. ln(1) 0... e 2.71 lne. x x. x y. y y x y x. e e. 1 x. ln x A N Z N A Z A A A Z Z Z N Z. X Y e. n p e. Co Ni e

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download ". ln(1) 0... e 2.71 lne. x x. x y. y y x y x. e e. 1 x. ln x A N Z N A Z A A A Z Z Z N Z. X Y e. n p e. Co Ni e"

Transcript

1 ب- المجال التطورات الرتیبة ملخص الوحدة - التحولات النوویة- ثانویة العربي بن مستورة زعرورة تیارت- الا ستاذ: خیرات مخلوف I مذكرة ریاضیة: ) * R )على الدالة اللوغارتمیة النبریة ( ln ):ھي الدالة الا صلیة للدالة f ( ) حیث: ) f ( ) ln ( المعرفة في أ- ln() e 7 lne حیث: المجال: ],+ [ ' f '( ln f ( ) مشتقة الدالة اللوغارتمیة: f ( ) - خواص الدالة اللوغارتمیة: - ) y ln( ) ln() ln( ) ln( ) -, ln( ) ln( ) ln( y n ln n ln -4, ln( y ) ln( ) ln( y ) -3 e e e -5, e y e y e f ( ) الدالة الا سیة النبریة( ep )( e ):تعرف على أساس أنھا الدالة العكسیة للدالة اللوغارتمیة: y y e lne ln y lne ln y ln -4, e e e یمثل العدد الكتلي و y y -3, X حیث ln e e ' f '( ) e f ( ) f ( ), lne مشتقة الدالة الا سیة النبریة: خوص الدالة الا سیة النبریة: - - II -التحولات النوویة: النشاط الا شعاعي : ا- البنیة النوویة: یرمز لنواة عنصر ما بالرمز یمثل العدد الشحني أي في عدد النیترونات - ویعطى عدد النیترونات بالعلاقة : - النظاي ر: ھي ذرات نفس العنصر الكیمیاي ي التي لھا نفس العدد ألشحني مثال: وتختلف قي عددھا الكتلي C C C C تماسك النواة : سببھ وجود القوة النوویة القویة التي تربط بین البروتونات والنیترونات وتكون اكبر من قوة التنافر الكولومیة( التنافر الكھرباي ي) النشاط الا شعاعي: ھو ظاھرة التفكك العشواي ي للانویة غیر المستقرة (المشعة) والتي تتحول بدورھا إلى نواة أكثر استقرار وذلك با صدار إشعاعات γ α, β, النواة المشعة: نواة غیر مستقرة تتفكك تلقاي یة لتتحول إلى نواة جدیدة اكثر استقرارا با صدار أشعة β أو α مرفقة بالا شعة γ ممیزات النشاط الا شعاعي: - تلقاي ي یحدث دون تدخل وسط خارجي - عشواي ي: لیمكن التنبو بوقت حدوثھ 3- حتمي : النواة غیر المستقرة تتفكك عاجلا أم أجلا 4- مستقل عن الضغط ودرجة الحرارة وأیضا عن التركیب الذي تنتمي إلیھ النواة - أنماط النشاط الا شعاعي : أ- قوانین الا نحفاظ : قانوني صودي بالنسبة لتحول نووي معبر عنھ بالمعادلة التالیة : P X Y یتحقق مایلي : انحفاظ العدد الكتلي حیث: انحفاظ العدد الشحني حیث: - أ- ب- یوافق انبعاث أنویة الھلیوم 4 الناتجة عن التفكك التلقاي ي للا نویة الثقیلة ذات α المسمى بالجسیمات H e النشاط الا شعاعي : α X Y He 9U 9Th مثال : He (>) > 83 e النشاط الا شعاعي نیترون إلى بروتون وتصدر إشعاع :یحدث في الا نویة المشعة والتي تحتوي على فاي ض من النیترونات الذي ھو عبارة عن إلكترون حیث معادلة التحول ھي: حیث یتحول فیھا X Y e e n p e Co i e

2 ث- مثال: الا نویة المشعة والتي تحتوي على فاي ض من البروتونات حیث یتحول فیھا :یحدث في e ت- النشاط الا شعاعي الذي ھو عبارة عن بوزتون e p n e حیث معادلة التحول ھي : بروتون إلى نیترون وتصدر إشعاع X Y e Po Si e الا صداɣ أو الا ثارة المعاكسة : عبارة عن موجات كھرومغناطیسیة (فوتونات ( ذات طاقة كبیرة جدا وھو نشاط یواكب الاشعاعات: α و + - β و β حیث تكون النواة الناتجة في حالة مثارة فتتخلص من فاي ض الطاقة با صدار إشعاع γ وفقا للمعادلة: 6 88Ra 86Rn * 4 He Rn* مثال: - Rn ج- خواص الا شعاعات: γ,α,β 8- مخطط سیغري: عبارة عن منحنى یمثل التغیرات =f() یمكن من خلال ھذا المنحنى معرفة الانویة المستقرة وغیر المستقرة بالا ضافة إلى معرفة نوع الا شعاع كما ھو موضح في الشكل المجاور حیث یكون: - من اجل (>) = (واد الاستقرار) عبارة عن انویة خفیفة وھي مستقرة - الانویة التي تمتلك فاي ض من النیترونات (أعلى واد الاستقرار ( تقترب من واد الاستقرار وذلك با صدار إشعاع 3- الانویة التي تمتلك فاي ض من البروتونات (أسفل واد الاستقرار ( تقترب من واد الاستقرار وذلك با صدار إشعاع 5 / <<8 نواة مستقرة 4- الانویة الثقیلة (83<) تقع أقصى یمین واد الاستقرار تصدر إشعاع α 5 / 7< نواة ثقیلة مستقرة

3 : (Δt) التناقص الا شعاعي: یتناسب التغیر في عدد الانویة المشعة (Δ) طردا مع عدد الانویة المشعة والمدة الزمنیة ( t ) یمكن صیاغة ھذه العبارة باشكل التالي : ( t ) t t d ( t ) dt اللازمة ومن اجل لذلك حیث یكون لدینا t ( t) عدد الانویة المتبقیة d وھي عبارة عن معادلة تفاضلیة من الدرجة الا ولى من الشكل : yحی ' y ث y ' y ( t ) dt ( t) e t -9 حلھا من الشكل : تسمى ھذه العلاقة بقانون التناقص الا شعاعي(قانون صودي) حیث: : ثابت النشاط الاشعاعي ویقدر ب - S وھو یمیز النو اة المشعة ( S ) ( S ) : عدد الانویة الابتداي یة :(τ) ثابت الزمن بالتقریب یسمى المقدار من أنویة العی نة المشعة بثابت الزمن وھو یمثل العمر المتوسط للنواة أي تبقى في العی نة بالتقریب الزمن اللازم لتتفكك أو من أنویة العی نة المشعة ( n t ) / n 37% t t ( t ) عموما : / / 63% ( ) e 37 e 7 زمن نصف العمر : ھو الزمن اللازم لتفكك نصف عدد الا نویة الا بتداي یة أي ln t/ e e t/ln e ln t/ t/ t / t / ( ) ( ) ln ln ( ) 6 3 n ( m o l ) m n M 3 m o l M m - یمكن حساب عدد الذرات بالعلاقة التالیة: - النشاط الا شعاعي : نسمي سرعة تفكك الانویة بالنسبة للزمن (عدد التفككات الحادثة في وحدة الزمن ( ویقاس ویعطى بالعلاقة : بالبیكرال( Becqurels ) (Bq) d ( t ) أو ألكیري حیث Ci=37 7 Bq ( t ) d t dé sin tégratio n B q sec onde t d e t t ( t ) e e ( t ) dt ( n t / ) n ملاحظة : یمكن من خلال قانون التناقص الاشعاعي اجاد علاقة تناقص الكتلة بالنسبة للعینة المشعة: m ( t ) m t e e m t m e M M t t t ( ) ( ) تاریخ عینة مشعة: t ( t ) t ( t ) t ( t ) ( t ) ( t ) e e ln lne ln t t ln t ln ( t ) t/ t/ m t/ t ln t ln ln ln ( t ) ln ( t ) ln m( t ) ln ( t ) - 3

4 المنحنیات : - علاقة التكافؤ بین الكتلة والطاقة : في جملة الوحدات الدولیة نعبر عن الكتلة ب Kg و الطاقة ب J ev في الفیزیاء النوویة نعبر عن الكتلة بوحدة الكتل الذریة u و الطاقة بالا لكترون فولط M u m u u u kg 6 C 3 a 6 ev, 6 9 J,6, MeV ev J MeV J وحدة الكتل الذریة: وحدة الطاقة: - طاقة الكتلة : حسب نظریة أنشتاین ھناك تكافؤ بین الطاقة والكتلة ھذا یعني أن الكتلة یمكن أن تتحول إلى طاقة التي كتلتھا m طاقة كتلتھا والعكس صحیح فالجسیمة E J m kg c m s ( ) ( ) ( / ) -3 E 93,5MeV MeV E u c u u u 935 c c C MeV E ( MeV ) m ( u ) C m935 C m935mev C ملاحظة :في حالة التعبیر عن الكتلة بوحدة UM یمكن حساب الطاقة من العلاقة: 3- النقص الكتلي للنواة :* ھو الفرق بین كتلة النكلیونات المكونة لنواة وھي متفرقة وفي حالة سكون و كتلة النواة وھي في حال سكون - علاقة النقص الكتلي: m m ( ) m m( X ) p n 4

5 4- طاقة الربط للنواة (طاقة تماسك النواة): وھي الطاقة الواجب إعطاءھا لنواة ساكنة لتفككھا إلى نوی اتھا وھي ساكنة و متفرقة أو الطاقة اللازمة لتجمیع مكونات النوة E m C m ( ) m m ( X ) C l p n - 5 طاقة الربط لكل نكلیون : وھي حاصل قسمة طاقة الربط للنواة على عدد نكلیونات النواة E MeV l وتسمح طاقة الربط لكل نكلیون بالمقارنة بین الا نویة من حیث الا ستقرار فكلما كانت طاقة الربط لكل نكلیون أكبر كانت النواة أكثر إستقرار طاقة نكلیونات متفرقة طاقة نكلیونات مرتیطة (نواة) E l - 6 مخطط أستون : یمثل ھذا ) f ( فالا نویة الا كثر إستقرا تقع أسفلھ E l - یمكن ھذا المنحنى من معرفة الانویةالاكثر استقرارا للانھ یعطي طاقة الربط لكل نكلیون - الا نویة الثقیلة تنشطر إلى نواتین خفیفتین أكثر إستقرار إنھ تفاعل الا نشطار 3- الا نویة الخفیفة تندمج إلى نواة ثقیلة أكثر إستقرار إنھ تفاعل الا ندماج 4- النواة الا كثر إستقرار ھي نواة النحاس Cu 5

6 7- تفاعل الانشطار: ھو تفاعل نووي مفتعل یحدث فیھ قذف نواة ثقیلة بنبترون بطیي لتعطي نوتین خفیفتین أكثر استقرار منھا X n X Y n انشطار Fission U n Ba Kr 3 n الاندماج النووي: ھو تفاعل نووي مفتعل یحدث فیھ إتحاد نوتین خفیفتین لتعطي نواة جدیدة ثقیلة أكثر استقرار منھمامثال: X X Y n H H H e n الطاقة المحررة من تفاعل نووي: إلى نواتین خفیفتین أو تندمج نواتین خفیفتین یحدث ضیاع في * عندما تنشطر النواة الثقیلة ) ( الكتلة فتتحرر طاقة بحیث تكون في الاندماج اكبر منھا في الانشطار X X X X لدینا التفاعل النووي الذي معادلتھ : - الضیاع في الكتلة : m m m ( m m ) ( m m ) finales initiales X X X X 3 4 E m c m m c lib f in ales in itiales الطاقة المحررة: یمكن حسابھا بطریقتین:ا- عن طریق التغیر الكتلي (Δm) :(ΔE L ) ب- عن طریق التغیر في طاقة الربط m E m ( E E ) ( E E ) in itiales f in ales L L L L X X X 3 X 4 6

7 الحصیلة الطاقویة : مخطط الحصیلة الطا قویة لتفاعل الانشطار والاندماج 7

8 - العالم بین منافع ومخاطر النشاط الا شعاعي : أ- الاستخدام السلمي للطاقة النوویة إنتاج الطاقة المجال الطبي المجال الزراعي- التاریخ ب- الاستخدام العسكري النوویة للطاقة : ج- مخاطر النشاط الا شعاعي إنتاج النفایات ذات الفعالیة الا شعاعیة العالیة التي تحدث التلوث الا شعاعي تا ثیر الا شعاع على جسم الا نسان : یؤدي إلى الا صابة بالسرطان والتشوه الخلقي للا طفال وأمھات تعرضوا للا شعاع حدوث كوارث نوویة كرثة شرنوبل 986 في الروس و فوكوشیما في الیابان المولودین لا باء - رسم تخطیط یوضح المفاعل النووي 8

02 : رقم الوحدة المجال الرتي المستوى: 3 التطورات + ر+ الدرس : 02. lim. lim. x x Kg A = Z + N. + x = x y e = a = .

02 : رقم الوحدة المجال الرتي المستوى: 3 التطورات + ر+ الدرس : 02. lim. lim. x x Kg A = Z + N. + x = x y e = a = . التطورات المجال بةةةة الرتي الوحدة النووية التحولات ر ت ر ت ع المستوى رقم الدرس b عددان حقيقيان i a 7 الا ساس النبيري i y ] y [ y y حيث قبلية مآتسبات الا سية الدالة b أ شآلها f a معرفة في المجال [ - ]

Διαβάστε περισσότερα

Noyau,masse et énergie

Noyau,masse et énergie النوى الكتلة والطاقة Noyau,masse et énergie I التكافو "آتلة طاقة" علاقة إنشتاين توصل العالم إنشتاين من خلال الميكانيك النسبوية الخاصة سنة 905 م إلى أن هناك تكافو بين الكتلة والطاقة. تمتلك آل مجموعة آتلتها

Διαβάστε περισσότερα

Le travail et l'énergie potentielle.

Le travail et l'énergie potentielle. الشغل و الطاقة الوضع التقالية Le travail et l'énergie potentielle. الا ستاذ: الدلاحي محمد ) السنة الا ولى علوم تجريبية (.I مفهوم الطاقة الوضع الثقالية: نشاط : 1 السقوط الحر نحرر جسما صلبا كتلتھ m من نقطة

Διαβάστε περισσότερα

التحوالت النووية. النقص الكتلي masse( )défaut de في نواة

التحوالت النووية. النقص الكتلي masse( )défaut de في نواة الدرس 06 :الد ارسة الطاقوية إعداد األستاذ معافي جمال) مدير ثانوية محمد الشريف بوسام( الشعبة: رياضيات + علوم تجريبية النقص الكتلي وطاقة الربط) التماسك( النووي. النقص الكتلي masse( )défaut de في نواة إن

Διαβάστε περισσότερα

() 1. ( t) ( ) U du RC RC dt. t A Be E Ee E e U = E = 12V ن ن = + =A ن 1 RC. τ = RC = ن

() 1. ( t) ( ) U du RC RC dt. t A Be E Ee E e U = E = 12V ن ن = + =A ن 1 RC. τ = RC = ن تصحیح الموضوع الثاني U V 5 ن B التمرین الا ول( ن): - دراسة عملیة الشحن: - - التوتر الكھرباي ي بین طرفي المكثفة عند نھایة الشحن : -- المعادلة التفاضلیة: بتطبيق قانون جمع التوترات في حالة الربط على التسلسل

Διαβάστε περισσότερα

2,9 3,5 اختبار الثلاثي الثاني في مادة مدینة علي منجلي - قسنطینة I- دراسة عملیة الشحن :

2,9 3,5 اختبار الثلاثي الثاني في مادة مدینة علي منجلي - قسنطینة I- دراسة عملیة الشحن : اختبار الثلاثي الثاني في مادة المستوى: نھاي ي علوم تجریبیة المدة : ساعتان التاریخ : /... فیفري/ 0 مدینة علي منجلي - قسنطینة تمرین( 0 ): أ- قیمة ال : ph لمحلول لحمض النمل HOOH تركیزه المولي. ph,9 - أكتب

Διαβάστε περισσότερα

M = A g/mol. M 1 ( 63 Cu) = A 1 = 63 g/mol M 2 ( 65 Cu) = A 2 = 65 g/mol.

M = A g/mol. M 1 ( 63 Cu) = A 1 = 63 g/mol M 2 ( 65 Cu) = A 2 = 65 g/mol. : - 07 و تحولاتها المادة الشعبة : جذع مشترك علوم و تكنولوجيا ********************************************************************************** www.sites.google.co/site/faresfergai تاريخ ا خر تحديث : 03/03/

Διαβάστε περισσότερα

تصحيح موضوع العلوم الفيزياي ية : شعبة العلوم التجريبية والعلوم والتكنولوجيات الكيمياء : المحلول الماي ي لحمض الميثامويك العمود قصدير فضة

تصحيح موضوع العلوم الفيزياي ية : شعبة العلوم التجريبية والعلوم والتكنولوجيات الكيمياء : المحلول الماي ي لحمض الميثامويك العمود قصدير فضة تصحيح موضوع العلوم الفيزياي ية : شعبة العلوم التجريبية والعلوم والتكنولوجيات الكيمياء : المحلول الماي ي لحمض الميثامويك العمود قصدير فضة المحلول الماي ي لحمض المیثانويك تعريف حمض حسب برونشتد : كل نوع كيمياي

Διαβάστε περισσότερα

المادة المستوى المو سسة والكيمياء الفيزياء تمارة = C ت.ع : éq éq ] éq ph

المادة المستوى المو سسة والكيمياء الفيزياء تمارة = C ت.ع : éq éq ] éq ph 8 א א ن א ع א א ن א ع א تحديد خارج تفاعل حمض الا سكوربيك مع الماء بقياس ph O.. آتابة معادلة التفاعل H8O( q + H ( 7 ( q + l + ( q.. الجدول الوصفي H8O( q + HO ( H7O ( q HO+ l + ( q معادلة التفاعل آميات mol

Διαβάστε περισσότερα

تمرين 1. f و. 2 f x الجواب. ليكن x إذن. 2 2x + 1 لدينا 4 = 1 2 أ - نتمم الجدول. g( x) ليكن إذن

تمرين 1. f و. 2 f x الجواب. ليكن x إذن. 2 2x + 1 لدينا 4 = 1 2 أ - نتمم الجدول. g( x) ليكن إذن تمرين تمارين حلل = ; دالتين عدديتين لمتغير حقيقي حيث = + - حدد مجمعة تعريف الدالة - أعط جدل تغيرات لكل دالة من الدالتين - أ) أنقل الجدل التالي أتممه - D ب) حدد تقاطع C محر الافاصيل ( Oi ج ( المنحنيين C

Διαβάστε περισσότερα

الوحيدي 6 في الفيزياء

الوحيدي 6 في الفيزياء الوحيدي 6 في الفيزياء الفرع العلمي المستوى الثالث اوراق عمل في الفيزياء النووية إعداد ال تغين عن الكتاب املدرسي ابو اجلوج )1 ) ) العالم رذرفورد : أ( وضع نموذجه للذرة : حيث افترض أن الشحنات الموجبة تتركز

Διαβάστε περισσότερα

التحوالت ت النووية. المعادلة التفاضلية للتطور( différentiel (équation التفسير باالحتمال الدرس 03 :تناقص النشاط اإلشعاعي

التحوالت ت النووية. المعادلة التفاضلية للتطور( différentiel (équation التفسير باالحتمال الدرس 03 :تناقص النشاط اإلشعاعي الدرس 03 :تناقص النشاط اإلشعاعي التحوالت ت النووية إعداد األستاذ : معافي جمال ( مدير ثانوية محمد الشريف بوسام( الشعبة: رياضيات + علوم تجريبية المعادلة التفاضلية للتطور( différentiel (équation التفسير باالحتمال

Διαβάστε περισσότερα

( ) / ( ) ( ) على. لتكن F دالة أصلية للدالة f على. I الدالة الا صلية للدالة f على I والتي تنعدم في I a حيث و G دالة أصلية للدالة حيث F ملاحظات ملاحظات

( ) / ( ) ( ) على. لتكن F دالة أصلية للدالة f على. I الدالة الا صلية للدالة f على I والتي تنعدم في I a حيث و G دالة أصلية للدالة حيث F ملاحظات ملاحظات الا ستاذ محمد الرقبة مراآش حساب التكامل Clcul ntégrl الدال الا صلية (تذآير آل دالة متصلة على مجال تقبل دالة أصلية على. الدالة F هي الدالة الا صلية للدالة على تعني أن F قابلة للا شتقاق على لكل من. F لتكن

Διαβάστε περισσότερα

یسمح باستعمال الحاسبة غیر القابلة للبرمجة تعطى الصیغ الحرفیة قبل إنجاز التطبیقات العددیة مكونات الموضوع

یسمح باستعمال الحاسبة غیر القابلة للبرمجة تعطى الصیغ الحرفیة قبل إنجاز التطبیقات العددیة مكونات الموضوع س 3 المركز الوطني للتقویم والامتحانات المادة : الشعب (ة): -الدورة العادیة 2008-1 المعامل : 7 یسمح باستعمال الحاسبة غیر القابلة للبرمجة تعطى الصیغ الحرفیة قبل إنجاز التطبیقات العددیة مدة الا نجاز: مكونات

Διαβάστε περισσότερα

- سلسلة -2. f ( x)= 2+ln x ثم اعط تأويل هندسيا لهاتين النتيجتين. ) 2 ثم استنتج تغيرات الدالة مع محور الفاصيل. ) 0,5

- سلسلة -2. f ( x)= 2+ln x ثم اعط تأويل هندسيا لهاتين النتيجتين. ) 2 ثم استنتج تغيرات الدالة مع محور الفاصيل. ) 0,5 تارين حلل ف دراسة الدال اللغاريتمية السية - سلسلة - ترين ]0,+ [ لتكن f الدالة العددية للمتغير الحقيقي المعرفة على المجال بما يلي f ( )= +ln. (O, i, j) منحنى الدالة f في معلم متعامد ممنظم + f ( ) f ( )

Διαβάστε περισσότερα

المستوى المادة مسلك والكيمياء الفيزياء المو سسة تمارة + + éq 3 éq= xéq. x m. m = CV x. Q r [ RCOOH] RCOOH

المستوى المادة مسلك والكيمياء الفيزياء المو سسة تمارة + + éq 3 éq= xéq. x m. m = CV x. Q r [ RCOOH] RCOOH 8 ا ستاذ ( éq wwwphysiquelyceecl א الجزء I تحديد ثابتة التوازن لتفاعل حمض الا يبوبروفين مع الماء حساب الترآيز ( ( i i ومنه و نعلم أن M ( M (, 9,7 ol L 6, تع تفاعل الا یبوبروفين مع الماء تفاعل محدود * الجدول

Διαβάστε περισσότερα

مبادئ أساسية في الفيزياء الذرية والفيزياء النووية Fundamental principles in the atomic physics, and the nuclear physics

مبادئ أساسية في الفيزياء الذرية والفيزياء النووية Fundamental principles in the atomic physics, and the nuclear physics مبادئ أساسية في الفيزياء الذرية والفيزياء النووية Fudametal priciples i the atomic physics, ad the uclear physics البحث 3 3 مدخل. 33.3 :Itroductio تتكون المادة مهما كانت حالتها»صلبة سائلة أو غازية«من ناتج

Διαβάστε περισσότερα

( ) ( ) ( ) - I أنشطة تمرين 4. و لتكن f تمرين 2 لتكن 1- زوجية دالة لكل تمرين 3 لتكن. g g. = x+ x مصغورة بالعدد 2 على I تذآير و اضافات دالة زوجية

( ) ( ) ( ) - I أنشطة تمرين 4. و لتكن f تمرين 2 لتكن 1- زوجية دالة لكل تمرين 3 لتكن. g g. = x+ x مصغورة بالعدد 2 على I تذآير و اضافات دالة زوجية أ عمميات حل الدال العددية = [ 1; [ I أنشطة تمرين 1 لتكن دالة عددية لمتغير حقيقي حيث أدرس زجية أدرس رتابة على آل من[ ;1 [ استنتج جدل تغيرات دالة زجية على حيز تعريفها ( Oi ; ; j 1 استنتج مطاريف الدالة إن

Διαβάστε περισσότερα

( ) [ ] الدوران. M يحول r B و A ABC. 0 2 α فان C ABC ABC. r O α دورانا أو بالرمز. بالدوران r نكتب -* النقطة ' M إلى مثال لتكن أنشي 'A الجواب و 'B

( ) [ ] الدوران. M يحول r B و A ABC. 0 2 α فان C ABC ABC. r O α دورانا أو بالرمز. بالدوران r نكتب -* النقطة ' M إلى مثال لتكن أنشي 'A الجواب و 'B الدران I- تعريف الدران 1- تعريف لتكن O نقطة من المستى المجه P α عددا حقيقيا الدران الذي مرآزه O زايته من P نح P الذي يربط آل نقطة M بنقطة ' M ب: M = O اذا آانت M ' = O - OM = OM ' M O اذا آان - OM ; OM

Διαβάστε περισσότερα

( ) ( ) ( ) = ( 1)( 2)( 3)( 4) ( ) C f. f x = x+ A الا نشطة تمرين 1 تمرين تمرين = f x x x د - تمرين 4. نعتبر f x x x x x تعريف.

( ) ( ) ( ) = ( 1)( 2)( 3)( 4) ( ) C f. f x = x+ A الا نشطة تمرين 1 تمرين تمرين = f x x x د - تمرين 4. نعتبر f x x x x x تعريف. الثانية سلك بكالوريا علوم تجريبية دراسة الدوال ( A الا نشطة تمرين - حدد رتابة الدالة أ- ب- و مطاريفها النسبية أو المطلقة إن وجدت في الحالات التالية. = ج- ( ) = arctan 7 = 0 = ( ) - حدد عدد جذور المعادلة

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( )( ) z : = 4 = 1+ و C. z z a z b z c B ; A و و B ; A B', A' z B ' i 3

( ) ( ) ( ) ( ) ( )( ) z : = 4 = 1+ و C. z z a z b z c B ; A و و B ; A B', A' z B ' i 3 ) الحدة هي ( cm ( 4)( + + ) P a b c 4 : (, i, j ) المستي المرآب منسب إلى المعلم المتعامد المتجانس + 4 حل في مجمعة الا عداد المرآبة المعادلة : 0 6 + من أجل آل عدد مرآب نصع : 64 P b, a أ أحسب (4 ( P ب عين

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) v n ( ) ( ) ( ) = 2. 1 فان p. + r بحيث r = 2 M بحيث. n n u M. m بحيث. n n u = u q. 1 un A- تذآير. حسابية خاصية r

( ) ( ) ( ) ( ) v n ( ) ( ) ( ) = 2. 1 فان p. + r بحيث r = 2 M بحيث. n n u M. m بحيث. n n u = u q. 1 un A- تذآير. حسابية خاصية r نهايات المتتاليات - صيغة الحد العام - حسابية مجمع متتابعة لمتتالية ) ( متتالية حسابية أساسها + ( ) ملاحظة - متتالية حسابية + أساسها ( ) متتالية حسابية S +... + + ه الحد الا ل S S ( )( + ) S ه عدد المجمع

Διαβάστε περισσότερα

[ ] [ ] ( ) ( ) ( ) ( ) ( ) I و O B بالنسبة ل AC) ( IO) ( بالنسبة C و S M M 1 -أنشطة: ليكن ABCD معين مرآزه O و I و J منتصفي

[ ] [ ] ( ) ( ) ( ) ( ) ( ) I و O B بالنسبة ل AC) ( IO) ( بالنسبة C و S M M 1 -أنشطة: ليكن ABCD معين مرآزه O و I و J منتصفي O ( AB) تحيلات في المستى القدرات المنتظرة - التعرف على تقايس تشابه الا شكال استعمال الا زاحة التحاآي التماثل. - استعمال الا زاحة التحاآي التماثل في حل مساي ل هندسية. [ AD] التماثل المحري التماثل المرآزي

Διαβάστε περισσότερα

( D) .( ) ( ) ( ) ( ) ( ) ( ) الا سقاط M ( ) ( ) M على ( D) النقطة تعريف مع المستقيم الموازي للمستقيم على M ملاحظة: إذا آانت على أ- تعريف المستقيم ) (

( D) .( ) ( ) ( ) ( ) ( ) ( ) الا سقاط M ( ) ( ) M على ( D) النقطة تعريف مع المستقيم الموازي للمستقيم على M ملاحظة: إذا آانت على أ- تعريف المستقيم ) ( الا سقاط القدرات المنتظرة *- الترجمة المتجهية لمبرهنة طاليس 1- مسقط نقطة مستقيم D مستقيمين متقاطعين يجد مستقيم حيد مار من هذا المستقيم يقطع النقطة يازي في نقطة حيدة ' ' تسمى مسقط نقطة من المستى تعريف )

Διαβάστε περισσότερα

الوحدة المستوى: 3 المجال : 03 التطورات + ر+ رقم ملخص 2 : : : RC U AC U AB U BC + U U EF U CD. u AC I 1. u AB I 2 I = I1 + I R 2 R 1 B + A

الوحدة المستوى: 3 المجال : 03 التطورات + ر+ رقم ملخص 2 : : : RC U AC U AB U BC + U U EF U CD. u AC I 1. u AB I 2 I = I1 + I R 2 R 1 B + A التطورات المجال الرتيبة 3 الوحدة الكهرباي ية الظواهر ر ت ر ت ع المستوى 3 3 رقم ملخص مآتسبات قبلية التيار الآهرباي ي المستمر التيار الآهرباي ي المتناوبببب قانون التواترات 3 حالة الدارة المتسلسلة أ هو آل

Διαβάστε περισσότερα

كيمياء نووية وإشعاعية )4212(- الفرقة الرابعة كيمياء

كيمياء نووية وإشعاعية )4212(- الفرقة الرابعة كيمياء كيمياء نووية وإشعاعية كيم )4212(- الفرقة الرابعة كيمياء د / عبير بنت علي الحربي د / جميلة الزهراني أستاذ الفيزياء النووية واإلشعاعية المساعد aaalharbi@pnu.edu.sa Jsalzahrani@windowslive.com الفرق المستهدفة:

Διαβάστε περισσότερα

( ) ( ) [ [ ( ) ( ) ( ) =sin2xcosx ( ) lim. lim. α; ] x حيث. = x. x x نشاط 3 أ- تعريف لتكن. x نهاية l في x 0 ونرمز لها ب ب- خاصية نهاية على اليمين في

( ) ( ) [ [ ( ) ( ) ( ) =sin2xcosx ( ) lim. lim. α; ] x حيث. = x. x x نشاط 3 أ- تعريف لتكن. x نهاية l في x 0 ونرمز لها ب ب- خاصية نهاية على اليمين في الاشتقاق تطبيقاته دراسة الدال www.woloj.com - الاشتقاق في نقطة- الدالة المشتقة ( A أنشطة نشاط باستعمال التعريف ادرس اشتقاق الدالة في حدد العدد المشتق في إن جد ثم حدد معادلة المماس أ نصف المماس لمنحنى الدالة

Διαβάστε περισσότερα

jamil-rachid.jimdo.com

jamil-rachid.jimdo.com تصحیح الامتحان الوطني الموحد للبكالوریا مسلك علوم فیزیاي یة 8 الدورة العادیة jilrchidjidoco الكیمیاء الجزء : I تحديد ثابتة التوازن لتفاعل حمض الا يبوبروفين مع الماء: حساب الترآيز : ( ( i ROOH ROOH i ومنه:

Διαβάστε περισσότερα

التطورات الوحدة المجال يبة المستوى: 3 + ر+ رقم : 01 الدرس الرت PV = nrt. n = C = C m C 2 F = = atm 082 mole. mole 273 === ( g.mol.

التطورات الوحدة المجال يبة المستوى: 3 + ر+ رقم : 01 الدرس الرت PV = nrt. n = C = C m C 2 F = = atm 082 mole. mole 273 === ( g.mol. التطورات المجال يبة الرت الزمنية المتابعة الوحدة كيمياي ي في وسط ماي ي لتحول ر ت ر ت ع المستوى رقم الدرس لية قب سبات مآت ترآيز محلول ماي ي و آمية المادة علاقة آمية المادة بالآتلة صلب أو ساي ل أو غاز حالة

Διαβάστε περισσότερα

التمرين الثاني )3 2-( نعتبر في المستوى المنسوب إلى معلم متعامد ممنظم التي معادلتها : 3-( بين أن المستوى مماس للفلكة في النقطة.

التمرين الثاني )3 2-( نعتبر في المستوى المنسوب إلى معلم متعامد ممنظم التي معادلتها : 3-( بين أن المستوى مماس للفلكة في النقطة. التمرين األل) 3 نقط ) نعتبر في الفضاء المنسب إلى معلم متعامد ممنظم مباشر التي معادلتها : النقطتين الفلكة الفلكة هي النقطة أن شعاعها ه تحقق من أن تنتمي إلى 1-( بين أن مركز 2-( حددمثلث إحداثيات المتجهة بين

Διαβάστε περισσότερα

المستوى المادة المو سسة علوم رياضية الكيمياء والكيمياء الفيزياء تمارة RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH.

المستوى المادة المو سسة علوم رياضية الكيمياء والكيمياء الفيزياء تمارة RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH. الدورة العادية ROOH HlO ROOH ( aq HO( l ROO ( aq HO( aq 4( aq H O( l lo4 ( aq HO( aq ( aq HO( aq ROO ( aq HO( l wwwphysiqulyccla الكيمياء الجزء الا ول التعرف على محلولين حمضيين تصنيع إستر معادلة تفاعل

Διαβάστε περισσότερα

أسئلة استرشادية لنهاية الفصل الدراسي الثاني في مادة الميكانيكا للصف الثاني الثانوي العلمي للعام الدراسي

أسئلة استرشادية لنهاية الفصل الدراسي الثاني في مادة الميكانيكا للصف الثاني الثانوي العلمي للعام الدراسي أسئلة استرشادية لنهاية الفصل الدراسي الثاني في مادة الميكانيكا للصف الثاني الثانوي العلمي للعام الدراسي 4102 4102 تذكر أن :1- قانون نيوتن الثاني : 2- في حال كان الجسم متزن أو يتحرك بسرعة ثابتة أوساكن فإن

Διαβάστε περισσότερα

: : RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH. éq= éq éq

: : RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH. éq= éq éq تصحيح موضوع الامتحان الوطني الموحد للبكالوريا - الدورة العادية ROOH HlO ROOH ( HO( l ROO ( HO( 4( H O( l lo4 ( HO( ( aq HO( ROO ( HO( l الكيمياء الجزء الا ول التعرف على محلولين حمضيين تصنيع إستر معادلة

Διαβάστε περισσότερα

du R d uc L dt إذن: u L duc d u dt dt d q q o O 2 tc

du R d uc L dt إذن: u L duc d u dt dt d q q o O 2 tc ة I) التذبذبات الحرة في دارة RCعلى التوالي: ) تعريف: الدارةRCعلى التوالي هي دارة تتكون من موصل أومي مقاومته R ومكثف سعته C ووشيعة مقاومتها r ومعامل تحريضها. تكون التذبذبات حرة في دار RC عندما لا يتوفر

Διαβάστε περισσότερα

مادة الرياضيات 3AC أهم فقرات الدرس (1 تعريف : نعتبر لدينا. x y إذن

مادة الرياضيات 3AC أهم فقرات الدرس (1 تعريف : نعتبر لدينا. x y إذن أهم فقرات الدرس معادلة مستقيم مادة الرياضيات _ I المعادلة المختصرة لمستقيم غير مواز لمحور الا راتيب ( تعريف ; M ( التي تحقق المتساوية m + هي مستقيم. مجموعة النقط ( المتساوية m + تسمى المعادلة المختصرة

Διαβάστε περισσότερα

7 NS28 ءﺎﻴﻤﻴﻜﻟ او ءﺎﻳﺰﻴﻔﻟا

7 NS28 ءﺎﻴﻤﻴﻜﻟ او ءﺎﻳﺰﻴﻔﻟا 1 3 الفيزياء والكيمياء شعبة العلوم التجريبية مسلك العلوم الفيزياي ية یسمح باستعمال الا لة الحاسبة العلمیة غیر القابلة للبرمجة تعطى التعابیر الحرفیة قبل التطبیقات العددیة یتضمن الموضوع أربعة تمارین: تمرین

Διαβάστε περισσότερα

الا شتقاق و تطبيقاته

الا شتقاق و تطبيقاته الا شتقاق و تطبيقاته سيدي محمد لخضر الفهرس قابلية ا شتقاقدالةعددية.............................................. قابلية ا شتقاق دالة في نقطة................................. المماس لمنحنى دالة في نقطة..............................

Διαβάστε περισσότερα

يط... األعداد المركبة هذه التمارين مقترحة من دورات البكالوريا من 8002 إلى التمرين 0: دورة جوان 8009 الموضوع األول التمرين 8: دورة جوان

يط... األعداد المركبة هذه التمارين مقترحة من دورات البكالوريا من 8002 إلى التمرين 0: دورة جوان 8009 الموضوع األول التمرين 8: دورة جوان األعداد المركبة 800 هذه التمارين مقترحة من درات البكالريا من 800 إلى 800 المضع األل التمرين 0: حل في مجمعة األعداد المركبة المعادلة: = 0 i ( + i) + نرمز للحلين ب حيث: < ( عدد حقيقي ) 008 - بين أن ( المستي

Διαβάστε περισσότερα

2O RS28 المادة

2O RS28 المادة ا 1 لصفحة الامتحان الوطني الموحد للبكالوريا O16 - - RS8 3 المادة الفيزياء والكيمياء مدة الا نجاز الشعبة أو المسلك شعبة العلوم التجريبية مسلك العلوم الفيزياي ية المعامل سمح باستعمال لة ا اسبة العلمية غ

Διαβάστε περισσότερα

ارسم م ثل ث ا قائم الزاوية.

ارسم م ثل ث ا قائم الزاوية. أ ب - 1 - مثلث قائم - الزاوية تذكير: في الوحدة األولى في الفصل التاسع تعل منا عن المستطيل الذي فيه أربع زوايا قائمة ھو مستطيل. وعر فنا أن الشكل الرباعي زاوية قائمة ھي زاوية مقدارھا 90 الھندسة كما في الرسم

Διαβάστε περισσότερα

الكينياء النووية تحدث عن طر ق الكترونات التكافؤ دون تأث ر ف النواة نتج عنها تعد ل فى عدد ونظام االلكترونات وتحتفظ الذرات بك انها

الكينياء النووية تحدث عن طر ق الكترونات التكافؤ دون تأث ر ف النواة نتج عنها تعد ل فى عدد ونظام االلكترونات وتحتفظ الذرات بك انها الكينياء النووية ه الك م اء الت تختص بدراسة التفاعالت التى تتغ ر ف ها انو ة الذرات. و ال تحتوى المواد الناتجة على نفس عناصر المواد المتفاعلة. وف ما لى مقارنة ب ن التفاعالت النوو ة والتفاعالت الك م ائ ة

Διαβάστε περισσότερα

Dipôle RL. u L (V) Allal mahdade Page 1

Dipôle RL. u L (V) Allal mahdade   Page 1 ثنائي القطب ثنائي القطب Dipôle la bobine : الوشيعة I 1 التعريف الوشيعة ثنائي قطب يتكون من لفات من سلك من النحاس غير متصلة فيما بينھا لكونھا مطلية ببرنيق عازل كھربائي. رمز الوشيعة : (V) I(A) لتمثيل لوشيعة

Διαβάστε περισσότερα

األستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية

األستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية http://benmoussamathjimdocom/ 55:31 5342-3-41 يم السبت : األستاذ: بنمسى محمد ثانية: عمر بن عبد العزيز المستى: 1 علم رياضية إحداثيات نقطة بالنسبة لمعلم - إحداثيات متجهة بالنسبة ألساس: األساس المعلم في الفضاء:

Διαβάστε περισσότερα

الوحدة 04 الدرس الشكل - 2. E pp. E : Energie, p : potentielle, p : (de) pesanteur. P r. F r. r P. z A إلى. z B. cb ca AB AB

الوحدة 04 الدرس الشكل - 2. E pp. E : Energie, p : potentielle, p : (de) pesanteur. P r. F r. r P. z A إلى. z B. cb ca AB AB المستوى : السنة الثانية ثانوي الطاقة الكامنة الوحدة 4 حسب الطبعة 3 / للكتاب المدرسي GUZOURI Lycée aaal Oan ماذا يجب أن أعرف حتى أقول : إني استوعبت هذا الدرس - يجب أن أعرف مدلول الطاقة الكامنة الثقالية

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) تمرين 03 : أ- أنشيء. ب- أحسب ) x f ( بدلالة. ب- أحسب ) x g ( تعريف : 1 = x. 1 = x = + x 2 = + من x بحيث : لتكن لكل. لكل x من.

( ) ( ) ( ) ( ) تمرين 03 : أ- أنشيء. ب- أحسب ) x f ( بدلالة. ب- أحسب ) x g ( تعريف : 1 = x. 1 = x = + x 2 = + من x بحيث : لتكن لكل. لكل x من. عمميات حل الدال العددية السنة الا لى علم تجريبية علم رياضية تذآير : إشارة دالة تا لفية ثلاثية الحدد طريقة المميز المختصر ( 4 ): ( ) I- زجية دالة عددية : -( أنشطة : تمرين 0 : أدرس زجية الدالة العددية في

Διαβάστε περισσότερα

- سلسلة -3 ترين : 1 حل التمرين : 1 [ 0,+ [ f ( x)=ln( x+1+ x 2 +2 x) بما يلي : وليكن (C) منحناها في معلم متعامد ممنظم

- سلسلة -3 ترين : 1 حل التمرين : 1 [ 0,+ [ f ( x)=ln( x+1+ x 2 +2 x) بما يلي : وليكن (C) منحناها في معلم متعامد ممنظم تارين وحلول ف دراسة الدوال اللوغاريتمية والسية - سلسلة -3 ترين [ 0,+ [ نعتبر الدالة العددية f للمتغير الحقيقي المعرفة f ( )=ln( ++ 2 +2 ) بما يلي. (O, i, j) وليكن منحناها في معلم متعامد ممنظم ) ln يرمز

Διαβάστε περισσότερα

الوحدة 02. GUEZOURI A. Lycée Maraval - Oran الدرس 2 الطاقة الحرآي ة. F r ( ) W F = F ABcosθ عمل. F r محر ك عمل مقاوم

الوحدة 02. GUEZOURI A. Lycée Maraval - Oran الدرس 2 الطاقة الحرآي ة. F r ( ) W F = F ABcosθ عمل. F r محر ك عمل مقاوم المستى : السنة الثانية ثاني الحدة 0 العمل الطاقة الحرآية (حالة الحرآة الا نسحابية) GUEZOURI Lycée Maaal Oan ماذا يجب أن أعرف حتى أقل : إني استعبت هذا الدرس يجب أن أفر ق بين انسحاب جسم درانه يجب أن أعرف

Διαβάστε περισσότερα

امتحان الثلاثي الثاني لمادة العلوم الفيزياي ية

امتحان الثلاثي الثاني لمادة العلوم الفيزياي ية ثانویة عین معبد المستوى : ثالثة ) تقني ریاضي علوم ( التاریخ: 014/03/06 المدة : 3 ساعا ت التمرين الا ول: (06 ن) امتحان الثلاثي الثاني لمادة العلوم الفيزياي ية في الدارة الكهرباي ية التالية مولد توتره ثابت

Διαβάστε περισσότερα

الموسم الدراسي 2015/2014. األقسام العلمية bac 2015 السلسلة رقم : 02 التحوالت النووية ما املقصود بلك من : من الكربون 14 بدلةل الزمن. بدلةل الزمن.

الموسم الدراسي 2015/2014. األقسام العلمية bac 2015 السلسلة رقم : 02 التحوالت النووية ما املقصود بلك من : من الكربون 14 بدلةل الزمن. بدلةل الزمن. األقسام العلمية bac 05 السلسلة رقم : 0 التحوالت النووية المترين : 6 المترين : ما املقصود بلك من : النواة املشعة, النظائر, 3 النشاط ا إلشعاعي, 4 زمن نصف العمر, 5 الانشطار النووي, 6 الاندماج النووي, 7 النقص

Διαβάστε περισσότερα

( ) ( ) 27,5.10 1,35.10 = 5, = 0,3. n C V mol ( ) M NaHCO max. n( CO ) n CO. 2 exp 2. Page 1

( ) ( ) 27,5.10 1,35.10 = 5, = 0,3. n C V mol ( ) M NaHCO max. n( CO ) n CO. 2 exp 2. Page 1 الكيمياء صحيح الفرض المنزلي 01 السنة الثانية علوم فيزياي ية 1 نوع التفاعل : تفاعل حمض قاعدة. التعليل : لا ن حمض الا يثانويك آحمض برونشتد قادر على إعطاء بروتون + H و أيون هيدروجينو آربونات آقاعدة برونشتد

Διαβάστε περισσότερα

الكتاب الثاني الوحدة 07. q q (t) dq R dq q الدرس الثاني : الاهتزازات الكهرباي ية الدرس حالة تفريغ المكث فة. (2) عند. t = 0 اللحظة.

الكتاب الثاني الوحدة 07. q q (t) dq R dq q الدرس الثاني : الاهتزازات الكهرباي ية الدرس حالة تفريغ المكث فة. (2) عند. t = 0 اللحظة. GUZOUR Aek Maraval Oran الكتاب الثاني الوحدة 7 التطورات غير الرتيبة التطو رات الا هتزازية الدرس الثاني الاهتزازات الكهرباي ية أفريل 5 ما يجب أن أعرفه حتى أقول إني استوعبت هذا الدرس وعدم دورية يجب أن أعرف

Διαβάστε περισσότερα

ثناي ي القطبRL (V ) I (A) 0,1 0,2 0,3 0,4 0,5 0,6

ثناي ي القطبRL (V ) I (A) 0,1 0,2 0,3 0,4 0,5 0,6 ثناي ي القطب التوجيهات: I التوتر بين مربطي الوشيعة : 1) تعريف الوشيعة : الوشيعة ثناي ي قطب يتكون من أسلاك النحاس ملفوفة بانتظام حول اسطوانة عازلة ( واللفات غير متصلة فيما بينها لا ن الا سلاك مطلية بمادة

Διαβάστε περισσότερα

بحيث ان فانه عندما x x 0 < δ لدينا فان

بحيث ان فانه عندما x x 0 < δ لدينا فان أمثلة. كل تطبيق ثابت بين فضائين متريين يكون مستمرا. التطبيق الذاتي من أي فضاء متري الى نفسه يكون مستمرا..1.2 3.اذا كان f: R R البرهان. لتكن x 0 R و > 0 ε. f(x) = x 2 فان التطبيق f مستمرا. فانه عندما x

Διαβάστε περισσότερα

-1 المعادلة x. cosx. x = 2 M. و π. π π. π π. π π. حيث π. cos x = إذن حيث. 5π π π 5π. ] [ 0;π حيث { } { }

-1 المعادلة x. cosx. x = 2 M. و π. π π. π π. π π. حيث π. cos x = إذن حيث. 5π π π 5π. ] [ 0;π حيث { } { } الحساب المثلثي الجزء - الدرس الا ول القدرات المنتظرة التمكن من تمثيل وقراءة حلول معادلة أو متراجحة مثلثية على عدد الساعات: 5 الداي رة المثلثية الدورة الثانية k k I- المعادلات المثلثية cos x = a - المعادلة

Διαβάστε περισσότερα

Al-Azhar University - Gaza. Laser Physics. Lecture 7

Al-Azhar University - Gaza. Laser Physics. Lecture 7 8/0/43 Al-Azhar Uniersity - Gaza Laser Physics Width and Shape f Spectral lines اتساع وشكل الخط الطيفي Lecture 7 www.hazemsakeek.cm www.physicsacademy.rg Bradening the f emissin line Certain mechanisms

Διαβάστε περισσότερα

التتبع الزمني لتحول آيمياي ي سرعة التفاعل تمارين مرفقة بالحلول فيزياء تارودانت التمرين الا ول: يتفاعل أيون ثيوآبريتات ثناي ي أوآسيد الكبريت مع أيونات الا وآسونيوم وفق المعادلة الكيمياي ية التالية: H S

Διαβάστε περισσότερα

نصيحة لك أخي الطالب كما يمكنك تحميل النسخة بدون حلول "اضغط هنا" ملاحظة هامة

نصيحة لك أخي الطالب كما يمكنك تحميل النسخة بدون حلول اضغط هنا ملاحظة هامة 1 نصيحة لك أخي الطالب ننصحك وبشدة قبل الإطلاع على الحلول أن تقوم بالمحاولة بحل كل سؤال بنفسك أنت! ولاتعتمد على أي حل آخر, فجميع الحلول لنا أو لغيرنا تحتمل الخطأ والصواب وذاك لتحقق أكبر فائدة بإذن هللا,

Διαβάστε περισσότερα

Laser Physics. The Einstein Relation. Lecture 5. The Einstein Relation 28/10/1431. Physics Academy

Laser Physics. The Einstein Relation. Lecture 5. The Einstein Relation 28/10/1431. Physics Academy 28//4 Laser Physics The Einstein Relation Lecture 5 www.hazemsakeek.com www.physicsacademy.or The Einstein Relation ذكرنا سابقا أن العلم اينشتين ف ي ع ام 97 وض ع األس اس النظ ري لعم ل اللي زر Electromanetic

Διαβάστε περισσότερα

منتديات علوم الحياة و الأرض بأصيلة

منتديات علوم الحياة و الأرض بأصيلة الطاقة الحرارية -الإنتقال الحراري Energie thermique--transfert thermique I -الإنتقال الحراري 1 -تعريف الإنتقال الحراي هو انتقال الطاقة بالحرارة من جسم ساخن )أو مجموعة ساخنة( الى جسم بارد )أو مجموعة باردة

Διαβάστε περισσότερα

ϥσѧηϟί ѧϛέϣϰѧϟ Ύѧϫ ϼΧ ϡηѧϳϡѧλˬδѧϧϳόϣδѧϳϧϣί ΓΩѧϣϟΔѧϳΎϳϣϳϛΓΩΎѧϣΔρѧγϭΑΎϬΗΟϟΎόϣϡΗϥϳ

ϥσѧηϟί ѧϛέϣϰѧϟ Ύѧϫ ϼΧ ϡηѧϳϡѧλˬδѧϧϳόϣδѧϳϧϣί ΓΩѧϣϟΔѧϳΎϳϣϳϛΓΩΎѧϣΔρѧγϭΑΎϬΗΟϟΎόϣϡΗϥϳ 2016-2015 المدة: 04 ساعات ثانویة... المستوى: الثالثة تقني ریاضي اختبار في مادة التكنولوجیا (ھندسة كھرباي یة) نظام آلي لمعالجة قطع معدنیة یحتوي الموضوع على 9 صفحات (من 9/1 إلى 9/9) - العرض: من الصفحة 9/1

Διαβάστε περισσότερα

{ } . (* 25 a (* (* . a b (a ... b a. . b a 1... r 1. q 2. q 1 ...

{ } . (* 25 a (* (* . a b (a ... b a. . b a 1... r 1. q 2. q 1 ... مبادئ في الحسابيات ( c c 5--9-5-4-- ( ( α r α α α α {,,,,4,5,,7,8,9 } αrαr α α α ( : α α α α {,,4,,8} / α + α + α + + αr 4 /αα { } r r 4 α,5 5 9 / α + α + α + + αr 9 / (α + α + α + ( α + α + α + αα {,

Διαβάστε περισσότερα

1/7

1/7 I الحركة 1 نسبیة الحركة الحركة النشاط التجريبي : 1 في التبيانة جانبه حافلة النقل المدرسي يجلس بداخلها أحمد بينما ليلى ما زالت تنتظر حافلة نقل أخرى وتشاهد حافلة صديقها تبتعد عنها الجسم R مرتبط بالا رض و

Διαβάστε περισσότερα

الامتحان التجريبي لمادة الفيزياء و الكيمياء شعبة العلوم التجريبية مسلك علوم الحياة و الا رض

الامتحان التجريبي لمادة الفيزياء و الكيمياء شعبة العلوم التجريبية مسلك علوم الحياة و الا رض س. التنقيط ا كاديمية جهة سوس ماسة درعة نيابة تارودانت ثانوية عبد االله الشفشاوني التا هيلية ا ولاد تايمة الكيمياء: الامتحان التجريبي لمادة الفيزياء و الكيمياء شعبة العلوم التجريبية مسلك علوم الحياة و الا

Διαβάστε περισσότερα

التمرين األول: )80 نقاط( - 1 أ- إيجاد الصيغ نصف المفصلة للمركبات:. M 1 D C B A 3,75 B: CH 3 CH 2 CH 3 C CH 3 A: CH 3. C: CH 3 CH CH 3 Cl CH CH CH 3

التمرين األول: )80 نقاط( - 1 أ- إيجاد الصيغ نصف المفصلة للمركبات:. M 1 D C B A 3,75 B: CH 3 CH 2 CH 3 C CH 3 A: CH 3. C: CH 3 CH CH 3 Cl CH CH CH 3 بكالوراي ال د و ر ة االسحثنائية: الشعبة: تقين رايوي املدة: 4 سا و 4 د عناصر اإلجابة )الموضوع األول( مج أزة م ج م و ع,5 التمرين األول: )8 نقاط( -I - أ- إيجاد الصيغ نصف المفصلة للمركبات:. M D B A A: H H

Διαβάστε περισσότερα

فيزياء نووية 481 فيز

فيزياء نووية 481 فيز فيزياء نووية 481 فيز الخواص النووية :)2( نصف القطر النووي - مكونات النواة كتلة و وفرة النوى- طاقة الترابط النووي- االستقرار النووي. القوى النووية : الديترون خواص القوى النووية نموذج القوة التبادلية. التحلل

Διαβάστε περισσότερα

تمارين توازن جسم خاضع لقوتين الحل

تمارين توازن جسم خاضع لقوتين الحل تمارين توازن جسم خاضع لقوتين التمرين الأول : نربط كرية حديدية B كتلتها m = 0, 2 kg بالطرف السفلي لخيط بينما طرفه العلوي مثبت بحامل ( أنظر الشكل جانبه(. 1- ما نوع التأثير الميكانيكية بين المغنطيس والكرية

Διαβάστε περισσότερα

التهيج والتأين وتفاعل النترونات مع المادة Atom Ionizations and Interaction between Neutrons and matter

التهيج والتأين وتفاعل النترونات مع المادة Atom Ionizations and Interaction between Neutrons and matter الفصل الحادي عشر التهيج والتأين وتفاعل النترونات مع المادة Atom Ionizations and Interaction between Neutrons and matter.11.1 تهيج الذرات Atom Excitation رأينا أنه عندما تكتسدددددب الذرة كمية محددة من الطاقة

Διαβάστε περισσότερα

التا ثیر البینیة المیكانیكیة

التا ثیر البینیة المیكانیكیة التا ثیر البینیة المیكانیكیة I التجاذب الكوني 1 1 مبدأ التا ثیرات البینیة نص المبدأ : عندما يتم تا ثير بيني سواء بالتماس أو عن بعد بين جسمين و فا ن القوة F / التي يطبقها الجسم على الجسم والقوة F / التي

Διαβάστε περισσότερα

1 =86400 ; 1 =1,6.10 ; 1 =931.5 ; 1 = ( )

1 =86400 ; 1 =1,6.10 ; 1 =931.5 ; 1 = ( ) ثانوية صاالح الدين األيوبي امتحان البكالوريا التجريبي دورة 2014 العلوم الفيزيائية المادة : المدة : أربع ساعات ونصف (4 سا 30 د) الشعبة : رياضيات و تقني رياضي لإلجابة عليه على المترشح أن يختار أحد الموضوعين

Διαβάστε περισσότερα

مثال: إذا كان لديك الجدول التالي والذي يوضح ثلاث منحنيات سواء مختلفة من سلعتين X و Yوالتي تعطي المستهلك نفس القدر من الا شباع

مثال: إذا كان لديك الجدول التالي والذي يوضح ثلاث منحنيات سواء مختلفة من سلعتين X و Yوالتي تعطي المستهلك نفس القدر من الا شباع - هذا الا سلوبعلى أنه لا يمكن قياس المنفعة بشكل كمي بل يمكن قياسها بشكل ترتيبي حسب تفضيلات المستهلك. يو كد و يقوم هذا الا سلوب على عدد من الافتراضات و هي:. قدرة المستهلك على التفضيل. -العقلانية و المنطقية.

Διαβάστε περισσότερα

حركة دوران جسم صلب حول محور ثابت

حركة دوران جسم صلب حول محور ثابت حركة دوران جسم صلب حول محور ثابت I تعريف حركة الدوران لجسم صلب حول محور ثابت 1 مثال الجسم (S) في حركة دوران حول محور ثابت : النقطتين A و B تتحركان وفق داي رتين ممركزتين على المحور النقطتين M و N المنتميتين

Διαβάστε περισσότερα

d=63 The Bohr Model

d=63 The Bohr Model سلسلة محاضرات الفيزياء الحديثة( ) (المحاضرة األولى) سلسلة محاضرات الفيزياء الحديثة : مجموعة محاضرات تغطي مقرر الفيزياء الحديثة( ) لطالب الفيزياء السنة الرابعة ومفردات ھذه المحاضرات مرتبة وفق ما ورد في

Διαβάστε περισσότερα

ءﺎﺼﺣﻹا ﻒﻳرﺎﻌﺗ و تﺎﺤﻠﻄﺼﻣ - I

ءﺎﺼﺣﻹا ﻒﻳرﺎﻌﺗ و تﺎﺤﻠﻄﺼﻣ - I الا حصاء I - I مصطلحات و تعاريف - الساآنة الا حصاي ية: الساآنة الا حصاي ية هي المجموعة التي تخضع لدراسة إحصاي ية وآل عنصر من هذه المجموعة يسمى فردا أو وحدة إحصاي ية. ميزة إحصاي ية أو المتغير الا حصاي ي:

Διαβάστε περισσότερα

C 12 *** . λ. dn A = dt. 6 هو ans

C 12 *** . λ. dn A = dt. 6 هو ans الجمهورية الجزاي رية الديمقراطية الشعبية. وزارة التربية الوطنية. ثانوية عمر بن عبد العزيز/ندرومة. مديرية التربية لولاية تلمسان. الامتحان التجريبي في العلوم الفيزياي ية. التمرين الا ول: () شعبة :العلوم

Διαβάστε περισσότερα

فيزياء نووية 481 فيز

فيزياء نووية 481 فيز فيزياء نووية 481 فيز المحاضرة الرابعة التحلل بانبعاث اشعة γ مميزاتها : اشعة كهرومغناطيسية ليس لها شحنة وبالتالي ال تنحرف بالمجال المغناطيسي او الكهربي. وحدتها الفوتون)فوتون جاما( يعتمد طول موجتها )λ )

Διαβάστε περισσότερα

( ) تعريف. الزوج α أنشطة. لتكن ) α ملاحظة خاصية 4 -الصمود ليكن خاصية. تمرين حدد α و β حيث G مرجح

( ) تعريف. الزوج α أنشطة. لتكن ) α ملاحظة خاصية 4 -الصمود ليكن خاصية. تمرين حدد α و β حيث G مرجح . المرجح القدرات المنتظرة استعمال المرجح في تبسيط تعبير متجهي إنشاء مرجح n نقطة 4) n 2 ( استعمال المرجح لا ثبات استقامية ثلاث نقط من المستى استعمال المرجح في إثبات تقاطع المستقيمات استعمال المرجح في حل

Διαβάστε περισσότερα

********************************************************************************** A B

**********************************************************************************   A B 1 : 013/03/ : - - - 04 و تحولاتها المادة الشعبة : جذع مشترك علوم و تكنولوجيا ********************************************************************************** www.sites.google.com/site/faresfergani 1

Διαβάστε περισσότερα

فرض محروس رقم 1 الدورة 2

فرض محروس رقم 1 الدورة 2 ن 0 فرض محرس رقم 1 الدرة 2 الفيزياء 13 نقطة الجزء 1 )دراسة الدارة ) RLC 8 نقط لتحديد L معامل تحريض شيعة مقامتها الداخلية r مستعملة في مكبر الصت ننجز تجربة على مرحلتين باستعمال التركيب التجريبي الممثل في

Διαβάστε περισσότερα

التحوالت النووية الدرس 05: تطبيقات النشاط اإلشعاعي إعداد األستاذ معافي جمال ( مدير ثانوية محمد الشريف بوسام( الشعبة: رياضيات + علوم تجريبية

التحوالت النووية الدرس 05: تطبيقات النشاط اإلشعاعي إعداد األستاذ معافي جمال ( مدير ثانوية محمد الشريف بوسام( الشعبة: رياضيات + علوم تجريبية الدرس 05: تطبيقات النشاط اإلشعاعي إعداد األستاذ معافي جمال ( مدير ثانوية محمد الشريف بوسام( الشعبة: رياضيات + علوم تجريبية يستعمل النشاط اإلشعاعي في التأريخ ( أي تحديد عمر األشياء أو عمر وفاتها وذلك مثال

Διαβάστε περισσότερα

١٤ أغسطس ٢٠١٧ العمليات الحسابية الا ساسية مع الا شع ة ٢ ٥

١٤ أغسطس ٢٠١٧ العمليات الحسابية الا ساسية مع الا شع ة ٢ ٥ ح اب الا شع ة (ال هات) ١٤ أغسطس ٢٠١٧ ال ات ٢ الا شع ة ١ ٣ العمليات الحسابية الا ساسية مع الا شع ة ٢ ٥ هندسة الا شع ة ٣ ٩ الضرب التقاطعي - Product) (eng. Cross ٤ ١ ١ الا شع ة يمكننا تخي ل الا عداد الحقيقية

Διαβάστε περισσότερα

**********************************************************************************

********************************************************************************** 1 : 013/03/ : - - - 04 و تحولاتها المادة الشعبة : جذع مشترك علوم و تكنولوجيا ********************************************************************************** www.sites.google.com/site/faresfergani تاريخ

Διαβάστε περισσότερα

با نها خماسية حيث: Q q الدخل. (Finite Automaton)

با نها خماسية حيث: Q q الدخل. (Finite Automaton) الخامس الفصل اللغات الصورية والا وتومات A = Q F Σ Fnte Automaton 1. الا وتومات المنتهي تعريف: نعر ف "الا وتومات المنتهي" حيث: با نها خماسية Q: مجموعة منتهية من الحالات. Q ندعوها الحالة الابتداي ية. Q وندعوها

Διαβάστε περισσότερα

+ n e = Red. Ox /Red بالشكل : الوحدة 01 الدرس الا ول GUEZOURI Aek lycée Maraval Oran أمثلة : I 2 (aq) 1 نكتب : MnO 4. Cr 2 O 7.

+ n e = Red. Ox /Red بالشكل : الوحدة 01 الدرس الا ول GUEZOURI Aek lycée Maraval Oran أمثلة : I 2 (aq) 1 نكتب : MnO 4. Cr 2 O 7. الكتاب الا ول الوحدة 01 التطورات الرتيبة تطور آميات مادة المتفاعلات والنواتج خلال تحول آيمياي ي في محلول ماي ي الدرس الا ول GUEZOURI Aek lycée Maraval Oran - Ι مراجعة - Ι الا آسدة والا رجاع المو آسد :

Διαβάστε περισσότερα

M. S. Khalifa, S. F. Aloraby and N. A. Shahbon 1 The Center of Renewable Energy and Water Desalination, Tajoura, Libya

M. S. Khalifa, S. F. Aloraby and N. A. Shahbon 1 The Center of Renewable Energy and Water Desalination, Tajoura, Libya Ninth Arab Conference on the Peaceful Uses of Atomic Energy, Beirut, 3 6 December 008 Use of Plastic detectors (CR-39) for Characterization of the linear Energy Transfer (LET) of α-particles in Air M.

Διαβάστε περισσότερα

The mutual effect between the rays and the material medium

The mutual effect between the rays and the material medium التأثيرات المتبادلة بين األشعة والوسط المادي The mutual effect between the rays and the material medium البحث 6. 6 مدخل 66.6 :Intrductin عندما ينفذ شعاع ما إلى داخل المادة يحدث تأثي ارت متبادلة مميزة عن

Διαβάστε περισσότερα

دورة : : . ( Pu E. ( Mev n. [ H O + ], [ Al + ], [Cl : 25 C. 25 C Al. 27 mg. 0,012 mol / L. ( t ) 0, 1. t (min) v ( t ) H O Al Cl.

دورة : : . ( Pu E. ( Mev n. [ H O + ], [ Al + ], [Cl : 25 C. 25 C Al. 27 mg. 0,012 mol / L. ( t ) 0, 1. t (min) v ( t ) H O Al Cl. الجزاي رية الديمقراطية الشعبية الجهرية الطني للامتحانات المسابقات الديان التربية الطنية زارة ما ياي م درة البآالريا التجريبية للتعليم الثاني امتحان سطيف بن عليي صالح ثانية تجريبية علم الشعبة نصف ساعات

Διαβάστε περισσότερα

x Log x = Log mol [ H 3O + ] = ] = [OH ) ph ( mole ) n 0 - x f n 0 x x x f x f x f x max : ( τ max τf 1 : ( - 2 -

x Log x = Log mol [ H 3O + ] = ] = [OH ) ph ( mole ) n 0 - x f n 0 x x x f x f x f x max : ( τ max τf 1 : ( - 2 - التطورات المجال الرتيبة جملة كيمياي ية تطور 0 الوحدة حالة التوازن نحو ر ت ر ت ع المستوى 0 رقم ملخص O الا سس حسب تعريف برونشتد و الا حماض الا حماض الحمض تعريف أو أآثر. هو آل فرد آيمياي ي شاردة جزئ بامآانه

Διαβάστε περισσότερα

(Pooled Cross Sections).(Panel or Longitudinal Data) بیانات السلاسل الزمنیة Time Series Data

(Pooled Cross Sections).(Panel or Longitudinal Data) بیانات السلاسل الزمنیة Time Series Data طبیعة وأنواع البیانات Nature and Types of Data طبیعة البیانات Nature of Data یقصد بطبیعة البیانات في هذه الحالة أنواع المتغیرات ومستویات قیاسها. من الضروري للباحث أن یحدد نوع المتغیر الذي یقوم بدراسته

Διαβάστε περισσότερα

دورة : 2 3 ب : = 1, 8 10 mol. Cr : 2 dt : mol / L. t ( s ) .Cr + .Cr. 7 ( aq ) vol

دورة : 2 3 ب : = 1, 8 10 mol. Cr : 2 dt : mol / L. t ( s ) .Cr + .Cr. 7 ( aq ) vol الجزاي رية الديمقراطية الشعبية الجهرية الطني للامتحانات المسابقات الديان التربية الطنية زارة 5 ما ياي م درة البآالريا التجريبية للتعليم الثاني امتحان سطيف عليي صالح بن ثانية تجريبية علم الشعبة الا ل التمرين

Διαβάστε περισσότερα

7 ﻞ : ﻣﺎﻌﻤﻟا RS28 ﺀﺎﻴﻤﻴﻜﻟﺍﻭ ﺀ ﺎﻳﺰﻴﻔﻟﺍ ةد : ﺎـ ــ ــ ـــ ـ ﻤﻟا

7 ﻞ : ﻣﺎﻌﻤﻟا RS28 ﺀﺎﻴﻤﻴﻜﻟﺍﻭ ﺀ ﺎﻳﺰﻴﻔﻟﺍ ةد : ﺎـ ــ ــ ـــ ـ ﻤﻟا 1 7 المادة: الفيزياء والكيمياء RS8 المعامل: الشعب(ة) أو المسلك : شعبة العلوم التجريبية مدة الا نجاز: يسمح باستعمال الا لة الحاسبة العلمية غير القابلة للبرمجة يتضمن الموضوع ا ربعة تمارين : تمرين في الكيمياء

Διαβάστε περισσότερα

الفصل السادس سرعة التفاعالت الكيميائية

الفصل السادس سرعة التفاعالت الكيميائية م ارجعة القسم 2 0 كتا الطال الفصل السادس سرعة التفاعالت الكيميائية 0 وض ح المقصود كل مما يلي : آلية التفاعل طاقة التنشيط المعقد المنشط آلية التفاعل : هي سلسلة الخطوات التي يحدث موجها التفاعل طاقة التنشيط

Διαβάστε περισσότερα

( ) ( ) ( OPMQ) ( ) المستقيم في المستوى 1- معلم إحداثيتا نقطة و و ( ) أفصول و. y أآتب الشكل مسقط M على ) OI (

( ) ( ) ( OPMQ) ( ) المستقيم في المستوى 1- معلم إحداثيتا نقطة و و ( ) أفصول و. y أآتب الشكل مسقط M على ) OI ( المستقيم في المستى القدرات المنتظرة *- ترجمة مفاهيم خاصيات الهندسة التالفية الهندسة المتجهية باسطة الاحداثيات *- استعمال الا داة التحليلية في حل مساي ل هندسية. I- معلم مستى احداثيتا نقطة تساي متجهتين شرط

Διαβάστε περισσότερα

: : 03 التطورات . ( u BD. 5 τ u ( V ) t ( s ) t ( s ) C ) 0.2. t ( ms )

: : 03 التطورات . ( u BD. 5 τ u ( V ) t ( s ) t ( s ) C ) 0.2. t ( ms ) التطورات : المجال الرتيبة : 3 الوحدة الآهرباي ية الظواهر ر ت ت ر ع المستوى: 3 3 : رقم اللللسلسلة u V 5 t s نشحن بواسطة مولد مثالي = r, مآثفة مربوطة على التسلسل =. يمثل البيان التالي تغيرات التوتر الآهرباي

Διαβάστε περισσότερα

التفسير الهندسي للمشتقة

التفسير الهندسي للمشتقة 8 5 األدبي الفندقي والياحي المنير في الرياضيات الأتاذ منير أبوبكر 55505050 التفير الهندي للمشتقة من الشكل نلاحظ أنه عندما تتحرك النقطة ب من باتجاه أ حتى تنطبق عليها فإن القاطع أب ينطبق على مما المنحنى

Διαβάστε περισσότερα

الكيمياء الالعضوية المرحلة االولى 2017

الكيمياء الالعضوية المرحلة االولى 2017 الكيمياء الالعضوية المرحلة االولى 2017 المحاضرة الخامسة أ.م.د محمد حامد سعيد الخواص الدورية للعناصر :- توجد عالقة بين دورية الخواص للعناصر وبين دورية الترتيب االلكتروني لذراتها ونذكر من هذه الخواص على

Διαβάστε περισσότερα

H H 2 O (l) /HO - و (l) 3 O + /H 2 O. V b. dataelouardi.jimdo.com 1/

H H 2 O (l) /HO - و (l) 3 O + /H 2 O. V b. dataelouardi.jimdo.com 1/ الثانوية التا هيلية الفقيه الكانوني فرض محروس رقم 6 الدورة الثانية المستوى: الثانية باك علوم فيزياي ية ملحوظة: يو خذ بعين الاعتبار تنظيم ورقة التحرير يجب أن تعطي العلاقة الحرفية قبل التطبيق العددي استعمال

Διαβάστε περισσότερα

قوانين التشكيل 9 الةي ر السام ظزري 11/12/2016 د. أسمهان خضور سنستعمل الرمز (T,E) عوضا عن قولنا إن T قانون تشكيل داخلي يعرف على المجموعة E

قوانين التشكيل 9 الةي ر السام ظزري 11/12/2016 د. أسمهان خضور سنستعمل الرمز (T,E) عوضا عن قولنا إن T قانون تشكيل داخلي يعرف على المجموعة E ظزري 45 قوانين التشكيل 9 11/12/2016 8 الةي ر السام د. أسمهان خضور صاظعن الاحضغض الثاخطغ operation) (the Internal binary تعريف: ا ن قانون التشكيل الداخلي على المجموعة غير الخالية ( E) E يعر ف على ا نه التطبيق.

Διαβάστε περισσότερα

التطورات الرتيبة الوحدة 05 التمرين 27 : النظام الانتقالي : النظام الداي م. 10 m/s. من البيان τ = 1 s. t (s) التمرين 28 P= = 44, , 445 Π= ρ = =

التطورات الرتيبة الوحدة 05 التمرين 27 : النظام الانتقالي : النظام الداي م. 10 m/s. من البيان τ = 1 s. t (s) التمرين 28 P= = 44, , 445 Π= ρ = = -i الكتاب الا ول التطورات الرتيبة الوحدة 5 تطور جملة ميكانيكية تمارين الكتاب GUEZOURI Aek lycée Maraal - Oran ( / ) التمرين 7 حسب الطبعة الشكل المعطى في الكتاب يوافق دافعة أرخميدس مهملة وقوة الاحتكاك للكتاب

Διαβάστε περισσότερα

الفصل السادس: الا تزان الكيمياي ي. Chemical Equilibrium

الفصل السادس: الا تزان الكيمياي ي. Chemical Equilibrium 74 ا عداد د/ عمر بن عبد ا الهزازي الاتزان الكيمياي ي Chemial Equilibrium 75 ا عداد د/ عمر بن عبد ا الهزازي الفصل السادس الا تزان الكيمياي ي CHEMICAL EQUILIBRIUM عندما يحدث تفاعل كيميائي تلقائيا تتغير تركيزات

Διαβάστε περισσότερα

بسم اهلل الرمحن الرحيم

بسم اهلل الرمحن الرحيم مدونة أ. محمد فياض للفيزياء mfayyad03.blogspot.com بسم اهلل الرمحن الرحيم الوحدة األوىل : كمية التحرك اخلطي الفصل األول : كمية التحرك اخلطي والدفع ي عر ف الطالب كال من كمية التحرك والدفع ومتوسط قوة الدفع..

Διαβάστε περισσότερα