ιδιότητές τους 2.2 Διάταξη Πραγματικών
Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I.
Γεωμετρία Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Εισαγωγή Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι
ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ
ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου
Γεωμετρία. I. Εισαγωγή
I. Εισαγωγή Γεωμετρία Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι μαθητές έχουν έρθει σε
ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B ----- Να διατηρηθεί μέχρι... Βαθμός
ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ
Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 016-017 Μαθηματικός Περιηγητής:
A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ
A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΓΕΩΜΕΤΡΙΑ Β ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα- Εξεταστέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η, Βλάμου Π., Κατσούλη Γ., Μαρκάκη
Εξεταστέα ύλη μαθηματικών Α Λυκείου 2017
Εξεταστέα ύλη μαθηματικών Α Λυκείου 2017 Α Λυκείου Γεωμετρία Κεφάλαιο 3 3.1 Είδη και στοιχεία τριγώνων 3.2 1 ο Κριτήριο ισότητας τριγώνων (εκτός της απόδειξης του θεωρήματος) 3.3 2 ο Κριτήριο ισότητας
ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2
ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2. ΜΑΘΗΜΑΤΙΚΩΝ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ
Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής μάθησης
Επιμορφωτικό Εργαστήριο Διδακτικής των Μαθηματικών Του Δημήτρη Ντρίζου Σχολικού Συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής
VORONOI ART. ΔΕΙΓΜΑ & ΙΔΕΕΣ ΓΙΑ ΔΗΜΙΟΥΡΓΙΚΕΣ ΕΡΓΑΣΙΕΣ Επιμόρφωση Εκπαιδευτικών, 2 ο ΠΕΚ Θεσσαλονίκης, Σεπτέμβριος 2017
ΔΕΙΓΜΑ & ΙΔΕΕΣ ΓΙΑ ΔΗΜΙΟΥΡΓΙΚΕΣ ΕΡΓΑΣΙΕΣ Επιμόρφωση Εκπαιδευτικών, 2 ο ΠΕΚ Θεσσαλονίκης, Σεπτέμβριος 2017 VORONOI ART ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕΔ Διαγράμματα VORONOI ΟΝΙΑΣ Νίκος Τερψιάδης Πειραματικό
Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη
Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και
Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος
Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος 2013-14 Μετά από σχετική εισήγηση του Ινστιτούτου Εκπαιδευτικής Πολιτικής (πράξη 32/2013
ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ
Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 016-017 Μαθηματικός Περιηγητής:
ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ
ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Μαθηματικά (Άλγεβρα - Γεωμετρία) Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ
Υποδοχείς Αισθήσεις (σελ: 171) Σωματικές Αισθήσεις ( σελ: ) Ειδικές Αισθήσεις : όλο εκτός από την παράγραφο «Βιοχημεία της όρασης»
1 ο Γενικό Λύκειο Ζωγράφου Σχολ. Έτος 2015-2016 Εξεταστέα Ύλη Μαθημάτων Α Λυκείου 1] ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ 1.1.5 Η έννοια της ταχύτητας στην ευθύγραμμη ομαλή κίνηση εκτός Μελέτη κίνησης με χρήση του ηλεκτρικού
Μαθηματικά Α Τάξης Γυμνασίου
Μαθηματικά Α Τάξης Γυμνασίου Διδακτικό Έτος 2018-2019 Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου. Κεφ. 1 ο :
Μαθηματικές Συναντήσεις
Μαθηματικές Συναντήσεις ΣΗΜΕΙΩΜΑ 1 / ΟΚΤΩΒΡΙΟΣ 16 Ενδεικτικά θέματα μαθηματικών για τις Α, Β και Γ τάξεις του Γενικού Λυκείου Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ Σχολικού Συμούλου Μαθηματικών Τρικάλων και Καρδίτσας Τα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ. Δ/νσεις Δ/θμιας Εκπ/σης Γραφεία Σχολικών Συμβούλων Γενικά Λύκεια (μέσω των Δ/νσεων Δ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:
Να φύγει ο Ευκλείδης;
Να φύγει ο Ευκλείδης; Σωτήρης Ζωιτσάκος Βαρβάκειο Λύκειο Μαθηματικά στα ΠΠΛ Αθήνα 2014 Εισαγωγικά Dieudonné: «Να φύγει ο Ευκλείδης». Douglas Quadling: «Ο Ευκλείδης έχει φύγει, αλλά στο κενό που άφησε πίσω
Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΧΕΙΡΙΣΗ ΥΛΗΣ ΜΑΘΗΜΑ ΓΕΩΜΕΤΡΙΑ
ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β Ημερήσιου και Γ Εσπερινού Γενικού Λυκείου II. Διαχείριση διδακτέας ύλης Κεφάλαιο 7 ο (Προτείνεται να διατεθούν 6 διδακτικές ώρες). 7.1-7.6 Στις παραγράφους αυτές γίνεται πρώτη
----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο:
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----
Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών).
Μάθημα 5ο Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών). Ο δεύτερος ηλικιακός κύκλος περιλαμβάνει την ηλικιακή περίοδο
Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη
Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Γ Γυμνασίου» των Δημητρίου Αργυράκη, Παναγιώτη Βουργάνα, Κωνσταντίνου Μεντή, Σταματούλας Τσικοπούλου, Μιχαήλ Χρυσοβέργη, έκδοση
ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ
ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ 2015-16 ΕΞΕΤΑΣΤΕΑ ΥΛΗ Α ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΥΧΟΣ Α ΕΝΟΤΗΤΑ 1: ΣΥΝΟΛΑ (Σελ. 25 42) Η Έννοια του Συνόλου Σχέσεις Συνόλων Πράξεις Συνόλων ΕΝΟΤΗΤΑ 2: ΑΡΙΘΜΟΙ (Σελ. 46 83)
Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών
Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών Η Ευκλείδεια Γεωμετρία σε σχέση με Θεωρία van Hiele Οι τρεις κόσμοι του Tall
Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής μάθησης (2η εκδοχή, Ιανουάριος 2016)
Επιμορφωτικό Εργαστήριο Διδακτικής των Μαθηματικών Του Δημήτρη Ντρίζου Σχολικού Συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής
Γεωμετρία Α Τάξης Ημερήσιου Γενικού Λυκείου
Γεωμετρία Α Τάξης Ημερήσιου Γενικού Λυκείου ΔΙΔΑΚΤΕΑ ΥΛΗ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ I. Εισαγωγή Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με
B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010.
Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς Άλγεβρα Γενικής Παιδείας I. ιδακτέα ύλη A) Από το βιβλίο «Άλγεβρα Α Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ.
Εξεταστέα ύλη Άλγεβρας Α Λυκείου Σχολικό έτος Εξεταστέα ύλη Γεωμετρίας Α Λυκείου Σχολικό έτος
Εξεταστέα ύλη Άλγεβρας Α Λυκείου Σχολικό έτος 2015-2016 Κεφάλαιο 1ο Παράγραφοι: 1.1, 1.2 Κεφάλαιο 2ο Παράγραφοι: 2.3, 2.4 Κεφάλαιο 3ο Παράγραφοι: 3.1, 3.3 Κεφάλαιο 4ο Παράγραφοι: 4.1, 4.2 Κεφάλαιο 6ο Παράγραφοι:
Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ
Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Γενική Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικός Περιηγητής 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. Διδακτέα-εξεταστέα
ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου.
Να διατηρηθεί µέχρι... ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ENIAIOΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α' Αν. Παπανδρέου 37, 15180 Μαρούσι Πληροφορίες : Αν. Πασχαλίδου Τηλέφωνο
ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Α ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Α, Β ΤΑΞΕΩΝ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΙΑ ΤΟ ΣΧΟΛΙΚΟ ΕΤΟΣ
ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Α ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Α, Β ΤΑΞΕΩΝ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΙΑ ΤΟ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015 Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα -εξεταστέα
----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180 Μαρούσι Ιστοσελίδα: www.minedu.gov.gr Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: 210-3443422
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----
Στ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1
Ενδεικτική Οργάνωση Ενοτήτων Στ Τάξη Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 15 Αρ3.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών Επανάληψη μέχρι το 1 000
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΑΘΗΜΑ: ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΧΡΗΣΗ ΤΠΕ ΘΕΜΑ ΕΡΓΑΣΙΑΣ: ΜΕΤΑΤΡΟΠΗ ΤΟΥ ΣΕΝΑΡΙΟΥ
Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ
Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας
ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.
ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα
ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί
Ενδεικτικός Προγραμματισμός ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί 12 περίοδοι Δείκτες επιτυχίας: Ορίζουν την έννοια της νιοστής ρίζας ενός αριθμού α και αποδεικνύουν τις ιδιότητες ριζών, όταν ν N, ν 0, 1, α R
ΤΑΞΗ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΜΑΙΟΥ ΙΟΥΝΙΟΥ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ο - Οι φυσικοί αριθµοί 1.1. Φυσικοί αριθµοί - ιάταξη Φυσικών - Στρογγυλοποίηση 1.2. Πρόσθεση, αφαίρεση και πολλαπλασιασµός
Παρεµβολή ή Παλινδρόµηση - Συνέργειες οµίλων Προτύπων ΓΕΛ
Παρεµβολή ή Παλινδρόµηση Συνέργειες οµίλων Προτύπων ΓΕΛ Σωτήρης. Χασάπης Πρότυπο Γενικό Λύκειο Ευαγγελικής Σχολής Σµύρνης 9η Μαθηµατική Εβδοµάδα Θεσσαλονίκη Τετάρτη 15 Ιουνίου 2016 Περιεχόµενα Εισαγωγή
Η διδασκαλία των Μαθηματικών στα νέα Προγράμματα Σπουδών Γυμνασίου & Λυκείου
Η διδασκαλία των Μαθηματικών στα νέα Προγράμματα Σπουδών Γυμνασίου & Λυκείου Γιάννης Θωμαΐδης Σχολικός Σύμβουλος Μαθηματικών Νομού Κιλκίς Ομιλία στο Παράρτημα Κέρκυρας της Ελληνικής Μαθηματικής Εταιρείας
ΝΕΟΕΛΛΗΝΙΚΗ ΛΟΓΟΤΕΧΝΙΑ Β ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΕΖΟΓΡΑΦΙΑ ΠΟΙΗΣΗ
17 ο ΓΕΛ ΑΘΗΝΩΝ 2017-2018 ΝΕΟΕΛΛΗΝΙΚΗ ΛΟΓΟΤΕΧΝΙΑ Β ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΕΖΟΓΡΑΦΙΑ Το μοιρολόγι της Φώκιας, Α. Παπαδιαμάντης Πατέρα στο σπίτι, Α. Παπαδιαμάντης Η τιμή και το Χρήμα, Κ. θεοτόκης Αλέξανδρος
Το νέο Πρόγραμμα Σπουδών για τα Μαθηματικά της υποχρεωτικής εκπαίδευσης
ΕΣΠΑ 2007-13\Ε.Π. Ε&ΔΒΜ\Α.Π. 1-2-3 «ΝΕΟ ΣΧΟΛΕΙΟ (Σχολείο 21 ου αιώνα) Νέο Πρόγραμμα Σπουδών, Οριζόντια Πράξη» MIS: 295450 Με συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης (Ε. Κ. Τ.) Το νέο Πρόγραμμα
2. Γεωμετρία Β Τάξης Ημερήσιου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου
2. Γεωμετρία Β Τάξης Ημερήσιου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου I. Διδακτέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των. Αργυρόπουλου Η, Βλάμου Π., Κατσούλη
Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ Γ ΓΥΜΝΑΣΙΟΥ
Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ Γ ΓΥΜΝΑΣΙΟΥ Σχολικό Έτος: 2014-2015 Μαθηματικός Περιηγητής 1 Διδακτέα ύλη και οδηγίες διδασκαλίας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Βαθμός Ασφαλείας: Να
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Βαθμός Ασφαλείας: Να
Γ Τάξη Γυμνασίου. Ι. Διδακτέα ύλη
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ.
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ 17. ΚΕΦΑΛΑΙΟ 1 25 Οι φυσικοί αριθμοί και η αναπαράστασή τους
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΕΓΟΜΕΝΑ 17 ΜΕΡΟΣ ΠΡΩΤΟ ΑΡΙΘΜΟΙ ΚΕΦΑΛΑΙΟ 1 25 Οι φυσικοί αριθμοί και η αναπαράστασή τους Οι φυσικοί αριθμοί 26 Η σχέση της ισότητας και της ανισότητας των φυσικών αριθμών 27 Η αναπαράσταση
Ανάλυση δραστηριότητας- φύλλο εργασίας
Ανάλυση δραστηριότητας- φύλλο εργασίας Τίτλος : Δύο δραστηριότητες σε ευθεία-κύκλο. α) Η «χρυσή ευθεία» β) οι γεωμετρικοί τόποι μιας οικογένειας κύκλων. Τάξη: Δίωρο μάθημα σε μαθητές Β λυκείου σε αίθουσα
ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ
ΝΙΚΟΣ ΤΑΣΟΣ Αλγ ε β ρ α Β Λυ κ ε ί ο υ Γενικής Παιδειασ Α Τό μ ο ς 3η Εκ δ ο σ η Πρόλογος Το βιβλίο αυτό έχει σκοπό και στόχο αφενός μεν να βοηθήσει τους μαθητές της Β Λυκείου να κατανοήσουν καλύτερα την
1 ο Μαθητικό Συνέδριο Έρευνας και Επιστήμης Μάρτιος 2017
1 ο Μαθητικό Συνέδριο Έρευνας και Επιστήμης Μάρτιος 2017 Αναγνώστου Σαραφιανός, Γαβρίδης Δημήτριος, Μαραντίδου Χριστίνα Επιβλέπων καθηγητής: Νίκος Τερψιάδης Πειραματικό Λύκειο Πανεπιστημίου Μακεδονίας
Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού
Σύµφωνα µε την Υ.Α. 139606/Γ2/01-10-2013 Άλγεβρα Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΛ Ι. ιδακτέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» (έκδοση 2013) Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.1
Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.
Τυπολόγιο Μαθηματικών Πρόλογος Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Π ε ρ ι ε χ ό μ ε ν α Λυκείου Άλγεβρα 001 018 Γεωμετρία 019
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ -----
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Βαθμός Ασφαλείας: Να
ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180
ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΚΠ/ΚΟΥ ΕΙΔΙΚΟΤΗΤΑ. Άσε το Χάος να βάλει τάξη. ΘΕΜΑΤΙΚΗ ΟΜΙΛΟΥ. Fractals Πλακοστρώσεις(Penrose) Χάος. Α Β Γ Λυκείου ΑΡΙΘΜΟΣ ΜΑΘΗΤΩΝ
ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΚΠ/ΚΟΥ ΕΙΔΙΚΟΤΗΤΑ Δρ ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΛΑΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΚΠ/ΚΟΥ ΕΙΔΙΚΟΤΗΤΑ ΘΕΜΑΤΙΚΗ ΟΜΙΛΟΥ ΤΑΞΗ Άσε το Χάος να βάλει τάξη. Fractals Πλακοστρώσεις(Penrose) Χάος Α Β Γ Λυκείου
επινόηση ιδεατών αντικειμένων και οργάνωσή τους σε έννοιες (κατηγορίες ομοειδών αντικειμένων)
επινόηση ιδεατών αντικειμένων και οργάνωσή τους σε έννοιες (κατηγορίες ομοειδών αντικειμένων) Μαθηματικά αντικείμενα Έννοιες Ιδιότητες (θεωρήματα, πορίσματα) Σχέσεις Ενέργειες Διαδικασίες Αναπαραστάσεις
Θέμα: «2018: Έτος Μαθηματικών»
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ.Ε. Δ/ΝΣΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠ/ΣΗΣ
Οδηγίες & Ενδεικτικά θέματα προαγωγικών & απολυτηρίων εξετάσεων Γυμνασίου Σελίδα 1
ΟΔΗΓIEΣ ΓΙΑ ΤΙΣ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΥΜΝΑΣΙΟΥ Α. ΘΕΩΡΙΑ Οι μαθητές υποχρεούνται σε διαπραγμάτευση ενός απλού από δύο τιθέμενα θέματα θεωρίας της διδαγμένης ύλης. Ένα θέμα από την Άλγεβρα και
Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς. Άλγεβρα Γενικής Παιδείας. I. ιδακτέα ύλη
ΘΕΜΑ : Καθορισµός και διαχείριση διδακτέας ύλης Θετικών Μαθηµάτων των Β και Γ τάξεων Ηµερήσιου και Εσπερινού Γενικού Λυκείου, για το σχολικό έτος 2011 12. Μετά από σχετική εισήγηση του Τµήµατος ευτεροβάθµιας
ανάπτυξη μαθηματικής σκέψης
ανάπτυξη μαθηματικής σκέψης (έννοιες, αντιλήψεις, αναπαραστάσεις) οργάνωση περιεχομένου μαθηματικών, εννοιολογικές αντιλήψεις στα μαθηματικά και στους μαθητές Μαρία Καλδρυμίδου θέματα οργάνωση περιεχομένου
Κεφάλαιο 7 Ισομετρίες, Συμμετρίες και Πλακοστρώσεις Οπως είδαμε στην απόδειξη του πρώτου κριτηρίου ισότητας τριγώνων, ο Ευκλείδης χρησιμοποιεί την έννοια της εφαρμογής ενός τριγώνου σε ένα άλλο, χωρίς
/νσεων /θµιας Εκπ/σης) ΠΡΟΣ: ΚΟΙΝ.:
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΣΥΝΤΕΛΕΣΤΕΣ Συγγραφική Ομάδα Βλάμος Παναγιώτης Δρούτσας Παναγιώτης Πρέσβης Γεώργιος Ρεκούμης Κωνσταντίνος Φιλολογική Επιμέλεια Βελάγκου Ευγενία Σκίτσα Βρανάς Θεοδόσης Υπεύθυνος Παιδαγωγικού
ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΣΤΗΝ ΠΟΛΙΤΙΚΗ ΠΑΙΔΕΙΑ Α ΛΥΚΕΙΟΥ
ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΣΤΗΝ ΠΟΛΙΤΙΚΗ ΠΑΙΔΕΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 Η ΚΟΙΝΩΝΙΑ [σελ20-27 ] ΚΕΦΑΛΑΙΟ 4 Η ΟΙΚΟΝΟΜΙΑ [σελ44-53 ] ΚΕΦΑΛΑΙΟ 5 Η ΠΟΛΙΤΕΙΑ- ΗΠΟΛΙΤΙΚΗ ΚΟΙΝΟΤΗΤΑ 5.4 Η συμπολιτεία- Η Ευρωπαϊκή Ένωση 5.5 Η
. Ερωτήσεις διάταξης. να διαταχθούν από τη µικρότερη προς τη µεγαλύτερη οι τιµές: f (3), f (0), f (-1), f (5), f (-2), f ( ), f (1).
. Ερωτήσεις διάταξης. Οι συναρτήσεις f (x) = x, g (x) = x, h (x) = x, φ (x) = 3x, ρ (x) = 5x, t (x) = 7x έχουν κοινό πεδίο ορισµού το Α = [- 3, 3]. Να γράψετε τις συναρτήσεις σε µια σειρά έτσι ώστε η γραφική
Άλγεβρα και Στοιχεία Πιθανοτήτων
Άλγεβρα και Στοιχεία Πιθανοτήτων I. Εισαγωγή Το μάθημα «Άλγεβρα και Στοιχεία Πιθανοτήτων» περιέχει σημαντικές μαθηματικές έννοιες, όπως της πιθανότητας, της απόλυτης τιμής, των προόδων, της συνάρτησης
ΒΕΛΤΙΩΣΗ ΤΗΣ ΑΠΟΔΕΙΚΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΤΩΝ ΜΑΘΗΤΩΝ ΣΕ ΠΡΟΤΑΣΕΙΣ ΤΗΣ ΕΥΚΛΕΙΔΕΙΑΣ ΓΕΩΜΕΤΡΙΑΣ
Η ΑΝΑΦΟΡΑ ΓΙΑ ΑΥΤΟ ΤΟ ΑΡΘΡΟ ΕΙΝΑΙ: Νικολουδάκης Εμμ., Δημάκος, Γ. (2009). «Βελτίωση της αποδεικτικής ικανότητας των μαθητών σε προτάσεις της Ευκλείδειας Γεωμετρίας. Μία πρόταση για τη διδασκαλία της απόδειξης
Άλγεβρα Γενικής Παιδείας
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου
Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ
ΞΑΝΘΗ ΔΕΚΕΜΒΡΙΟΣ 2016 ΙΑΝΟΥΑΡΙΟΣ 2017 Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr Διδακτική της Άλγεβρας με χρήση ψηφιακών τεχνολογιών
Δημήτριος Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών
. Οδηγίες για τη διδασκαλία της Γεωμετρίας Β τάξης Ημερήσιου ΓΕΛ κατά το σχολικό έτος 2017-2018 Σύμφωνα με την αρ. πρωτ. 163561/Δ2/2-10-2017 εγκύκλιο του ΥΠ.Π.Ε.Θ. Δημήτριος Σπαθάρας Σχολικός Σύμβουλος
Διαστάσεις του Χώρου Εργασίας (βάλτε ένα τικ στο κύριο χαρακτηριστικό μέσα από το. «Πραγματικό» πρόβλημα. Γεωμετρία του «μπιλιάρδου»
Περιγραφή Περίληψη Η δραστηριότητα αφορά τη μελέτη της γεωμετρίας του μπιλιάρδου. Στόχος της είναι να συνδέσει τις έννοιες των Μαθηματικών όπως αυτή της ομοιότητας και αυτές των τριγωνομετρικών αριθμών
Σ 1, Σ 2... Σ N p 1, p 2,... p N k 1, k 2... k n
Υπολογιστική Γεωμετρία (σημειώσεις διαλέξεων ) Διδάσκων: Ι.Εμίρης Πέμπτη, 7 Απριλίου 2016 1 Ζητήματα πολυπλοκότητας 1. ΚΠ2 Τομή ημιεπιπέδων 2. ΚΠ3, ΚΠd n [d/2+1] (worst case) - Αλλά!! Αν έχουμε σημεία
Η ΒΟΗΘΗΤΙΚΗ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΟΙ ΑΝΙΣΟΤΙΚΕΣ ΣΧΕΣΕΙΣ ΣΥΝΕΔΡΙΟ Ε.Μ.Ε. ΤΕΤΑΡΤΗ
Η ΒΟΗΘΗΤΙΚΗ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΟΙ ΑΝΙΣΟΤΙΚΕΣ ΣΧΕΣΕΙΣ ΣΥΝΕΔΡΙΟ Ε.Μ.Ε. ΤΕΤΑΡΤΗ 7 007 ΑΤΜΑΤΖΙΔΗΣ ΑΘΑΝΑΣΙΟΣ ΚΑΘΗΓΗΤΗΣ Μ.Ε. Όλα ξεκίνησαν όταν μαθητές της Γ Λυκείου Κατεύθυνσης με ρώτησαν με πόσους τρόπους μπορούν
Η Έννοια κι η Γραφική Επίλυση Γραμμικού Συστήματος Δύο Εξισώσεων με Δύο Αγνώστους με τη Βοήθεια του Λογισμικού Geogebra
Η Έννοια κι η Γραφική Επίλυση Γραμμικού Συστήματος Δύο Εξισώσεων με Δύο Αγνώστους με τη Βοήθεια του Λογισμικού Geogebra Κιούφτη Ροϊδούλα 1 1 Εκπαιδευτικός Δευτεροβάθμιας Εκπαίδευσης, rkioufti@hotmail.com
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε
Ευκλείδεια Γεωμετρία
Ευκλείδεια Γεωμετρία Γεωμετρία Γεω + μετρία Γη + μετρώ Οι πρώτες γραπτές μαρτυρίες γεωμετρικών γνώσεων ανάγονται στην τρίτη με δεύτερη χιλιετία π.χ. και προέρχονται από τους λαούς της αρχαίας Αιγύπτου
αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και
1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο
17 ο ΓΕΛ ΑΘΗΝΩΝ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧ. ΕΤΟΥΣ ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΚΑΙ ΓΡΑΜΜΑΤΕΙΑ Α ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΤΕΑ ΥΛΗ
ΚΕΙΜΕΝΑ 17 ο ΓΕΛ ΑΘΗΝΩΝ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧ. ΕΤΟΥΣ 2017-18 ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΚΑΙ ΓΡΑΜΜΑΤΕΙΑ Α ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΤΕΑ ΥΛΗ 1) Ελληνικά του Ξενοφώντα - 2.1. 16-32 ( σελ. 46-61) ΑΠΟ ΜΕΤΑΦΡΑΣΗ μόνον για
Σταύρος Σ. Λίτσας. Μ α θ η μ α τ ι κ ό ς. Μιγαδικοί αριθμοί. ΞΑΝΘΗ Αύγουστος 2013 ΝΗΠΙΑΓΩΓΕΙΟ ΔΗΜΟΤΙΚΟ ΓΥΜΝΑΣΙΟ ΛΥΚΕΙΟ
Σταύρος Σ Λίτσας Μ α θ η μ α τ ι κ ό ς Μιγαδικοί αριθμοί i =- ΞΑΝΘΗ Αύγουστος 0 C:\Users\Stavros\Desktop\ΜΙΓΑΔΙΚΟΙ internet\00 0 ΜΙΓΑΔΙΚΟΙ για internet Αdoc 7/07/ διάχυση της γνώσης Vincent Van Gogh Στη
Η γεωµετρική εποπτεία στην παρουσίαση της απόλυτης τιµής
Η γεωµετρική εποπτεία στην παρουσίαση της απόλυτης τιµής Η µέθοδος άξονα-κύκλου: µια διδακτική πρόταση για την επίλυση εξισώσεων και ανισώσεων µε απόλυτες τιµές στην Άλγεβρα της Α Λυκείου ηµήτριος Ντρίζος
Ενδεικτικά Προβλήματα Μαθηματικών Γυμνασίου. στο πλαίσιο της διερευνητικής και ανακαλυπτικής μάθησης
στο πλαίσιο της διερευνητικής και ανακαλυπτικής μάθησης ΕΙΣΑΓΩΓΙΚΟ ΣΗΜΕΙΩΜΑ Δημήτρης Ντρίζος Σχολικός Σύμβουλος Μαθηματικών Τρικάλων και Καρδίτσας Tα προβλήματα που συμπεριλάβαμε στο παρόν σημείωμα έχουν
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΕΦ.1,1.1, 1.1.1, 1.1.2, 1.1.3, 1.2, 1.3 ΚΕΦ.2.Α.2.1, 2.2, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.3, 2.5 ΚΕΦ.2.Β. 2.1, 2.2, 2.3, 2.4 ΚΕΦ.3. 3.1, 3.5, 3.5.1, 3.5.2, 3.5.3
Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους.
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Νίκος Γ. Τόμπρος Ενότητα : ΤΡΙΓΩΝΟΜΕΤΡΙΑ Περιεχόμενα ενότητας Τριγωνομετρικοί οξείας γωνίας αριθμοί Διδακτικοί στόχοι Διδακτικές οδηγίες - επισημάνσεις Πρέπει οι μαθητές να γνωρίζουν:
Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος
Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος 2013-14 Μετά από σχετική εισήγηση του Ινστιτούτου Εκπαιδευτικής Πολιτικής (πράξη 32/2013
ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας Καθηγητής Πανεπιστημίου Αθηνών Καθηγητής μαθηματικών Βαρβακείου
Παράγοντας τον Τύπο της Δευτεροβάθμιας Εξίσωσης
Παράγοντας τον Τύπο της Δευτεροβάθμιας Εξίσωσης Οι τεχνικές επίλυσης δευτεροβάθμιων εξισώσεων εμφανίζονται τουλάχιστον πριν 4000 χρόνια, στην αρχαία Μεσοποταμία, σημερινό Ιράκ. Οι μέθοδοι πιθανόν προήλθαν
ΔΙΔΑΚΤΕΑ -ΕΞΕΤΑΣΤΕΑ ΥΛΗ
ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ -ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου»
«Παιδαγωγικά μέσω Καινοτόμων Προσεγγίσεων, Τεχνολογίες και Εκπαίδευση»
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Α.Δ Ι.Π. ΑΡΧΗ ΔΙΑΣΦΑΛΙΣΗΣ & ΠΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΣΤΗΝ ΑΝΩΤΑΤΗ ΕΚΠΑΙΔΕΥΣΗ HELLENIC REPUBLIC H.Q.A. HELLENIC QUALITY ASSURANCE AND ACCREDITATION AGENCY Διατμηματικό Πρόγραμμα Μεταπτυχιακών
Ηλεκτρονική Μάθημα Ι Ηλεκτρονικά Συστήματα. Καθηγητής Αντώνιος Γαστεράτος Τμήμα Μηχανικών Παραγωγής και Διοίκησης, Δ.Π.Θ.
Ηλεκτρονική Μάθημα Ι Ηλεκτρονικά Συστήματα Καθηγητής Αντώνιος Γαστεράτος Τμήμα Μηχανικών Παραγωγής και Διοίκησης, Δ.Π.Θ. Σκοπός του μαθήματος Εισαγωγή στις αναλογικές και ψηφιακές ηλεκτρονικές διατάξεις
ΤΑΞΗ : A ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΣΤΟ ΜΑΘΗΜΑ:
ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΤΡΑ 13/5/2019 ΤΑΞΗ : A ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΣΤΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Για τις προαγωγικές εξετάσεις περιόδου Μαΐου - Ιουνίου 2019 (Από το βιβλίο «Άλγεβρα και Στοιχεία
Σε ποιους απευθύνεται: Χρόνος υλοποίησης: Χώρος υλοποίησης: Κοινωνική ενορχήστρωση της τάξης Στόχοι:... 4
Περιεχόμενα Νικόλαος Μανάρας... 2 Σενάριο για διδασκαλία/ εκμάθηση σε μια σύνθεση μεικτής μάθησης (Blended Learning) με τη χρήση του δυναμικού μαθηματικού λογισμικού Geogebra σε διαδραστικό πίνακα και
Β Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη
Β Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 2012. ΜΕΡΟΣ Α Κεφ. 7
Η διδακτική αξιοποίηση της Ιστορίας των Μαθηματικών ως μεταπτυχιακό μάθημα. Γιάννης Θωμαΐδης Δρ. Μαθηματικών Σχολικός Σύμβουλος
Η διδακτική αξιοποίηση της Ιστορίας των Μαθηματικών ως μεταπτυχιακό μάθημα Γιάννης Θωμαΐδης Δρ. Μαθηματικών Σχολικός Σύμβουλος Διαπανεπιστημιακό Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών ΔΙΔΑΚΤΙΚΗ ΚΑΙ