دورة : 2 3 ب : = 1, 8 10 mol. Cr : 2 dt : mol / L. t ( s ) .Cr + .Cr. 7 ( aq ) vol
|
|
- Ποδαργη Ταμτάκος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 الجزاي رية الديمقراطية الشعبية الجهرية الطني للامتحانات المسابقات الديان التربية الطنية زارة 5 ما ياي م درة البآالريا التجريبية للتعليم الثاني امتحان سطيف عليي صالح بن ثانية تجريبية علم الشعبة الا ل التمرين نقاط المحاليل التالية المخبر في نحضر محمضا لثناي ي آرمات البتاسيم ماي يا محللا ( K ( aq r O 7 ( aq الملي ترآيزه, 8 mol L 6, mol / L الملي ترآيزه ماي يا محمضا لحمض الا آساليك H محللا O ( aq من آل محلل نتابع تطرات المزيج بدلالة الزمن في درجة حرارة ثابتة تقدر ب 5mL نمزج هما أن الثناي يتين الداخلتين في التفاعل السابق علما (r (O / H O O 7 / r خلال التحل الآيمياي ي المتشآل r الملي لشارد الآرم اللللترآيز باسطة المعايرة تطر نتابع البيان التالي على فننننحصل r mol / L معادلة التفاعل الحادث اآتب الا آساليك لحمض آمية المادة الا بتداي ية أحسب r البيآرمات لشارد O 7 ( aq H O ( aq التقدم استنتج ثم جدلا لتقدم التفاعل الحادث أنجز المحد المتفاعل الا عظمي السرعة الحجمية للتفاعل عرف ا أن عبارة السرعة الحجمية للتفاعل في أي لحظة بين بالعلاقة تآتب vol d r dt اللحظة قيمة السرعة الحجمية للتفاعل عند أحسب t 5s r r الترآيز الملي النهاي ي لشارد الآرم أحسب 5 عين قيمته زمن نصف التفاعل t عرف 6 ساعات نصف ثلاث المدة الفيزياي ية العلم في مادة اختبار المترشح أن يختار أحد المضعين التاليين على الا ل المضع 5 t ( s الثاني التمرين نقاط فقط طبيعي احدها مشعة نظاي ر عدة البلنيم لعنصر في آما البلنيم لتفآك ناة الطاقي المخطط يعطى Ι يعطى الناة المشعة النظاي ر المقصد بآل من ما 8 / أقلب
2 Z معادلة تفآك الناة اآتب الا عداد مستنتجا E 9,7 E 9,5555 E 9,555 E( Me 8 p 6 n Z Pb z He ln N t( j t λ, Z,, Z, Z,, Z Z البلنيم لناة رب طبط اللللر طاقة احسب أن طاقة ربط ناة الهيليم علمت إذا E 8 هيييي l,me الابن لناة ل الربط طاقة احسب الطاقة المحررة من هذا التفاعل استنتج ln N f (t البيان يمثل ( ΙΙ عند اللحظة المشعة Z البلنيم أنية حي ثيث Nعدد التناقص الا شعاعي قانن اآتب الا نية عدد lnبدلالة N النظرية العلاقة استنتج t الزمن λ ثابت التفآك N الابتداي ية ln N f (t البيانية العلاقة اآتب العلاقتين السابقتين احسب باستغلال ثابت التفآك N الانية المشعة الابتداي ية عدد أ Z للبلنيم نصف العمر t زمن / المشعة للعينة الا شعاعي الابتداي ي النشاط b E ( µ J E نقاط الثالث التمرين من المآنة ( الآهرباي ية الدارة نحقق E قته المحرآة الآهرباي ية للتتر ل ملد Ω أمي مقامته ناقل K قاطعة مقامتها مهملة ذاتيتها L شيعة t نفتحها في اللحظة ثم زمنية لمدة القاطعة نغلق التيار المار شدة لتطر المعادلة التفاضلية أن بي نين ب أ من تآن الدارة في di(t i(t dt بدلالة تعيين عبارته يطلب حي ثيث ثابت من أن العبارة تحقق ب L i(t E e t حلا للمعادلة التفاضلية السابقة هي الطاقة المخزنة تغيرات ( البيان يمثل الزمن بدلالة الشيعة في المخزنة Eللطاقة E العبارة اللحظية أآتب أ b (t t الشيعة بدلالة E في b, τ,t الطاقة العظمى المخزنة في الشيعة هي حي ثيث الشكل K L t(ms E b 8 /
3 t τ قيمة استنتج E b أن المماس للمنحني في اللحظة بين ج t ms I في اللحظة الا زمنة محر يقطع شدة التيار الآهرباي ي الزمن ثم استنتج ذاتية الشيعة L ثابت τ احسب د I النظام الداي م عند τ t ln النصف ه إلى الطاقة المخزنة في الشيعة تناقص أن زمن ت أثبت احسب قيمته ثم الرابع التمرين نقاط مع حمض الايثانيك ل بربان ميثيل تفاعل ندرس Ι الآيمياي ي التازن التحل الآيمياي ي الحادث للجملة مع ذآر خصاي صه عند حالة سم أآتب معادلة التفاعل المنمذج للتحل الحادث سم الاستر المتشآل آل متفاعل من mol مزيجا ابتداي ي متساي الملات بآمية استعملنا K ثابت التازن أن علما تقدم التفاعل جدل أنجز مردد التفاعل هل تقعت هذه النتيجة علل احسب ب نزع الماء الناتج فسر ذلك عند يمآن تحسين مردد التفاعل هل 5mol لللل بربان ميثيل mol منننن حمض الايثانيك molمن نمزج ΙΙ الماء من mol السابق الاستر من الآيمياي ية الجملة تطر اتجاه بين Q ri الا بتداي ي التفاعل آسر أحسب جدل تقدم التفاعل أنجز مردد التفاعل احسب استنتج الترآيب الآتلي للمزيج عند التازن الترآيب الملي أجد g / mol, H g / mol, O 6g / mol يعطى الخامس التمرين نقاط محطة لا جهزة الاتصالات ضع M العلماء في الرحلات المستقبلية نح آآب المريخ يتصر P ( ( P Phobos الا رض على أحد أقمار هذا الآآب مثلا على القمر فبس مع r المعطيات G 6,67 Nm kg التجاذب الآني ثابت r 9,8 km P القمر M بين المريخ المسافة m p Phobos آتلة m M 6, kg المريخ آتلة π T h7 نفسه Mحل حرآة دران المريخ در M min s آتلها مزعة بانتظام عل حجمها أن حرآة هذا القمر أن هذه الا جسام آرية نفرض ( آآب المريخ مرآز O إلى مرجع غاليلي مبدأ معلمه تنسب ت داي رية M o 8 / أقلب
4 P فبس القمر Mعلى الآآب يطبقها التي القة ( عل ىلى آيفيا مثل لثل القانن الثاني لنيتن بين أن حرآة مرآز عطالة هذا القمر داي رية منتظمة بتطبيق أ دره المريخ حل Pحل دران القمر سرعة من آل عبارة استنتج المقادير بدلالة T r P T p 9, s m m M G G,r نص القانن الثالث لآبلر بين أن النسبة اذآر T p استنتج قيمة ثم محطة الاتصالات تآن هي الشرط حتى ما S بالنسبة للمريخ مستقرة 8 /
5 نقاط الا ل التمرين الثاني المضع اللللحجمية آتلته M 6 g mol الملية آتلته H تطر أآسدة الآحل دراسة نريد OH 7 من أجل ذلك ( المحلل الممدد في اللن البنفسجي ف ذات البرمنغانات بشارد ρ,785 g ml في المخبر حضرنا x( mmol محمضا من برمنغانات ماي يا محلل مآنا من مزيجا ml حجمه (K MnO البتاسيم / ( aq ( aq (,mol L الملي ترآيزه الآحل السابق من ml حجم المزيج نضع (t لحظة نعتبرها مبدأ لقياس الزمن في مغناطيسي خلاط مضع فق بيشر آا س في السابق التالية الطرق بين ا من ( Ι, 5 الضغط قياس اللنية المعايرة الناقلية قياس ذآرالسبب تطر هذا التفاعل مع لمتابعة طريقة أفضل ماااا هيييي t (min ( n لشارد آمية المادة الابتداي ية أحسب ب المزيج الابتداي ي في للآحل ( n البرمنغانات أن الثناي يتين الداخلتين في التفاعل المدرس هما علما معادلة تفاعل الا آسدة الا رجاعية أآتب الحادث ( MnO ( aq / Mn ( aq, ( H 6 O ( aq / H 8 O ( aq التقدم الا عظمي x استنتج تفاعل أآسدة الآحل السابق تقدم جدل أنجز د max منننن ml حجما قصد رسم المنحنى البياني الذي يعبر عن تطر التفاعل أخذنا في لحظة t ( ΙΙ باسطة محلل لآبريتات MnOالمتبقية البرمنغانات الماء البارد ثم عايرنا شارد في ضعناه التفاعلي المزيج MnO ل البنفسجي الللللن الضرري لاختفاء الحجم فآان,5mol L الثناي ي ذي الترآيز الحديد على فتحصلنا مختلفة لحظات هذه الخطات في أعيدت t اللحظة في الذي سمح باستنتاج تقدم التفاعل eq ه في آما x f (t البيان ضعت العينة المراد معايرتها في الماء البارد لماذا تجريبيا تآشف عن حدث التآافؤ آيف قيمته ثم حدد t زمن نصف التفاعل عرف التالية بالمعادلة المعايرة تفاعل نمذجة يمآن MnO 8H 5 Fe 5 Fe Mn H O ( aq ( aq ( aq ( aq ( aq l العلاقة بين آمية مادة أجد MnO ( aq المتبقية eq n بدلالة x عن تقدم التفاعل ع بر السابق التقدم بجدل بالاستعانة ب eq t min اللحظة المعايرة عند في الثناي ي المستعمل الحديد حجم آبريتات أحسب الآحل لاختفاء ثم استنتج السرعة الحجمية التفاعل سرعة t min اللحظة في أحسب د 8 / 5 أقلب
6 الثاني التمرين نقاط نصف عمره الذي عنصر مشع له عدة نظاي ر لا يجد منها في الطبيعة سى البلنيم البلنيم 8, jours آافية لقتل شخص منه µ g سام جدا إذا تم ابتلاعه أ استنتشاقه حيث عنصر ه الخلايا مما يؤدي إلى قتلها أ تحيلها إلى خلايا سرطانية في DN ال تحطم الا شعاعات الصادرة من إن 8 العمر نصف يجد منها في الطبيعة لا مشع عنصر المقصد بالعبارات الا تية ما الرمز في 8 دلالة العددين ما ب 8 / ln احسب قيمته ثم λ بالعبارة يعطى λ أن ثابت النشاط الا شعاعي بين t ( Mev ب البلنيم أحسب طاقة ربط ناة ا 8 الانية من الا قل استقرارا إلى الا آثر استقرارا رتب الجدل الا تي ثم أآمل الناة 6 Pb t , 6, E (Me ربط الناة طاقة l E 7,9 l ( Me / n نية لآل الربط طاقة الجدل السابق في إحدى الناتين المجدتين يعطي تفآك البلنيم إن 5 الناة علل هذه حدد أ أآتب معادلة التفاعل الني المنمذج للتحل الحاصل ما ه نمط الا شعاع المافق لهذا التحل فاة الري يس / / 5 حل التقرير الطبي الا لي لخبراء الطب الشرعي يم حسب 6 تلقيه جرعة منه آتلتها اثر بالبلنيم ياسر عرفات تصل إلى أن سبب فاته يعد إلى تسممه الفلسطيني تم الصل إلى هذه / / بتاريخ إلى فاته أدت ( / / بتاريخ m باختبار عينات مختلفة من رفاته فجد أن النشاط الا شعاعي المتسط الناتج (5 / 9 / يم النتيجة رفاته إذا اعتبرنا أن البلنيم مزع بانتظام في جسم gمن لآل 5 Bq ه البلنيم عن الضحية الرفاة لحظة اختبار العينات gمن عدد أنية البلنيم المجد في احسب جسم الضحية يم تسممه gمن النشاط الا شعاعي ل احسب, (t لحظة تسممه مبدأ للا زمنة نعتبر تسممه من 5 jours أجري بعد الاختبار أنننن علما المجدة في جسم الابتداي ية البلنيم احسب عدد أنية 7kg الضحية هي آتلة آانت إذا في تسمم الري يس المستخدمة mللبلنيم الآتلة ثم استنتج الضحية m,7u m,87 u u 9,5 Me يعطى p N 6, mol n m( 9,968u 8 E P N K i الثالث ال التمرين نقاط من المآنة الآهرباي ية الدارة نحقق سعتها مآثفة E قته المحرآة الآهرباي ية للتتر ل ملد أميان مقامتهما ناقلان K Ω K Ω القاطعة K نغلق t اللحظة في التترات التالية من العبارة الحرفية لآل اآتب K قاطعة u, u, u, u BN B P PN 8 / 66 B
7 5 dq ( ( dt,5 q ( شحنة لتطر المعادلة التفاضلية أن بي نين ب, قانن جمع التترات بتطبيق dq a q b ( من تآتب بدلالة الزمن المآثفة dt يمثلان ماذا يطلب تعيين عبارتيهما ثابتين حي ثيث a b β t q α ( e من ( المعادلة حل إنننن يمثلان ماذا β α عبارتي جد dq q بدلالة المقدار تغيرات يمثل dt المآثفة سعة للدارة τ الزمن ثابت أ البيان جد باستغلال E المحرآة الآهرباي ية القة الرابع التمرين نقاط هذه المادة في عدة مجالات حيث تستخدم تستعمل سنيا طن 6 ملين الا نتاج العالمي من النشادر حالي يقدر ألية في آمادة أيضا تستتتتخدم في ميدان الزراعة لتخصيب التربة ت الا لا لا لا زتية الا سمدة تصنيع في الا لى بالدرجة الا دية البلاستيك غيرها صناعة 5 جميع القياسات عند الدرجة تمت اللللمعطيات pk K e a ( NH / NH 9, للماء الشاردي الجداء مجالات التغير اللني لبعض الآاشف الملنة جدل الملن الآاشف الهيليانتين فينل الآلر أحمر البرمتيمل أزرق فتالين الفينل 8,, 6, 7,6 5, 6,8,, التغير اللني مجال ph هذا الماي ي للنشادر المحلل دراسة ( Ι ph قياس أعطى c b mol / L ترآيزه حجمه للنشادر ( S b محللا ماي يا نعتبر التحل الآيمياي ي بين النشادر الماء بالمعادلة التالية ننمذج ph,75 القيمة المحلل NH H O NH HO ( aq ( l ( aq ( aq تستنتج ماذا التفاعل لهذا τ f نسبة التقدم النهاي ي احسب Q réq عبارة آسر التفاعل اجد بجدل التقدم الاستعانة قيمته أحسب τ f c b التازن الآيماي ي بدلالة عند ( NH / pk NH للثناي ية a من قيمة ال تحقق محلل النشادر باسطة حمض آلر الماء معايرة ( ΙΙ محلل ماي ي للنشادر من ml حجم بمعايرة نقم b ( S a آلر لحمض محلل باسطة c b ترآيزه ( S ( H O ( aq l الترآيز ذي ( aq الماء c a mol / L المعايرة لتفاعل المعادلة الآيماي ية المنمذجة اآتب b (ml a 8 / 7 أقلب
8 آلر الماء المضاف لحمض a اللللحجم بدلالة المزيج ph تغير منحنى يمثل c b احسب ثم التآافؤ لنقطة ph E ae الا حداثيتين حدد أ ه الآاشف المناسب لهذه المعايرة مع التعليل ما ب NH 5 NH العلاقة ق لتتتتحقققييييق إضافته الاجب حجم حمض آلر الماء حدد ج a المزيج التفاعلي في الخامس التمرين نقاط لحظة انجاز من لحرآة الآرة ابتداءا فيدي احد التلاميذ خلال مباراة في الآرة الطاي رة بتصير شريط قام اللاعب الذي أنجز الا رسال على يجد سطح الا رض من H ارتفاع مضع على من SEIE الا لا لا لا رسال ( ( الشبآة من d مسافة الا رسال مقبلا يجب على الآرة تحقيق الشرطين معا ليآن الا رض سطح hمن تمر من فق الشبآة التي يجد طرفها العلي على ارتفاع أن D طلهاااا تسقط في منطقة الخصم الذي أن g m s الجاذبية الا رضية شدة الهاء أبعاد الآرة تا ثير تهمل المعطيات h,5m d D 9m H,6m y الشكل α j i d H h D x 5 y x نعتبره غاليليا الذي بالا رض مرتبط (O, i, j متجانس متعامد معلم حرآة الآرة في ندرس مبدأ للفاصل نعتبرها التي الآرة عند النقطة تآن t اللحظة عند v ( m / s الشكل المستي مع α يصنع الزاية حاملها الآرة بسرعة ابتداي ية تقذف معالجة الشريط المصر باسطة بعد ( الا فقي v ( الممثلين في المنحنيين مناسب تم الحصل على برنامج x (t إحداثيتي شعاع سرعة مرآز تغيرات (t (t المنحنيان يمثل (O, i, j الآرة في المعلم عطالة القانن الثاني لنيتن بتطبيق, t ( s v (O, i, j معادلة مسار مرآز عطالة الآرة في المعلم أجد y(t ( المنحنيين باستغلال α,6m s هيييي الابتداي ية أن قيمة السرعة بين (OY OX حرين المحري قطعتها الآرة على التي المسافة أجد بلغ الذرة عند أنه لم يعترض الآرة أي لاعب هل حققت الآرة الشرطين اللازمين لقبل الا رسال علل علما 8 / 8 في البآالريا بالتفيق
دورة : : . ( Pu E. ( Mev n. [ H O + ], [ Al + ], [Cl : 25 C. 25 C Al. 27 mg. 0,012 mol / L. ( t ) 0, 1. t (min) v ( t ) H O Al Cl.
الجزاي رية الديمقراطية الشعبية الجهرية الطني للامتحانات المسابقات الديان التربية الطنية زارة ما ياي م درة البآالريا التجريبية للتعليم الثاني امتحان سطيف بن عليي صالح ثانية تجريبية علم الشعبة نصف ساعات
امتحان الثلاثي الثاني لمادة العلوم الفيزياي ية
ثانویة عین معبد المستوى : ثالثة ) تقني ریاضي علوم ( التاریخ: 014/03/06 المدة : 3 ساعا ت التمرين الا ول: (06 ن) امتحان الثلاثي الثاني لمادة العلوم الفيزياي ية في الدارة الكهرباي ية التالية مولد توتره ثابت
المجال الرتيبة المستوى: 3 التطورات الوحدة + ر+ : 01 ) ) MnO. / réd) ) ( mol. mol Ca 2
التطورات المجال الرتيبة الزمنية المتابعة الوحدة كيمياي ي في وسط ماي ي لتحول ر ت ر ت ع المستوى رقم سلسلة وآمية من غاز ثناي ي الهيدروجين H آتلتها g بواسطة L في مفاعل صناعي نضع حجما من غاز ثناي ي الازوت N
: : 03 التطورات . ( u BD. 5 τ u ( V ) t ( s ) t ( s ) C ) 0.2. t ( ms )
التطورات : المجال الرتيبة : 3 الوحدة الآهرباي ية الظواهر ر ت ت ر ع المستوى: 3 3 : رقم اللللسلسلة u V 5 t s نشحن بواسطة مولد مثالي = r, مآثفة مربوطة على التسلسل =. يمثل البيان التالي تغيرات التوتر الآهرباي
1 +. [I 2 ]mmol/l. t(min) t (min) V H2 (ml) x (mol)
S, mol V = ml S : t = c = / L ( K (aq ) SO8 ) (aq ). c ( K (aq ) I (aq ) ) V = ml. [ I (aq ) ] 6. [I ]mmol/l - 4 3 3 4 6 7 8 9 - (Ox / Red) -.. -3. -4. -. -6 x -7. I ] f (t) [ (aq ) =. t = mn -8 [ I (aq
فرض محروس رقم 1 الدورة 2
ن 0 فرض محرس رقم 1 الدرة 2 الفيزياء 13 نقطة الجزء 1 )دراسة الدارة ) RLC 8 نقط لتحديد L معامل تحريض شيعة مقامتها الداخلية r مستعملة في مكبر الصت ننجز تجربة على مرحلتين باستعمال التركيب التجريبي الممثل في
( ) ( ) ( ) ( ) ( )( ) z : = 4 = 1+ و C. z z a z b z c B ; A و و B ; A B', A' z B ' i 3
) الحدة هي ( cm ( 4)( + + ) P a b c 4 : (, i, j ) المستي المرآب منسب إلى المعلم المتعامد المتجانس + 4 حل في مجمعة الا عداد المرآبة المعادلة : 0 6 + من أجل آل عدد مرآب نصع : 64 P b, a أ أحسب (4 ( P ب عين
التتبع الزمني لتحول آيمياي ي سرعة التفاعل تمارين مرفقة بالحلول فيزياء تارودانت التمرين الا ول: يتفاعل أيون ثيوآبريتات ثناي ي أوآسيد الكبريت مع أيونات الا وآسونيوم وفق المعادلة الكيمياي ية التالية: H S
- سلسلة -2. f ( x)= 2+ln x ثم اعط تأويل هندسيا لهاتين النتيجتين. ) 2 ثم استنتج تغيرات الدالة مع محور الفاصيل. ) 0,5
تارين حلل ف دراسة الدال اللغاريتمية السية - سلسلة - ترين ]0,+ [ لتكن f الدالة العددية للمتغير الحقيقي المعرفة على المجال بما يلي f ( )= +ln. (O, i, j) منحنى الدالة f في معلم متعامد ممنظم + f ( ) f ( )
يط... األعداد المركبة هذه التمارين مقترحة من دورات البكالوريا من 8002 إلى التمرين 0: دورة جوان 8009 الموضوع األول التمرين 8: دورة جوان
األعداد المركبة 800 هذه التمارين مقترحة من درات البكالريا من 800 إلى 800 المضع األل التمرين 0: حل في مجمعة األعداد المركبة المعادلة: = 0 i ( + i) + نرمز للحلين ب حيث: < ( عدد حقيقي ) 008 - بين أن ( المستي
تمرين 1. f و. 2 f x الجواب. ليكن x إذن. 2 2x + 1 لدينا 4 = 1 2 أ - نتمم الجدول. g( x) ليكن إذن
تمرين تمارين حلل = ; دالتين عدديتين لمتغير حقيقي حيث = + - حدد مجمعة تعريف الدالة - أعط جدل تغيرات لكل دالة من الدالتين - أ) أنقل الجدل التالي أتممه - D ب) حدد تقاطع C محر الافاصيل ( Oi ج ( المنحنيين C
() 1. ( t) ( ) U du RC RC dt. t A Be E Ee E e U = E = 12V ن ن = + =A ن 1 RC. τ = RC = ن
تصحیح الموضوع الثاني U V 5 ن B التمرین الا ول( ن): - دراسة عملیة الشحن: - - التوتر الكھرباي ي بین طرفي المكثفة عند نھایة الشحن : -- المعادلة التفاضلیة: بتطبيق قانون جمع التوترات في حالة الربط على التسلسل
التطورات : : 05. m m .(1 14.( V( m / s ) 0,25 0, t ( s ) t ( s ) z v. V z ( mm / s )
التطورات : المجال الرتيبة : 5 الوحدة جملة ميآانيآية تطور ر ت ت ر ع المستوى: 5 : رقم السلسلة V z mm / s. t s تم تصوير السقوط الشاقولي لآرية داخل زيت. و بعد معالجة المعطيات بالا علام الا لي تم الحصول على
2,9 3,5 اختبار الثلاثي الثاني في مادة مدینة علي منجلي - قسنطینة I- دراسة عملیة الشحن :
اختبار الثلاثي الثاني في مادة المستوى: نھاي ي علوم تجریبیة المدة : ساعتان التاریخ : /... فیفري/ 0 مدینة علي منجلي - قسنطینة تمرین( 0 ): أ- قیمة ال : ph لمحلول لحمض النمل HOOH تركیزه المولي. ph,9 - أكتب
( ) ( ) ( ) ( ) v n ( ) ( ) ( ) = 2. 1 فان p. + r بحيث r = 2 M بحيث. n n u M. m بحيث. n n u = u q. 1 un A- تذآير. حسابية خاصية r
نهايات المتتاليات - صيغة الحد العام - حسابية مجمع متتابعة لمتتالية ) ( متتالية حسابية أساسها + ( ) ملاحظة - متتالية حسابية + أساسها ( ) متتالية حسابية S +... + + ه الحد الا ل S S ( )( + ) S ه عدد المجمع
الجمهورية الجزائرية الديمقراطية الشعبية الشعبة دورة صفحة 1 من 8 : علوم تجريبية : ماي 1025 اختبار في مادة : العلوم الفيزيائية : 03 سا و 30 د
الجمهرية الجزائرية الديمقراطية الشعبية زارة التربية الطنية امتحان تجريبي باكالريا التعليم الثاني الشعبة ثانية مفدي زكريا البياضة ثانية البياضة الجديدة درة : ماي 1025 : علم تجريبية اختبار في مادة : العلم
( ) ( ) ( ) - I أنشطة تمرين 4. و لتكن f تمرين 2 لتكن 1- زوجية دالة لكل تمرين 3 لتكن. g g. = x+ x مصغورة بالعدد 2 على I تذآير و اضافات دالة زوجية
أ عمميات حل الدال العددية = [ 1; [ I أنشطة تمرين 1 لتكن دالة عددية لمتغير حقيقي حيث أدرس زجية أدرس رتابة على آل من[ ;1 [ استنتج جدل تغيرات دالة زجية على حيز تعريفها ( Oi ; ; j 1 استنتج مطاريف الدالة إن
المادة المستوى المو سسة والكيمياء الفيزياء تمارة = C ت.ع : éq éq ] éq ph
8 א א ن א ع א א ن א ع א تحديد خارج تفاعل حمض الا سكوربيك مع الماء بقياس ph O.. آتابة معادلة التفاعل H8O( q + H ( 7 ( q + l + ( q.. الجدول الوصفي H8O( q + HO ( H7O ( q HO+ l + ( q معادلة التفاعل آميات mol
OH H O CH 3 CH 2 O C 2 H a = - 2 m/s 2. 2 gr(1 cos θ) max 1/5
الكيمياء (6 نقط) - سم المرآبات الكيمياي ية التالية مع تحديد المجموعة الكيمياي ية التي ينتمي إليها آل مرآب: المرآب A المرآب B المرآب الثانوية التا هيلية الفقيه الكانوني فرض محروس رقم. 4 الدورة الثانية المستوى:
المستوى المادة مسلك والكيمياء الفيزياء المو سسة تمارة + + éq 3 éq= xéq. x m. m = CV x. Q r [ RCOOH] RCOOH
8 ا ستاذ ( éq wwwphysiquelyceecl א الجزء I تحديد ثابتة التوازن لتفاعل حمض الا يبوبروفين مع الماء حساب الترآيز ( ( i i ومنه و نعلم أن M ( M (, 9,7 ol L 6, تع تفاعل الا یبوبروفين مع الماء تفاعل محدود * الجدول
الوحدة المستوى: 3 المجال : 03 التطورات + ر+ رقم ملخص 2 : : : RC U AC U AB U BC + U U EF U CD. u AC I 1. u AB I 2 I = I1 + I R 2 R 1 B + A
التطورات المجال الرتيبة 3 الوحدة الكهرباي ية الظواهر ر ت ر ت ع المستوى 3 3 رقم ملخص مآتسبات قبلية التيار الآهرباي ي المستمر التيار الآهرباي ي المتناوبببب قانون التواترات 3 حالة الدارة المتسلسلة أ هو آل
المادة المستوى رياضية علوم والكيمياء الفيزياء = 1+ x f. V ph .10 COOH. C V x C. V
8 n א الجزء ( تفاعل حمض آربوآسيلي مع الماء ثم مع الا مونياك - تحديد الصيغة الا جمالية لحمض آربوآسيلي - معادلة تفاعل المعايرة O H OO H n Hn OOH( HO n n ( l BB, - * حساب الترآيز المولي عند التكافو نحصل على
jamil-rachid.jimdo.com
تصحیح الامتحان الوطني الموحد للبكالوریا مسلك علوم فیزیاي یة 8 الدورة العادیة jilrchidjidoco الكیمیاء الجزء : I تحديد ثابتة التوازن لتفاعل حمض الا يبوبروفين مع الماء: حساب الترآيز : ( ( i ROOH ROOH i ومنه:
( D) .( ) ( ) ( ) ( ) ( ) ( ) الا سقاط M ( ) ( ) M على ( D) النقطة تعريف مع المستقيم الموازي للمستقيم على M ملاحظة: إذا آانت على أ- تعريف المستقيم ) (
الا سقاط القدرات المنتظرة *- الترجمة المتجهية لمبرهنة طاليس 1- مسقط نقطة مستقيم D مستقيمين متقاطعين يجد مستقيم حيد مار من هذا المستقيم يقطع النقطة يازي في نقطة حيدة ' ' تسمى مسقط نقطة من المستى تعريف )
( ) ( ) ( ) ( ) تمرين 03 : أ- أنشيء. ب- أحسب ) x f ( بدلالة. ب- أحسب ) x g ( تعريف : 1 = x. 1 = x = + x 2 = + من x بحيث : لتكن لكل. لكل x من.
عمميات حل الدال العددية السنة الا لى علم تجريبية علم رياضية تذآير : إشارة دالة تا لفية ثلاثية الحدد طريقة المميز المختصر ( 4 ): ( ) I- زجية دالة عددية : -( أنشطة : تمرين 0 : أدرس زجية الدالة العددية في
(Tapis roulant)
الميآانيك المجال القى الحرآات الحدة الحرآات المنحنية القة م ع ت ج المستى رقم السلسلة الفراغات الاتية آمل فانه إذا تحرك جسم فق مسار مد حس خاضعا يآن حتما للمسار الحرآة خلال يآن شعاع المسار نح 9 8 يتجهان
. C 0 = 10 3 mol /l. N A = 6, mol 1
مديرية التربية لولاية الشلف الشعبة : رياضيات تقني رياضي ملاحظة : يعالج المترشح ا حد الموضوعين على الخيار الجمهورية الجزاي رية الديمقراطية الشعبية متقن مرسلي عبد االله سيدي عكاشة - امتحان البكالوريا التجريبي
تصحيح موضوع العلوم الفيزياي ية : شعبة العلوم التجريبية والعلوم والتكنولوجيات الكيمياء : المحلول الماي ي لحمض الميثامويك العمود قصدير فضة
تصحيح موضوع العلوم الفيزياي ية : شعبة العلوم التجريبية والعلوم والتكنولوجيات الكيمياء : المحلول الماي ي لحمض الميثامويك العمود قصدير فضة المحلول الماي ي لحمض المیثانويك تعريف حمض حسب برونشتد : كل نوع كيمياي
( ) ( ) ( ) = ( 1)( 2)( 3)( 4) ( ) C f. f x = x+ A الا نشطة تمرين 1 تمرين تمرين = f x x x د - تمرين 4. نعتبر f x x x x x تعريف.
الثانية سلك بكالوريا علوم تجريبية دراسة الدوال ( A الا نشطة تمرين - حدد رتابة الدالة أ- ب- و مطاريفها النسبية أو المطلقة إن وجدت في الحالات التالية. = ج- ( ) = arctan 7 = 0 = ( ) - حدد عدد جذور المعادلة
( ) [ ] الدوران. M يحول r B و A ABC. 0 2 α فان C ABC ABC. r O α دورانا أو بالرمز. بالدوران r نكتب -* النقطة ' M إلى مثال لتكن أنشي 'A الجواب و 'B
الدران I- تعريف الدران 1- تعريف لتكن O نقطة من المستى المجه P α عددا حقيقيا الدران الذي مرآزه O زايته من P نح P الذي يربط آل نقطة M بنقطة ' M ب: M = O اذا آانت M ' = O - OM = OM ' M O اذا آان - OM ; OM
التطورات الوحدة المجال يبة المستوى: 3 + ر+ رقم : 01 الدرس الرت PV = nrt. n = C = C m C 2 F = = atm 082 mole. mole 273 === ( g.mol.
التطورات المجال يبة الرت الزمنية المتابعة الوحدة كيمياي ي في وسط ماي ي لتحول ر ت ر ت ع المستوى رقم الدرس لية قب سبات مآت ترآيز محلول ماي ي و آمية المادة علاقة آمية المادة بالآتلة صلب أو ساي ل أو غاز حالة
التمرين الثاني )3 2-( نعتبر في المستوى المنسوب إلى معلم متعامد ممنظم التي معادلتها : 3-( بين أن المستوى مماس للفلكة في النقطة.
التمرين األل) 3 نقط ) نعتبر في الفضاء المنسب إلى معلم متعامد ممنظم مباشر التي معادلتها : النقطتين الفلكة الفلكة هي النقطة أن شعاعها ه تحقق من أن تنتمي إلى 1-( بين أن مركز 2-( حددمثلث إحداثيات المتجهة بين
Le travail et l'énergie potentielle.
الشغل و الطاقة الوضع التقالية Le travail et l'énergie potentielle. الا ستاذ: الدلاحي محمد ) السنة الا ولى علوم تجريبية (.I مفهوم الطاقة الوضع الثقالية: نشاط : 1 السقوط الحر نحرر جسما صلبا كتلتھ m من نقطة
( ) / ( ) ( ) على. لتكن F دالة أصلية للدالة f على. I الدالة الا صلية للدالة f على I والتي تنعدم في I a حيث و G دالة أصلية للدالة حيث F ملاحظات ملاحظات
الا ستاذ محمد الرقبة مراآش حساب التكامل Clcul ntégrl الدال الا صلية (تذآير آل دالة متصلة على مجال تقبل دالة أصلية على. الدالة F هي الدالة الا صلية للدالة على تعني أن F قابلة للا شتقاق على لكل من. F لتكن
3as.ency-education.com
الجمهرية الجزائرية الديمقراطية الشعبية 2017/2016 مديرية التربية لالية باتنة السنة الدراسية اختبار بكالريا التجريبي الشعبة : تقني رياضي درة ماي 2017/2016 المدة: 4 سا اختبار في مادة التكنلجيا )هندسة الطرائق(
وزارة التربية الوطنية موضوع تجريبي لامتحان شهادة البكالوريا اختبار في مادة الفيزياء والكيمياء
الشعبة : علوم تجريبية ساعات 4 ) : الا ول ا الجزاي رية الديمقراطية الشعبية الجمهورية وزارة التربية الوطنية موضوع تجريبي لامتحان شهادة البكالوريا نقاط) اختبار في مادة الفيزياء والكيمياء المدة : حمض الميثانويك
( ) ( ) [ [ ( ) ( ) ( ) =sin2xcosx ( ) lim. lim. α; ] x حيث. = x. x x نشاط 3 أ- تعريف لتكن. x نهاية l في x 0 ونرمز لها ب ب- خاصية نهاية على اليمين في
الاشتقاق تطبيقاته دراسة الدال www.woloj.com - الاشتقاق في نقطة- الدالة المشتقة ( A أنشطة نشاط باستعمال التعريف ادرس اشتقاق الدالة في حدد العدد المشتق في إن جد ثم حدد معادلة المماس أ نصف المماس لمنحنى الدالة
الوحدة 02. GUEZOURI A. Lycée Maraval - Oran الدرس 2 الطاقة الحرآي ة. F r ( ) W F = F ABcosθ عمل. F r محر ك عمل مقاوم
المستى : السنة الثانية ثاني الحدة 0 العمل الطاقة الحرآية (حالة الحرآة الا نسحابية) GUEZOURI Lycée Maaal Oan ماذا يجب أن أعرف حتى أقل : إني استعبت هذا الدرس يجب أن أفر ق بين انسحاب جسم درانه يجب أن أعرف
[ ] [ ] ( ) ( ) ( ) ( ) ( ) I و O B بالنسبة ل AC) ( IO) ( بالنسبة C و S M M 1 -أنشطة: ليكن ABCD معين مرآزه O و I و J منتصفي
O ( AB) تحيلات في المستى القدرات المنتظرة - التعرف على تقايس تشابه الا شكال استعمال الا زاحة التحاآي التماثل. - استعمال الا زاحة التحاآي التماثل في حل مساي ل هندسية. [ AD] التماثل المحري التماثل المرآزي
ثناي ي القطبRL (V ) I (A) 0,1 0,2 0,3 0,4 0,5 0,6
ثناي ي القطب التوجيهات: I التوتر بين مربطي الوشيعة : 1) تعريف الوشيعة : الوشيعة ثناي ي قطب يتكون من أسلاك النحاس ملفوفة بانتظام حول اسطوانة عازلة ( واللفات غير متصلة فيما بينها لا ن الا سلاك مطلية بمادة
( ) تعريف. الزوج α أنشطة. لتكن ) α ملاحظة خاصية 4 -الصمود ليكن خاصية. تمرين حدد α و β حيث G مرجح
. المرجح القدرات المنتظرة استعمال المرجح في تبسيط تعبير متجهي إنشاء مرجح n نقطة 4) n 2 ( استعمال المرجح لا ثبات استقامية ثلاث نقط من المستى استعمال المرجح في إثبات تقاطع المستقيمات استعمال المرجح في حل
الكتاب الثاني الوحدة 07. q q (t) dq R dq q الدرس الثاني : الاهتزازات الكهرباي ية الدرس حالة تفريغ المكث فة. (2) عند. t = 0 اللحظة.
GUZOUR Aek Maraval Oran الكتاب الثاني الوحدة 7 التطورات غير الرتيبة التطو رات الا هتزازية الدرس الثاني الاهتزازات الكهرباي ية أفريل 5 ما يجب أن أعرفه حتى أقول إني استوعبت هذا الدرس وعدم دورية يجب أن أعرف
-1 المعادلة x. cosx. x = 2 M. و π. π π. π π. π π. حيث π. cos x = إذن حيث. 5π π π 5π. ] [ 0;π حيث { } { }
الحساب المثلثي الجزء - الدرس الا ول القدرات المنتظرة التمكن من تمثيل وقراءة حلول معادلة أو متراجحة مثلثية على عدد الساعات: 5 الداي رة المثلثية الدورة الثانية k k I- المعادلات المثلثية cos x = a - المعادلة
1 =86400 ; 1 =1,6.10 ; 1 =931.5 ; 1 = ( )
ثانوية صاالح الدين األيوبي امتحان البكالوريا التجريبي دورة 2014 العلوم الفيزيائية المادة : المدة : أربع ساعات ونصف (4 سا 30 د) الشعبة : رياضيات و تقني رياضي لإلجابة عليه على المترشح أن يختار أحد الموضوعين
x Log x = Log mol [ H 3O + ] = ] = [OH ) ph ( mole ) n 0 - x f n 0 x x x f x f x f x max : ( τ max τf 1 : ( - 2 -
التطورات المجال الرتيبة جملة كيمياي ية تطور 0 الوحدة حالة التوازن نحو ر ت ر ت ع المستوى 0 رقم ملخص O الا سس حسب تعريف برونشتد و الا حماض الا حماض الحمض تعريف أو أآثر. هو آل فرد آيمياي ي شاردة جزئ بامآانه
انكخهت انحجميت نهغبس انكخهت انحجميت نههىاء انغبساث في انشزوط انىظبميت : M انكخهت انمىنيت ب
2016 N A عذد آفىقدر: 6 320 عذد انذراث أ انجشيئث : M انكخهت انمىنيت انكخهت g حجم انغس انحجم انمىني عذد انمىالث أ كميت انمدة انخزكيش انمىني انخزكيش انكخهي: انكخهت انحجميت أ عذد انمىالث حجم انمحهىل انكخهت
قراوي. V NaOH (ml) ج/- إذا علمت أن نسبة التقدم النهائي = 0,039 f بين أن قيمة التركيز المولي للمحلول هي C = mol/l
دروس الدعم مستوى السنة الثالثة : عت+تر+ريا السلسلة رقم 05 تطور جملة كيميائية نحو حالة التوازن ثانوية بريكة الجديدة االستاذ : عادل التمرين األول: نحضر محلوال (S) لحمض اإليثانويك COOH) (CH 3 لهذا الغرض نذيب
prf : SBIRO Abdelkrim ( ) ( ) ( ) . v B ( )
الثانوية الفلاحية باولادتايمة فرض رقم الدورة الثانية يوم - 010/5/19 مدة الا نجاز: ساعتين- التمرين الا ول فيزياء : 9 نقط يمكن لجسم صلب ) S ( آتلته = 1Kg نعتبره نقطيا أن ينزلق فوق سكة ABC مكونة من : prf
األستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية
http://benmoussamathjimdocom/ 55:31 5342-3-41 يم السبت : األستاذ: بنمسى محمد ثانية: عمر بن عبد العزيز المستى: 1 علم رياضية إحداثيات نقطة بالنسبة لمعلم - إحداثيات متجهة بالنسبة ألساس: األساس المعلم في الفضاء:
التطورات الرتيبة الوحدة 05 التمرين 27 : النظام الانتقالي : النظام الداي م. 10 m/s. من البيان τ = 1 s. t (s) التمرين 28 P= = 44, , 445 Π= ρ = =
-i الكتاب الا ول التطورات الرتيبة الوحدة 5 تطور جملة ميكانيكية تمارين الكتاب GUEZOURI Aek lycée Maraal - Oran ( / ) التمرين 7 حسب الطبعة الشكل المعطى في الكتاب يوافق دافعة أرخميدس مهملة وقوة الاحتكاك للكتاب
( ) ( ) ( OPMQ) ( ) المستقيم في المستوى 1- معلم إحداثيتا نقطة و و ( ) أفصول و. y أآتب الشكل مسقط M على ) OI (
المستقيم في المستى القدرات المنتظرة *- ترجمة مفاهيم خاصيات الهندسة التالفية الهندسة المتجهية باسطة الاحداثيات *- استعمال الا داة التحليلية في حل مساي ل هندسية. I- معلم مستى احداثيتا نقطة تساي متجهتين شرط
du R d uc L dt إذن: u L duc d u dt dt d q q o O 2 tc
ة I) التذبذبات الحرة في دارة RCعلى التوالي: ) تعريف: الدارةRCعلى التوالي هي دارة تتكون من موصل أومي مقاومته R ومكثف سعته C ووشيعة مقاومتها r ومعامل تحريضها. تكون التذبذبات حرة في دار RC عندما لا يتوفر
تمارين توازن جسم خاضع لقوتين الحل
تمارين توازن جسم خاضع لقوتين التمرين الأول : نربط كرية حديدية B كتلتها m = 0, 2 kg بالطرف السفلي لخيط بينما طرفه العلوي مثبت بحامل ( أنظر الشكل جانبه(. 1- ما نوع التأثير الميكانيكية بين المغنطيس والكرية
**********************************************************
اجب بصحيح أو خطا : أيكون محلول قاعديا إذا آان : سلسلة تمارين حول المعايرة تمرين ص 99 p > log k e / على الشكل : pk للمزدوجة بثابتة الحمضية محلول حمض p pk p log [ éq éq ب ( تكتب العلاقة التي تربط p هو 8
الوحدة 08. GUEZOURI A. Lycée Maraval - Oran الدرس H + بروتونا... . CH 3 NH 3 HSO 4 NH 4
المستوى : السنة الثانية ثانوي الوحدة 08 تعيين آمية المادة بواسطة المعايرة GUEZOURI Lycée Maraval - Oran ماذا يجب أن أعرف حتى أقول : إني استوعبت هذا الدرس - 1 يجب أن أفر ق بين حمض وأساس حسب تعريف برونشتد
H H 2 O (l) /HO - و (l) 3 O + /H 2 O. V b. dataelouardi.jimdo.com 1/
الثانوية التا هيلية الفقيه الكانوني فرض محروس رقم 6 الدورة الثانية المستوى: الثانية باك علوم فيزياي ية ملحوظة: يو خذ بعين الاعتبار تنظيم ورقة التحرير يجب أن تعطي العلاقة الحرفية قبل التطبيق العددي استعمال
التطورات : : 05 : : : : W AB. .cos. P = m g. mgh. mgh E PP. mgh. mgh. s A K mol cd E PP = 0 : ( الطول. B m
التطورات المجال الرتيبة 5 الوحدة جملة ميآانيآية تطور ر ت ت + ر+ ع المستوى 5 رقم الملخص مآتسبات قبلية مبدأ انحفاظ الطاقة مبدأ انحفاظ الطاقة نص الطاقة لا تستحدث و لا تزولإذا اآتسبت جملة ما طاقة أو فقدتها
وزارة التربية الوطنية ثانوية الشهيد العربي بن ذهيبة قلتة سيدي سعد املوضوع األول
وزارة التربية الوطنية ثانوية الشهيد العربي بن ذهيبة قلتة سيدي سعد 15/5/1 التاريخ : قسم : السنة الثالثة علوم تجريبية االمتحان التجرييب لشهادة البكالوريا يف مادة العلوم الفيزيائية 3 المدة : 15/14 السنة الدراسية
أي أن [ ] [ ] محمول لحمض االيثانويك تركيزه بشوارد الييدرونيوم - االكسونيوم ] [ لممحمولين وماذا تستنتج مالحظات : عند.
الحدة ال اربعة : تطر جممة كيميائية نح حالة التازن 1- تعريف الحمض االساس حسب برنشتد: أ- تعريف الحمض: ى نع كيميائي قادر عمى منح برتن أ اكثر ب- تعريف االساس : ى نع كيميائي قادر عمى التقاط برتن أ اكثر ph محمل
+ n e = Red. Ox /Red بالشكل : الوحدة 01 الدرس الا ول GUEZOURI Aek lycée Maraval Oran أمثلة : I 2 (aq) 1 نكتب : MnO 4. Cr 2 O 7.
الكتاب الا ول الوحدة 01 التطورات الرتيبة تطور آميات مادة المتفاعلات والنواتج خلال تحول آيمياي ي في محلول ماي ي الدرس الا ول GUEZOURI Aek lycée Maraval Oran - Ι مراجعة - Ι الا آسدة والا رجاع المو آسد :
الوحدة 05. uuur dog dt. r v= uuur r r r الدرس الا ول. uuur. uuur. r j. G (t) المسار. GUEZOURI Aek lycée Maraval - Oran
GUEZOURI Aek lcée Ml - O الكتاب الا ول الوحدة 05 التطورات الرتيبة تطور جملة ميكانيكية الدرس الا ول ما يجب أن أعرفه حتى أقول : إني استوعبت هذا الدرس يجب أن أعرف آيفية تحديد جملة ميكانيكية حسب ما ي طل ب
M = A g/mol. M 1 ( 63 Cu) = A 1 = 63 g/mol M 2 ( 65 Cu) = A 2 = 65 g/mol.
: - 07 و تحولاتها المادة الشعبة : جذع مشترك علوم و تكنولوجيا ********************************************************************************** www.sites.google.co/site/faresfergai تاريخ ا خر تحديث : 03/03/
C 12 *** . λ. dn A = dt. 6 هو ans
الجمهورية الجزاي رية الديمقراطية الشعبية. وزارة التربية الوطنية. ثانوية عمر بن عبد العزيز/ندرومة. مديرية التربية لولاية تلمسان. الامتحان التجريبي في العلوم الفيزياي ية. التمرين الا ول: () شعبة :العلوم
ا و. ر ا آ!ار نذإ.ى أ م ( ) * +,إ ك., م (ا يأ ) 1 آ ا. 4 ا + 9 ;). 9 : 8 8 و ء ر ) ا : * 2 3 ك 4 ا
الميكاني ك La mécanque قوانين نيوتن I متجهة السرعة ومتجهة التسارع: ) تذآير: : الحرآة نسبية أي الا جسام لا تتحرك إلا بالنسبة لا جسام أخرى.إذن لدراسة حرآة جسم يجب اختيار جسم مرجعي. ولتحديد موضع الجسم المتحرك
المستوى المادة المو سسة علوم رياضية الكيمياء والكيمياء الفيزياء تمارة RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH.
الدورة العادية ROOH HlO ROOH ( aq HO( l ROO ( aq HO( aq 4( aq H O( l lo4 ( aq HO( aq ( aq HO( aq ROO ( aq HO( l wwwphysiqulyccla الكيمياء الجزء الا ول التعرف على محلولين حمضيين تصنيع إستر معادلة تفاعل
متارين حتضري للبكالوريا
متارين حتضري للبكالريا بكالريا فرنسية بكالريا اجلزائر نظام قدمي مرتمجة ترمجة إعداد : الطالب بلناس عبد املؤمن ثانية عبد الرمحن بن خلدن عني جاسر باتنة جيلية 2102 أمتىن أن تكن هذه التمارين مفيدة للتحضري للبكالريا
: : RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH. éq= éq éq
تصحيح موضوع الامتحان الوطني الموحد للبكالوريا - الدورة العادية ROOH HlO ROOH ( HO( l ROO ( HO( 4( H O( l lo4 ( HO( ( aq HO( ROO ( HO( l الكيمياء الجزء الا ول التعرف على محلولين حمضيين تصنيع إستر معادلة
التمرين األول: )80 نقاط( - 1 أ- إيجاد الصيغ نصف المفصلة للمركبات:. M 1 D C B A 3,75 B: CH 3 CH 2 CH 3 C CH 3 A: CH 3. C: CH 3 CH CH 3 Cl CH CH CH 3
بكالوراي ال د و ر ة االسحثنائية: الشعبة: تقين رايوي املدة: 4 سا و 4 د عناصر اإلجابة )الموضوع األول( مج أزة م ج م و ع,5 التمرين األول: )8 نقاط( -I - أ- إيجاد الصيغ نصف المفصلة للمركبات:. M D B A A: H H
حركة دوران جسم صلب حول محور ثابت
حركة دوران جسم صلب حول محور ثابت I تعريف حركة الدوران لجسم صلب حول محور ثابت 1 مثال الجسم (S) في حركة دوران حول محور ثابت : النقطتين A و B تتحركان وفق داي رتين ممركزتين على المحور النقطتين M و N المنتميتين
تصحيح الامتحان الوطني الموحد للبكالوريا الدورة العادية مادة : الفيزياء والكيمياء شعبة العلوم التجريبية مسلك العلوم الفيزياي ية
مادة : الفيزياء والكيمياء شعبة العلوم التجريبية مسلك العلوم الفيزياي ية الكيمياء : الجزء الا ول والثاني مستقلين الجزء الا ول : التحليل لكهرباي ي لمحلول كلورور القصدير II 1 تبيانة التركيب التجريبي للتحليل
02 : رقم الوحدة المجال الرتي المستوى: 3 التطورات + ر+ الدرس : 02. lim. lim. x x Kg A = Z + N. + x = x y e = a = .
التطورات المجال بةةةة الرتي الوحدة النووية التحولات ر ت ر ت ع المستوى رقم الدرس b عددان حقيقيان i a 7 الا ساس النبيري i y ] y [ y y حيث قبلية مآتسبات الا سية الدالة b أ شآلها f a معرفة في المجال [ - ]
3as.ency-education.com
الجمهورية الجزائرية الديمقراطية الشعبية مديرية التربية لوالية معسكر وزارة التربية الوطنية دورة : ماي 2018 امتحان بكالوريا تجريبي ثانوية الشيخ فرحاوي عبد القادر تغنيف - الشعبة : علوم تجريبية اختبار في مادة
االختبار الثاني في العلوم الفيزيائية
ر 3 ثانوية عبان رمضان االختبار الثاني في العلوم الفيزيائية مارس 6102 المدة 6 ساعة األقسام :3 ع 2 - التمرين األول: ي عطى عند : 25 C pka(ch3cooh/ch3coo - )=4.8 وجدنا في المخبر قارورة تحتوي على محلول (S0)
التحوالت ت النووية. المعادلة التفاضلية للتطور( différentiel (équation التفسير باالحتمال الدرس 03 :تناقص النشاط اإلشعاعي
الدرس 03 :تناقص النشاط اإلشعاعي التحوالت ت النووية إعداد األستاذ : معافي جمال ( مدير ثانوية محمد الشريف بوسام( الشعبة: رياضيات + علوم تجريبية المعادلة التفاضلية للتطور( différentiel (équation التفسير باالحتمال
تايضاير و مولع يئاهن Version 1.1 اي ل
ر ي ا ض ي ا ت نهائي علم Version أ ج ل م ن ب د ا ي ة ح س ن ة ك م ا ل ح ا م د ي 0 الدرجة الثانية... عمميات على الدال... 3 قاعد احلساب على املتباينات... تطبيقات...6 a مع 0 p() = a + b + c p() = a [( + b )
الميكانيك. d t. v m = **********************************************************************************
1 : 013/03/ : - - - : 01 الميكانيك الشعبة : جذع مشترك علوم و تكنولوجيا ********************************************************************************** www.sites.google.com/site/faresfergani :א ن מ 1
أ- سلسلة تمارين حول التحكم في تطور مجموعة آيمياي ية 1 )التمرين رقم 1 الصفحة 167 المفيد في الكيمياء: عين من بين الجزيي ات التالية إلى أي مجموعة تنتمي وأعط أسماءها : CH 3 -CO-O-CO-CH 3 ( CH 3 -CO-O-CH 3
- سلسلة -3 ترين : 1 حل التمرين : 1 [ 0,+ [ f ( x)=ln( x+1+ x 2 +2 x) بما يلي : وليكن (C) منحناها في معلم متعامد ممنظم
تارين وحلول ف دراسة الدوال اللوغاريتمية والسية - سلسلة -3 ترين [ 0,+ [ نعتبر الدالة العددية f للمتغير الحقيقي المعرفة f ( )=ln( ++ 2 +2 ) بما يلي. (O, i, j) وليكن منحناها في معلم متعامد ممنظم ) ln يرمز
ﺔﻴﻭﻀﻌﻟﺍ ﺕﺎﺒﻜﺭﻤﻟﺍ ﻥﻴﺒ ﺕﻼﻴﻭﺤﺘﻟﺍ لﻭﺤ ﺔﻴﺯﻴﺯﻌﺘ ﺔﻗﺎﻁﺒ
بطاقة تعزيزية حول التحويلات بين المركبات العضوية مبتدي ا من الاسيتلين ) الا يثاين ( وضح بالمعادلات الكيمياي ية مع ذكر شروط التفاعل كيف يمكنك س ١ : الحصول على : ( ٣ اسيتات الفينيل ) ( ) الفينول ٢ ميثيل
تقين رياوي الصيغة المجممة لأللسان A الصيغة المجممة هي 6 3 صيغته نصف المفصمة : 2 CH 3 -CH=CH
اإلجابة النموذجية ملووو اتحاا اخحبار تادة الحكنولوجيا (هندسة الطرائق ( البكالوريا دورة 6 الشعبة املدة 44 سا و 34 د,5 M n = M polymère monomère ; 5 نقاط ) التمرين األول ( إيجاد الصيغة المجممة لأللسان A
الكيمياء. allal Mahdade 1
الكيمياء الا ستاذ : علال محداد http://sciencephysique.ifrance.com allal Mahdade http://sciencephysique.ifrance.com 1 I الجسم الصلب الا يوني أمثلة لا جسام صلبة أيونية : بلورات آلورور الصوديوم وفليورور الكالسيوم
1/7
I الحركة 1 نسبیة الحركة الحركة النشاط التجريبي : 1 في التبيانة جانبه حافلة النقل المدرسي يجلس بداخلها أحمد بينما ليلى ما زالت تنتظر حافلة نقل أخرى وتشاهد حافلة صديقها تبتعد عنها الجسم R مرتبط بالا رض و
منتديات علوم الحياة و الأرض بأصيلة
www.svt-assilah.com الفيزياء تمرين : 1 نحدث عند الطرف S لحبل مرن موجة مستعرضة تنتشر بسرعة 1 s. v = 10 m. عند اللحظة t = 0s يوجد مطلع الإشارة عند المنبع. S يمثل المنحنى أسفله تغيرات استطالة المنبع بدلالة
استثمار تسجيلات لحساب السرعة اللحظية. التعبير عن الحركة المستقيمية المنتظمة بمعادلة زمنية في شروط بدي ية مختلفة.
فيزياء درس 3 الجدع المشترك الكفايات المستهدفة معرفة مفهوم معلم الفضاء ومعلم الزمن تعيين مسار نقطة من متحرك في معلم محدد حساب السرعة المتوسطة استعمال العلاقة التقريبية لحساب السرعة اللحظية - ms والعكس إلى
dθ dt ds dt θ θ v a N dv a T dv dt v = rθ ɺ
حرآة دوران جسم صلب حول السرعة الزاوية-التسارع الزاوي: 1) تذآير: محور ثابت I الا فصول الزاوي يكون جسم صلب غير قابل للتشويه في حرآة دوران حول محور ثابت إذا آانت جميع نقطه لهاحرآة داي رية ممرآزة على هذا المحور
ency-education.com/exams
الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية بكالوريا التجريبي في مادة التكنولوجيا )ماي 2018 والية غليزان ) المدة : 4 سا و 30 د ثانوية : عمي موسى + عين طارق الشعبة : تقني رياضي)هندسة الط
الدورة العادية NS 03 الفيزياء والكيمياء شعبة العلوم الرياضية )أ( و)ب( دراسة محلول األمونياك و الهيدروكسيالمين 5
4 المركز الوطني للتقويم واالمتحانات والتوجيه المادة الفيزياء والكيمياء االمتحان الوطني الموحد للبكالوريا مدة اإلنجاز 8 الدورة العادية 4 NS 3 wwwtawjihproco 7 الشعبة أو المسلك شعبة العلوم الرياضية )أ( و)ب(
Tronc CS Calcul trigonométrique Cours complet : Cr1A Page : 1/6
1/ وحدات قياس زاوية الدرجة الراديان : (1 العلقة بين الدرجة والراديان: I الوحدة الكأثر استعمال لقياس الزوايا في المستويات السابقة هي الدرجة ونعلم أن قياس الزاوية المستقيمية هو 18 rd هناك وحدة لقياس الزوايا
الموافقة : v = 100m v(t)
مراجعة القوة والحركة تصميم الدرس 1- السرعة المتوسطة 2- السرعة اللحظية 3- النموذج الرياضي : شعاع السرعة 4- شعاع السرعة والحركة المستقيمة 5- الحالة الخاصة 1 1 السرعة المتوسطة سيارة تقطع مسافة L بين مدينة
( ) ( ) 27,5.10 1,35.10 = 5, = 0,3. n C V mol ( ) M NaHCO max. n( CO ) n CO. 2 exp 2. Page 1
الكيمياء صحيح الفرض المنزلي 01 السنة الثانية علوم فيزياي ية 1 نوع التفاعل : تفاعل حمض قاعدة. التعليل : لا ن حمض الا يثانويك آحمض برونشتد قادر على إعطاء بروتون + H و أيون هيدروجينو آربونات آقاعدة برونشتد
مادة الرياضيات 3AC أهم فقرات الدرس (1 تعريف : نعتبر لدينا. x y إذن
أهم فقرات الدرس معادلة مستقيم مادة الرياضيات _ I المعادلة المختصرة لمستقيم غير مواز لمحور الا راتيب ( تعريف ; M ( التي تحقق المتساوية m + هي مستقيم. مجموعة النقط ( المتساوية m + تسمى المعادلة المختصرة
)الجزء األول( محتوى الدرس الددراتالمنتظرة
األعداد العقدية )الجزء األل ) 1 ثانية المنصر الذهبي التأهيلية نيابة سيدي البرنصي - زناتة أكا يمية الدار البيضاء الكبرى األعدا القددية )الجزء األل( األستاذ تباعخالد المستى السنة الثانية بكالريا علم تجريبية
Dipôle RL. u L (V) Allal mahdade Page 1
ثنائي القطب ثنائي القطب Dipôle la bobine : الوشيعة I 1 التعريف الوشيعة ثنائي قطب يتكون من لفات من سلك من النحاس غير متصلة فيما بينھا لكونھا مطلية ببرنيق عازل كھربائي. رمز الوشيعة : (V) I(A) لتمثيل لوشيعة
أسئلة استرشادية لنهاية الفصل الدراسي الثاني في مادة الميكانيكا للصف الثاني الثانوي العلمي للعام الدراسي
أسئلة استرشادية لنهاية الفصل الدراسي الثاني في مادة الميكانيكا للصف الثاني الثانوي العلمي للعام الدراسي 4102 4102 تذكر أن :1- قانون نيوتن الثاني : 2- في حال كان الجسم متزن أو يتحرك بسرعة ثابتة أوساكن فإن
الامتحان التجريبي لمادة الفيزياء و الكيمياء شعبة العلوم التجريبية مسلك علوم الحياة و الا رض
س. التنقيط ا كاديمية جهة سوس ماسة درعة نيابة تارودانت ثانوية عبد االله الشفشاوني التا هيلية ا ولاد تايمة الكيمياء: الامتحان التجريبي لمادة الفيزياء و الكيمياء شعبة العلوم التجريبية مسلك علوم الحياة و الا
الوحدة 04 الدرس الشكل - 2. E pp. E : Energie, p : potentielle, p : (de) pesanteur. P r. F r. r P. z A إلى. z B. cb ca AB AB
المستوى : السنة الثانية ثانوي الطاقة الكامنة الوحدة 4 حسب الطبعة 3 / للكتاب المدرسي GUZOURI Lycée aaal Oan ماذا يجب أن أعرف حتى أقول : إني استوعبت هذا الدرس - يجب أن أعرف مدلول الطاقة الكامنة الثقالية
3as.ency-education.com
اإلجابة النموذجية ملوضوع اختبار مادة : التكنولوجيا (هندسة الطرائق) / الشعبة : تقين رايضي / بكالوراي / 712 : موضوع العالمة مجموع مجزأة عناصر اإلجابة (الموضوع األول) التمرين األول 8( : نقاط) ) 1 -I 2,25
یسمح باستعمال الحاسبة غیر القابلة للبرمجة تعطى الصیغ الحرفیة قبل إنجاز التطبیقات العددیة مكونات الموضوع
س 3 المركز الوطني للتقویم والامتحانات المادة : الشعب (ة): -الدورة العادیة 2008-1 المعامل : 7 یسمح باستعمال الحاسبة غیر القابلة للبرمجة تعطى الصیغ الحرفیة قبل إنجاز التطبیقات العددیة مدة الا نجاز: مكونات
Site : Gmail : Page 1
الفيزياء األستاذ : رشيد جنكل القسم : السنة الثانية من سلك البكالوريا الشعبة : علوم تجريبية ع ف سلسلسة رقم 1 الدورة الثانية الميكانيك : جميع الدروس التحوالت التلقائية في األعمدة وتحصيل الطاقة / أمثلة لتحوالت