L A T E X. Matematična besedila. Matjaž Željko. 10. november Fakulteta za matematiko in fiziko. 1 Matjaž Željko Urejevalnik besedila LAT E X
|
|
- Ἐπίκτητος Γερμανός
- 7 χρόνια πριν
- Προβολές:
Transcript
1 L A T E X Matematična besedila Matjaž Željko Fakulteta za matematiko in fiziko 10. november Matjaž Željko Urejevalnik besedila LAT E X
2 Vrstični način Matematični tekst znotraj odstavka vnesemo v vrstičnem načinu med \( in \), med $ in $ ali med \begin{math} in \end{math}. Vsi trije načini so ekvivalentni. Če za vektorja $x$ in $y$ velja \(x\perp y\), je \begin{math} x^ty=0 \end{math}. Če za vektorja x in y velja x y, je x T y = 0. 2 Matjaž Željko Urejevalnik besedila LAT E X
3 Prikazni način Daljše ali pomembnejše matematične izraze vnesemo v prikaznem načinu med \[ in \], med $$ in $$ ali pa med \begin{displaymath} in \end{displaymath}. Vsi trije načini so ekvivalentni. Če za vektorja $$x \text{ in } y$$ velja \[x\perp y,\] je \begin{displaymath} x^ty=0.\end{displaymath} Če za vektorja velja je x in y x y, x T y = 0. 3 Matjaž Željko Urejevalnik besedila LAT E X
4 Oštevilčene formule Z $$ in $$ dobimo neoštevilčene formule. Oštevilčene formule dobimo z okoljem equation. Na enačbo se lahko skličemo z uporabo ukazov \label in \ref. Če za vektorja $x$ in $y$ velja $x\perp y$ je \begin{equation} x^ty=0. \label{e1}\end{equation} Namesto (\ref{e1}) lahko zapišemo tudi \begin{equation} y^tx=0. \label{e2}\end{equation} Če za vektorja x in y velja x y je x T y = 0. (1) Namesto (1) lahko zapišemo tudi y T x = 0. (2) 4 Matjaž Željko Urejevalnik besedila LAT E X
5 Razlike med prikaznim in vrstičnim načinom V vrstičnem načinu so formule stisnjene po višini. Formule v vrstičnem načinu naredimo bolj pregledne z \displaystyle oz. \limits. V prikaznem načinu se vrstice ne delijo, v prikaznem pa se, vendar ne nujno na pravih mestih. $\lim_{n \to \infty} \sum_{k=1}^n \frac{1}{k^2} = \frac{\pi^2}{6}= \lim\limits_{n \to \infty} \displaystyle\sum_{k=1}^n \frac{1}{k^2}$ $$\lim_{n \to \infty} \sum_{k=1}^n \frac{1}{k^2} = \frac{\pi^2}{6}$$ lim n n k=1 1 k 2 = π2 6 = lim n n k=1 lim n n k=1 1 k 2 1 k 2 = π2 6 5 Matjaž Željko Urejevalnik besedila LAT E X
6 Razlike med tekstovnim in matematičnim načinom Večina presledkov in prelomov vrstic nima nobenega pomena. Prazne vrstice niso dovoljene. Formula ne more biti sestavljena iz več odstavkov. Za presledke je potrebno uporabiti posebne ukaze, kot so npr. \, (majhen), \: (polovičen), \ (običajen), \quad (velik), \qquad (zares velik) ali \! (negativen). Vsaka črka se obravnava kot ime spremenljivke. Če želimo v matematičnem načinu v formuli pisati normalen tekst, ga moramo vnesti s pomočjo ukaza \textrm{...}. Za šumnike in druge črke z akcenti moramo v matematičnem načinu uporabljati matematične akcente. Namesto \v{c} moramo tako pisati \check{c}. 6 Matjaž Željko Urejevalnik besedila LAT E X
7 Matematični akcenti â \hat{a} ǎ \check{a} á \acute{a} ȧ \dot{a} à \grave{a} ã \tilde{a} ä \ddot{a} ă \breve{a} ÂA \widehat{aa} a \vec{a} ā \bar{a} ÃA \widetilde{aa} Vektorsko oznako, ki se razteza čez več znakov, pišemo kot: AA \overrightarrow{aa} AA \overleftarrow{aa} Znak za odvod pišemo kot ali ^\prime. Če $f(x)=g(x)+c$, je $f^\prime(x)=g (x)$. Če f (x) = g(x) + c, je f (x) = g (x). 7 Matjaž Željko Urejevalnik besedila LAT E X
8 Grške črke, matematični simboli,... L A T E X pozna grške črke in mnoge matematične simbole, oklepaje, puščice,... Nekaj dodatnih simbolov je v paketu latexsym, s paketoma amsmath in amssymb pa imamo na voljo še mnogo dodatnih AMS simbolov. $$[-\infty,-1]\cap (1,\infty)=\emptyset$$ $$\alpha \looparrowright 2\pi$$ (, 1] (1, ) = α 2π 8 Matjaž Željko Urejevalnik besedila LAT E X
9 Grške črke α \alpha θ \theta o o υ \upsilon β \beta ϑ \vartheta π \pi φ \phi γ \gamma ι \iota ϖ \varpi ϕ \varphi δ \delta κ \kappa ρ \rho χ \chi ɛ \epsilon λ \lambda ϱ \varrho ψ \psi ε \varepsilon µ \mu σ \sigma ω \omega ζ \zeta ν \nu ς \varsigma η \eta ξ \xi τ \tau Γ \Gamma Λ \Lambda Σ \Sigma Ψ \Psi \Delta Ξ \Xi Υ \Upsilon Ω \Omega Θ \Theta Π \Pi Φ \Phi 9 Matjaž Željko Urejevalnik besedila LAT E X
10 Binarne relacije Če pred operacijo dodamo ukaz \not, dobimo ustrezno negacijo. < < > > = = \leq ali \le \geq ali \ge \equiv. \ll \gg = \doteq \prec \succ \sim \preceq \succeq \simeq \subset \supset \approx \subseteq \supseteq = \cong \sqsubseteq \sqsupseteq \bowtie \in \ni ali \owns \propto \vdash \dashv = \models \mid \parallel \perp \smile \frown \asymp : : / \notin \neq ali \ne 10 Matjaž Željko Urejevalnik besedila LAT E X
11 Binarne relacije ± \pm \mp \triangleleft \cdot \div \triangleright \times \ \setminus \star \cup \cap \ast \sqcup \sqcap \circ \vee ali \lor \wedge ali \land \bullet \oplus \ominus \diamond \odot \oslash \uplus \otimes \bigcirc \amalg \bigtriangleup \bigtriangledown \dagger \ddagger \wr 11 Matjaž Željko Urejevalnik besedila LAT E X
12 Potence in indeksi Potence vnašamo s pomočjo ^, indekse pa z _. Potence (ali indekse), daljše od enega znaka, moramo združiti med { in }. $a_12 \neq a_{12}$ vendar pa $a_1^2 =a^2_1$. a 1 2 a 12 vendar pa a 2 1 = a Matjaž Željko Urejevalnik besedila LAT E X
13 Koreni Stavljenje matematičnega besedila Kvadratni koren vnesemo kot \sqrt. n-ti koren vnesemo z ukazom \sqrt[n]. Če potrebujemo le znak za koren, uporabimo \surd. $\sqrt[2]{a^2+b^2}=\sqrt{a^2+b^2}$ 2 a 2 + b 2 = a 2 + b 2 13 Matjaž Željko Urejevalnik besedila LAT E X
14 Podčrtovanje in nadčrtovanje Ukaza \overline in \underline naredita vodoravno črto nad oziroma pod izrazom. Ukaza \overbrace in \underbrace naredita vodoravni zaviti oklepaj, ki združuje elemente izraza, nad oziroma pod izrazom. Zaviti oklepaj lahko po želji dodatno opremimo z indeksom. $\overline{a+b}$ in $\underline{a+b}$, $\underbrace{a+b+\cdots+y+z}_{26\ \textsf{črk}}$ in $\overbrace{a+b+\cdots+y+z}^{26\ \textsf{črk}}$ 26 črk {}}{ a + b in a + b, a + b + + y + z in a + b + + y + z }{{} 26 črk 14 Matjaž Željko Urejevalnik besedila LAT E X
15 Ulomki Stavljenje matematičnega besedila Ulomke pišemo z ukazom \frac{...}{...}. Možna je tudi zastarela oblika {... \over...}. Za binomske koeficiente in podobne izraze uporabljamo {... \choose...} in {... \atop...} (brez oklepajev). $n(n+1)/2=\frac{n(n+1)}{2}=\frac12 n(n+1)= {n \choose 2}\ne {n \atop 2}$ n(n + 1)/2 = n(n+1) 2 = 1 2 n(n + 1) = ( ) n 2 n 2 15 Matjaž Željko Urejevalnik besedila LAT E X
16 Imena funkcij Imena funkcij, kot so logaritem, sinus,..., ponavadi pišemo v pokončni pisavi in ne poševno kot spremenljivke. Večina najpomembnejših matematičnih funkcij je že definirana: \arccos \cos \csc \exp \ker \limsup \min \arcsin \cosh \deg \gcd \lg \ln \Pr \arctan \cot \det \hom \lim \log \sec \arg \coth \dim \inf \liminf \max \sin \sinh \sup \tan \tanh $\lim\limits_{x\to0}\frac{\sin x}{x}=1=\cos^2\pi$ sin x lim x 0 x = 1 = cos 2 π 16 Matjaž Željko Urejevalnik besedila LAT E X
17 Matematične pisave Znotraj matematičnega načina imamo na voljo naslednje pisave: \mathrm : navadna pisava abc \mathsf : gladka pisava abc \mathtt : pisalni stroj abc \mathbf : krepka pisava abc \mathit : poševna pisava abc \mathcal : kaligrafske črke ABC \mathfrak : lomljene črke ABC \mathbb : odebeljene črke ABC \mathnormal : poševne grške črke Γ ΠΦ Pisavi \mathfrak in \mathbb sta na voljo v paketu amsfonts ali amssymb. 17 Matjaž Željko Urejevalnik besedila LAT E X
18 Krepki simboli Ukaz \mathbf naredi krepke pokončne črke v matematičnem načinu. Ukaz \boldmath, ki ga lahko vključimo le zunaj matematičnega načina, naredi krepke vse znake (črke, simbole, ločila,... ) v matematičnem načinu. Z ukazom \boldsymbol, ki je na voljo v amsbsy ali amsmath, pa lahko naredimo krepek poljuben znak v matematičnem načinu. $$M+\cup\mu \qquad \mathbf{m} \qquad \mbox{\boldmath $M+\cup\mu$}\qquad \boldsymbol{m}+\cup\boldsymbol{\mu}$$ M + µ M M + µ M + µ 18 Matjaž Željko Urejevalnik besedila LAT E X
19 Standardne številske množice Za standardne številske množice se uporabljajo simboli, ki jih dobimo z ukazom \mathbb (iz paketov amsfonts ali amssymb). $x^2\geq0$ za vsak $x\in\mathbb{r}$. $\aleph_0= \mathbb{n} < \mathbb{r} =c$. \mathbb{n}\subset\mathbb{z}\subset \mathbb{q}\subset\mathbb{r}\subset\mathbb{c} x 2 0 za vsak x R. ℵ 0 = N < R = c. N Z Q R C 19 Matjaž Željko Urejevalnik besedila LAT E X
20 Integrali, vsote in produkti Znak za integral dobimo z \int, za vsoto s \sum, za produkt s \prod. Zgornjo in spodnjo mejo podamo z ^ in _, tako kot potence in indekse. V vrstičnem načinu se meje pišejo na desni strani. $\sum_{k=1}^{n} k^2=\frac{n(n+1)(2n+1)}{6}$, $ \int_{0}^{\frac{\pi}{2}}\sin x \: dx=1$, $\prod_{k=1}^nk=n!$ n k=1 k 2 = n(n+1)(2n+1) 6 π 2 0 sin x dx = 1 n k=1 k = n! \sum \bigcup \bigvee \bigoplus \prod \bigcap \bigwedge \bigotimes \coprod \bigsqcup \bigodot \int \oint \biguplus 20 Matjaž Željko Urejevalnik besedila LAT E X
21 Oklepaji Stavljenje matematičnega besedila Okrogle in oglate oklepaje dobimo z ustreznimi tipkami, zavite z \{ in \}, za ostale uporabimo posebne ukaze. Za avtomatično velikost pred prvi oklepaj postavimo \left, pred zadnjega pa \right. Ukazi \left in \right morajo nastopati v parih. Če želimo imeti oklepaj prilagodljive velikosti le na eni strani, uporabimo na drugi strani nevidni oklepaj (npr. \right.). Velikost oklepaja lahko določimo z ukazom \big, \Big, \bigg ali \Bigg, ki ga postavimo pred oklepaj. $1 + \left( \frac{1}{ 1-x^{2} } \right) ^3$ 1 + ( 1 1 x 2 ) 3 21 Matjaž Željko Urejevalnik besedila LAT E X
22 Oklepaji Stavljenje matematičnega besedila ( ( ) ) \uparrow \Uparrow [ [, \lbrack ] ], \rbrack \downarrow \Downarrow { \{, \lbrace } \}, \rbrace \updownarrow \Updownarrow \langle \rangle ali \vert \, \Vert \lfloor \rfloor \lceil \rceil / / \ \backslash. (neviden) \lgroup \rgroup \lmoustache \rmoustache \arrowvert \Arrowvert \bracevert Če je $\ A\ _2<1$, potem je matrika $I+A$ obrnljiva. Skalarni produkt: $\langle x,y\rangle = \sum_{i=1}^n x_i y_i$. Če je A 2 < 1, potem je matrika I + A obrnljiva. Skalarni produkt: x, y = n i=1 x iy i. 22 Matjaž Željko Urejevalnik besedila LAT E X
23 Pike Stavljenje matematičnega besedila Piko med izrazoma dobimo z ukazom \cdot. Za vnos treh pik imamo na voljo ukaze... \ldots \cdots... \ddots. \vdots Za $x_1, \ldots, x_n$ izračunamo $x_1+\cdots+x_n$. $5\cdot 6=30 \ne 5 6$. Za x 1,..., x n izračunamo x x n. 5 6 = Matjaž Željko Urejevalnik besedila LAT E X
24 Razni simboli \hbar ı \imath j \jmath l \ell R \Re I \Im ℵ \aleph \wp \forall \exists \flat \partial \prime \emptyset \infty \nabla \triangle \natural \sharp \bot \top \angle \surd \diamondsuit \heartsuit \clubsuit \spadesuit \neg ali \lnot Funkcija $f$ je zvezna v točki $x$ če za $\forall\varepsilon>0\quad \exists \delta>0\quad \ni:$ $$ z-x \le\delta\longrightarrow f(z)-f(x) \le\epsilon.$$ Funkcija f je zvezna v točki x če za ε > 0 δ > 0 : z x δ = f (z) f (x) ɛ. 24 Matjaž Željko Urejevalnik besedila LAT E X
25 Puščice Stavljenje matematičnega besedila \leftarrow ali \gets \longleftarrow \rightarrow ali \to \longrightarrow \uparrow \downarrow \Uparrow \Downarrow \updownarrow \Updownarrow \leftrightarrow \longleftrightarrow \Leftarrow = \Longleftarrow \Rightarrow = \Longrightarrow \Leftrightarrow \Longleftrightarrow \mapsto \longmapsto \hookleftarrow \hookrightarrow \leftharpoonup \rightharpoonup \leftharpoondown \rightharpoondown \rightleftharpoons \iff (večji presledki) \nearrow \searrow \swarrow \nwarrow 25 Matjaž Željko Urejevalnik besedila LAT E X
26 Matematične razpredelnice Za sestavljanje matematičnih razpredelnic uporabljamo okolje array. Deluje podobno kot okolje tabular. Za prelom vrstice uporabljamo ukaz \\. Tudi v okolju array lahko rišemo navpične in vodoravne črte. $$ x = \left\{ \begin{array}{ll} -x & \textrm{za $x < 0$},\\ x & \textrm{za $x\ge 0$}, \end{array} \right. = \begin{cases} -x & \textsf{za}\ x < 0\\ x & \textsf{za}\ x\ge 0 \end{cases}.$$ x = { x za x < 0, x za x 0, = { x za x < 0, x za x Matjaž Željko Urejevalnik besedila LAT E X
27 Formule čez več vrstic Za formule, ki se raztezajo čez več vrstic, uporabljamo okolji eqnarray in eqnarray* namesto equation. V eqnarray se vsaka vrstica avtomatično oštevilči, pri eqnarray* pa se nobena vrstica ne oštevilči. Okolji delujeta kot razpredelnica s tremi stolpci oblike {rcl}, kjer se srednji stolpec uporablja za znak, po katerem želimo poravnati vrstice. Ukaz \\ pomeni prehod v novo vrstico. \begin{eqnarray} f(x) & = & \cos x, \\ f (x) & = & -\sin x \nonumber \end{eqnarray} f (x) = cos x (3) f (x) = sin x 27 Matjaž Željko Urejevalnik besedila LAT E X
28 Dodatno Stavljenje matematičnega besedila Za modulsko funkcijo imamo dva ukaza: \bmod za binarni operator a mod b in \pmod za izraze kot npr. x a (mod b). Ukaz \stackrel postavi podani prvi argument v velikosti enaki velikosti potenc na drugi argument, ki je v normalni velikosti. \begin{eqnarray*} 10 \bmod 3 &=& 1\\ 2n+1 &\equiv& 1 \pmod{2}\\ n! &\stackrel{\mathrm{def}}{=} & 1\cdot 2 \cdots n \end{eqnarray*} 10 mod 3 = 1 2n (mod 2) n! def = 1 2 n 28 Matjaž Željko Urejevalnik besedila LAT E X
29 Izreki, trditve,... Ko pišemo matematični tekst, potrebujemo način za stavljenje lem, definicij, izrekov, aksiomov in podobnih struktur. Novo vrsto izreka definiramo z ukazom \newtheorem{ime}[stevec]{naslov}[section] ime je kratka ključna beseda, s katero povemo za kakšno matematično trditev gre, naslov je dejansko ime trditve, ki se izpiše v prevedenem dokumentu, (neobvezno) stevec vsebuje ime trditve, po kateri naj se številči trditev, (neobvezno) section je ime logične strukture znotraj katere številčimo trditve. Ukaz \newtheorem damo v preambulo dokumenta, potem pa znotraj dokumenta uporabljamo okolje \begin{ime}... \end{ime} 29 Matjaž Željko Urejevalnik besedila LAT E X
30 Definicije okolij za izreke, posledice,... % Definicije v preambuli dokumenta \newtheorem{izrek}{izrek} \newtheorem{posl}[izrek]{posledica} %znotraj dokumenta \begin{izrek}[pitagora] \label{izrek:pit} V pravokotnem trikotniku velja $c^2=a^2+b^2$. \end{izrek} \begin{posl} Če velja $c^2\ne a^2+b^2$, potem trikotnik ni pravokoten (poglej izrek~\ref{izrek:pit}). \end{posl} 30 Matjaž Željko Urejevalnik besedila LAT E X
31 Definicije novih matematičnih funkcij Definiramo lahko tudi novo matematično funkcijo ali operator, ki ga L A T E X ne pozna. Da gre za matematični simbol povemo z naslednjimi ukazi: \mathord: navaden matematični simbol, \mathop: velika operacija kot npr. ali sin, \mathbin: dvomestna operacija kot npr., \mathrel: relacija kot npr., \mathopen: oklepaj kot npr. {, \mathclose: zaklepaj kot npr. }, \mathpunct: ločilo, \mathalpha: črka. Pri mathop na koncu velike operacije lahko z ukazoma \limits in \nolimits povemo, da naj se indeksi izpisujejo pod in nad izrazom oziroma za izrazom. 31 Matjaž Željko Urejevalnik besedila LAT E X
32 \newcommand{\sled}{\mathop{\mathrm{sled}}} $$\sled(a)=\sum_{k=1}^n a_{kk}$$ \newcommand{\relacijabullet}{\mathrel{\bullet}} \newcommand{\znakbullet}{\mathalpha{\bullet}} $$a\relacijabullet b \ne a \znakbullet b$$ sled(a) = n k=1 a b a b a kk 32 Matjaž Željko Urejevalnik besedila LAT E X
MATEMATIČNI IZRAZI V MAFIRA WIKIJU
I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH
Urejanje strokovnih besedil v L A TEXu
Bor Plestenjak Urejanje strokovnih besedil v L A TEXu 2. del - Matematični izrazi Bor Plestenjak 2006 1 Vrstični način Matematični tekst znotraj odstavka vnesemo v t.i. vrstičnem načinu med \( in \), med
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Ι Ο Λ Ο Γ Ι Μ Ο - Α Π Ο Λ Ο Γ Ι Μ Ο Μ Η Ν Ο Γ Δ Κ Δ Μ Β Ρ Ι Ο Υ 2 0 1 5
Μ Ρ : 0 9 / 0 1 / 2 0 1 6 Ρ. Ρ Ω. : 7 Λ Γ Μ - Λ Γ Μ Μ Η Γ Δ Κ Δ Μ Β Ρ Υ 2 0 1 5 Δ Γ Ρ Ϋ Λ Γ Θ Δ ΚΔ Μ Β Δ Β Ω Θ Δ Δ Ρ Υ Θ Δ 0111 Χ / Γ Δ Θ Μ Θ Δ Ρ Ω Κ - - - 0112 Χ / Γ Λ Ρ Γ Κ Δ 2 3. 2 1 3. 0 0 0, 0 0-2
ΥΧΡΩΜΑ ΜΟΛΥΒΙΑ. «Γ λ υ κ ό κ α λ ο κ α ι ρ ά κ ι» της Γ ω γ ώ ς Α γ γ ε λ ο π ο ύ λ ο υ
ΤΑ Π ΥΧΡΩΜΑ ΜΟΛΥΒΙΑ Εφη μ ε ρ ί δ α τ ο υ τ μ ή μ α τ ο ς Β τ ο υ 1 9 ου Δ η μ ο τ ι κ ο ύ σ χ ο λ ε ί ο υ Η ρ α κ λ ε ί ο υ Α ρ ι θ μ ό ς φ ύ λ λ ο υ 1 Ι ο ύ ν ι ο ς 2 0 1 5 «Γ λ υ κ ό κ α λ ο κ α ι ρ
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
ΕΚΛΟΓΙΚΑ ΤΜΗΜΑΤΑ ΚΑΙ ΚΑΤΑΣΤΗΜΑΤΑ ΨΗΦΟΦΟΡΙΑΣ ΒΟΥΛΕΥΤΙΚΩΝ ΕΚΛΟΓΩΝ ΤΗΣ 6 ης ΜΑΪΟΥ 2012
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑΚΗ ΕΝΟΤΗΤΑ ΔΗΜΟΣ ΕΚΛΟΓΙΚΑ ΤΑ ΚΑΙ ΤΑ ΒΟΥΛΕΥΤΙΚΩΝ ΕΚΛΟΓΩΝ ΤΗΣ 6 ης ΜΑΪΟΥ 2012 ΔΗΜΟΥ ΠΕΡΙΦΕΡΕΙΑ ΚΡΗΤΗΣ ΠΕΡΙΦΕΡΕΙΑΚΗ ΕΝΟΤΗΤΑ ΔΗΜΟΣ ΔΗΜΟΤΙΚΗ ΕΝΟΤΗΤΑ ΑΚΡΩΤΗΡΙΟΥ 178ο Αρωνίου 1 ο
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Mathematik in L A TEX
Mathematik in L A TEX Hartwig Bosse 21. November 2007 Hartwig Bosse () Mathematik in LATEX 21. November 2007 1 / 1 Umgebungen \begin{document} \end{document} Hartwig Bosse () Mathematik in LATEX 21. November
Π Ι Ν Α Κ Α Σ Α Μ Ο Ι Β Ω Ν Ε Π Ι Δ Ο Σ Ε Ω Ν
Π Ι Ν Α Κ Α Σ Α Μ Ο Ι Β Ω Ν Ε Π Ι Δ Ο Σ Ε Ω Ν ΔΙΚΑΣΤΙΚΩΝ ΕΠΙΜΕΛΗΤΩΝ ΕΦΕΤΕΙΩΝ ΑΘΗΝΩΝ & ΠΕΙΡΑΙΩΣ ΔΙΟΡΙΣΜΕΝΩΝ ΣΤΑ ΠΡΩΤΟΔΙΚΕΙΑ ΑΘΗΝΩΝ & ΠΕΙΡΑΙΩΣ ΜΕ ΕΔΡΑ ΤΗΝ ΑΘΗΝΑ Η χιλιομετρική απόσταση υπολογίσθηκε με σημείο
ΕΠΙΤΥΧΟΝΤΕΣ ΑΕΙ 2009 Αρχιτεκτόνων Μηχανικών Κρήτης
ΕΠΙΤΥΧΟΝΤΕΣ ΑΕΙ 2009 Χρηστίδης Δ. Ανωγιάτη Χ. Κοκκολάκη Α. Λουράντου Α. Χασάπης Φ. Σταυροπούλου Ε. Αλωνιστιώτη Δ. Καρκασίνας Α. Μαραγκουδάκης Θ. Κεφαλάς Γ. Μπαχά Α. Μπέζα Γ. Μποραζέλης Ν. Χίνης Π. Λύτρα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ 1 η Υ.ΠΕ ΑΤΤΙΚΗΣ Γ.Ν.Α. «Ο ΕΥΑΓΓΕΛΙΣΜΟΣ- ΟΦΘΑΛΜΙΑΤΡΕΙΟ ΑΘΗΝΩΝ- ΠΟΛΥΚΛΙΝΙΚΗ»-Ν.Π.Δ.Δ. ΑΘΗΝΑ 27-03-2015 ΕΤΟΣ ΙΔΡΥΣΗΣ 1884
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ 1 η Υ.ΠΕ ΑΤΤΙΚΗΣ Γ.Ν.Α. «Ο ΕΥΑΓΓΕΛΙΣΜΟΣ- ΟΦΘΑΛΜΙΑΤΡΕΙΟ ΑΘΗΝΩΝ- ΠΟΛΥΚΛΙΝΙΚΗ»-Ν.Π.Δ.Δ. ΑΘΗΝΑ 27-03-2015 ΕΤΟΣ ΙΔΡΥΣΗΣ 1884 ΤΜΗΜΑ ΓΡΑΜΜΑΤΕΙΑΣ ΙΑΤΡΟΙ 08:00 20.00 20.00 08.00 ΓΕΝΙΚΗ ΕΦΗΜΕΡΙΑ
Σχηματισμός Υποτακτικής Παρακειμένου Ενεργητικής Φωνής. Ο Παρακείμενος σχηματίζει την Υποτακτική έγκλιση με δύο τρόπους:
Σχηματισμός Υποτακτικής Παρακειμένου Ενεργητικής Φωνής Ο Παρακείμενος σχηματίζει την Υποτακτική έγκλιση με δύο τρόπους: α. περιφραστικά (δηλ. χρησιμοποιώντας δύο λέξεις περιφραστικός ρηματικός τύπος στα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΕΥΒΟΙΑΣ ΣΧΟΛΙΚΗ ΕΠΙΤΡΟΠΗ ΜΟΝΑΔΩΝ Α ΒΑΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΕΡΓΑΣΙΑ:
ΕΡΓΑΣΙΑ: Αναγόμωση συντήρηση Αναγόμωση συντήρηση Μονάδες Α Βάθμιας εκπ/σης ΠΕΡΙΕΧΟΜΕΝΑ 1. Τεχνική περιγραφή 2. Ενδεικτικός Προϋπολογισμός 3. Συγγραφή υποχρεώσεων 1 ΕΡΓΑΣΙΑ: Αναγόμωση συντήρηση Τεχνική
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ 1 η Υ.ΠΕ ΑΤΤΙΚΗΣ Γ.Ν.Α. «Ο ΕΥΑΓΓΕΛΙΣΜΟΣ- ΟΦΘΑΛΜΙΑΤΡΕΙΟ ΑΘΗΝΩΝ- ΠΟΛΥΚΛΙΝΙΚΗ»-Ν.Π.Δ.Δ. ΑΘΗΝΑ 17-07-2015 ΕΤΟΣ ΙΔΡΥΣΗΣ 1884
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ 1 η Υ.ΠΕ ΑΤΤΙΚΗΣ Γ.Ν.Α. «Ο ΕΥΑΓΓΕΛΙΣΜΟΣ- ΟΦΘΑΛΜΙΑΤΡΕΙΟ ΑΘΗΝΩΝ- ΠΟΛΥΚΛΙΝΙΚΗ»-Ν.Π.Δ.Δ. ΑΘΗΝΑ 17-07-2015 ΕΤΟΣ ΙΔΡΥΣΗΣ 1884 ΤΜΗΜΑ ΓΡΑΜΜΑΤΕΙΑΣ ΙΑΤΡΟΙ 08:00 20.00 20.00 08.00 ΓΕΝΙΚΗ ΕΦΗΜΕΡΙΑ
Κρυπτογραφία ΑΠΟ ΤΗΝ ΑΡΧΑΙΟΤΗΤΑ ΩΣ ΣΗΜΕΡΑ ΝΙΚΟΣ ΚΥΡΛΟΓΛΟΥ ( NIKOKY@GMAIL.COM)
Κρυπτογραφία ΑΠΟ ΤΗΝ ΑΡΧΑΙΟΤΗΤΑ ΩΣ ΣΗΜΕΡΑ ΝΙΚΟΣ ΚΥΡΛΟΓΛΟΥ ( NIKOKY@GMAIL.COM) Γιατί; Στο σύγχρονο κόσμο όλα είναι κρυπτογραφημένα! Κλήσεις σε κινητά Ψηφιακές τηλεοπτικές μεταδόσεις Ανάληψη μετρητών από
Αθήνα, 4 Φεβρουαρίου 2013 Αριθ. πρωτ.: 130
ΠΑΝΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΟΙΝΩΝΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ Αθήνα, 4 Φεβρουαρίου 2013 Αριθ. πρωτ.: 130 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟΔΟΥ ΦΕΒΡΟΥΑΡΙΟΥ 2013 ΜΑΘΗΜΑΤΩΝ ΕΑΡΙΝΟΥ ΕΞΑΜΗΝΟΥ
Ἡ Ἁγία μεγαλομάρτυς Μαρίνα
Kοντά στόν Xριστό Δ I M H N I A I O Φ Y Λ Λ A Δ I O Π A I Δ I K Ω N E N O P I A K Ω N Σ Y N A Ξ E Ω N I E P A Σ M H T P O Π O Λ E Ω Σ I E P A Π Y T N H Σ K A I Σ H T E I A Σ T E Y X O Σ 5 0 ο Μ Α Ϊ Ο Σ
Αξιολόγηση των Επιδράσεων του Σχεδίου Τοποθέτησης Άνεργων Νέων Αποφοίτων Γυμνασίων, Λυκείων, Τεχνικών Σχολών και Μεταλυκειακής Εκπαίδευσης μέχρι και
Αξιολόγηση των Επιδράσεων του Σχεδίου Τοποθέτησης Άνεργων Νέων Αποφοίτων Γυμνασίων, Λυκείων, Τεχνικών Σχολών και Μεταλυκειακής Εκπαίδευσης μέχρι και ιετούς ιάρκειας για Απόκτηση Εργασιακής Πείρας σε Επιχειρήσεις/Οργανισμούς
ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ, ΑΝΤΑΓΩΝΙΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΝΑΥΤΙΛΙΑΣ ΠΛΑΤΕΙΑ ΣΥΝΤΑΓΜΑΤΟΣ, ΑΘΗΝΑ Α Π Ο Φ Α Σ Η
ΤΜΗΜΑΤΑΡΧΗΣ : Δ. ΓΡΟΥΖΗΣ ΤΗΛ. 210-3332990 ΠΛΗΡΟΦΟΡΙΕΣ : Ν. ΚΟΡΔΑΛΗ ΤΗΛ.210-3332973 (kordali@mnec.gr) ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ, ΑΝΤΑΓΩΝΙΣΤΙΚΟΤΗΤΑΣ ΚΑΙ ΝΑΥΤΙΛΙΑΣ ΠΛΑΤΕΙΑ
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ 1 η Υ.ΠΕ ΑΤΤΙΚΗΣ Γ.Ν.Α. «Ο ΕΥΑΓΓΕΛΙΣΜΟΣ- ΟΦΘΑΛΜΙΑΤΡΕΙΟ ΑΘΗΝΩΝ- ΠΟΛΥΚΛΙΝΙΚΗ»-Ν.Π... ΑΘΗΝΑ 07-08-2015 ΕΤΟΣ Ι ΡΥΣΗΣ 1884
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ 1 η Υ.ΠΕ ΑΤΤΙΚΗΣ Γ.Ν.Α. «Ο ΕΥΑΓΓΕΛΙΣΜΟΣ- ΟΦΘΑΛΜΙΑΤΡΕΙΟ ΑΘΗΝΩΝ- ΠΟΛΥΚΛΙΝΙΚΗ»-Ν.Π... ΑΘΗΝΑ 07-08-2015 ΕΤΟΣ Ι ΡΥΣΗΣ 1884 ΤΜΗΜΑ ΓΡΑΜΜΑΤΕΙΑΣ ΙΑΤΡΟΙ 08:00 20.00 20.00 08.00 ΓΕΝΙΚΗ ΕΦΗΜΕΡΙΑ
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
ΚέντροΠεριβαλλοντικήςΕκπαίδευσης Σουφλίου. Πρόγραμμα: Διαχείρισηαπορριμμάτων-Ανακύκλωση
ΚέντροΠεριβαλλοντικήςΕκπαίδευσης Σουφλίου Πρόγραμμα: Διαχείρισηαπορριμμάτων-Ανακύκλωση ΕΚΔΟΣΗ Κ.Π.Ε. ΣΟΥΦΛΙΟΥ ΜΑΡΤΙΟΣ 2009 ΚΕΝΤΡΟ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΟΥΦΛΙΟΥ Πρόγραμμα: «Διαχείριση Απορριμμάτων
Τίτλος Μαθήματος: Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. Ενότητα: Εισαγωγή στους Επεξεργαστές Κειμένου-Μέρος 3
Τίτλος Μαθήματος: Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Ενότητα: Εισαγωγή στους Επεξεργαστές Κειμένου-Μέρος 3 Διδάσκων: Αναπληρωτής Καθηγητής Αλέξιος Δούβαλης Τμήμα: Φυσικής Πανεπιστήμιο Ιωαννίνων Τμήμα
Τεύχος 3ο Δεκέμβριος 2012. Περιοδική έκδοση των μαθητών του 6ου Δημοτικού Σχολείου Π. Φαλήρου
Τεύχος 3ο Δεκέμβριος 2012 Περιοδική έκδοση των μαθητών του 6ου Δημοτικού Σχολείου Π. Φαλήρου Σελίδα 2 Σελίδα 2: ΠΕΡΙΕΧΟΜΕΝΑ Θ Ε Μ Α Τ Α Σ Υ Ν Τ Α Κ Τ Ι Κ Η ΟΜΑΔΑ ΣΧΟΛΙΟ ΣΥΝΤΑΞΗΣ Σελίδα 3 ΚΑΙΝΟΤΟΜΕΣ ΔΡΑΣΕΙΣ
Ι Ο Υ Ν Ι Ο Σ 2 0 1 3
Π Ε Ρ Ι Λ Η Ψ Η Π Ρ Ο Κ Η Ρ Υ Ξ Η Σ Π Ρ Ο Χ Ε Ι Ρ Ο Υ Δ Ι Α Γ Ω Ν Ι Σ Μ Ο Υ Γ Ι Α Τ Η Ν Ε Κ Μ Ι Σ Θ Ω Σ Η Τ Ο Υ Δ Η Μ Ο Σ Ι Ο Υ Α Κ Ι Ν Η Τ Ο Υ Μ Ε Α Β Κ 6 0 9 Κ Ο Ι Ν Ο Τ Η Τ Α Σ Κ Ο Υ Τ Σ Ο Π Ο Δ Ι Ο
ΠΡΟΧΕΙΡΟΣ ΔΙΑΓΩΝΙΣΜΟΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΑΤΤΙΚΗΣ ΔΗΜΟΣ ΙΛΙΟΥ ΤΕΧΝΙΚΗ ΥΠΗΡΕΣΙΑ ΑΡ. ΠΡΩΤ: 43445 / 24-09 - 2015 ΤΙΤΛΟΣ : ΧΡΗΜΑΤΟΔΟΤΗΣΗ: ΠΡΟΜΗΘΕΙΑ ΕΞΟΠΛΙΣΜΟΥ ΓΙΑ ΤΗΝ ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ ΠΑΙΔΙΚΟΥ ΣΤΑΘΜΟΥ ΣΤΟ Ο.Τ 6 Γ ΔΙΑΓΩΝΙΣΜΟΣ
VESTA40 [ΟΔΗΓΙΕΣ ΓΙΑ ΤΗΝ ΤΟΠΟΘΕΤΗΣΗ, ΤΗ ΧΡΗΣΗ ΚΑΙ ΤΗ ΣΥΝΤΗΡΗΣΗ] Το εγχειρίδιο οδηγιών χρήσης αποτελεί αναπόσπαστο μέρος του προϊόντος
VESTA40 [ΟΔΗΓΙΕΣ ΓΙΑ ΤΗΝ ΤΟΠΟΘΕΤΗΣΗ, ΤΗ ΧΡΗΣΗ ΚΑΙ ΤΗ ΣΥΝΤΗΡΗΣΗ] Το εγχειρίδιο οδηγιών χρήσης αποτελεί αναπόσπαστο μέρος του προϊόντος Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α ΚΕΦΑΛΑΙΟ ΤΙΤΛΟΣ ΣΕΛΙΔΑ Εισαγωγή 4 Σκοπός του
15PROC002704906 2015-04-14
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Έδεσσα 14.04.2015 3 η ΥΓΕΙΟΝΟΜΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΜΑΚΕ ΟΝΙΑΣ Α.Π.: 3317 ΓΕΝΙΚΟ ΝΟΣΟΚΟΜΕΙΟ ΠΕΛΛΑΣ ΝΟΣΟΚΟΜΕΙΑΚΗ ΜΟΝΑ Α Ε ΕΣΣΑΣ ΤΜΗΜΑ ΠΡΟΜΗΘΕΙΩΝ ΠΛΗΡΟΦΟΡΙΕΣ: ΚΟΥΠΕΛΟΓΛΟΥ Κ. Τηλ. 23813 50335,
Kοντά στόν Xριστό Δ I M H N I A I O Φ Y Λ Λ A Δ I O Π A I Δ I K Ω N E N O P I A K Ω N Σ Y N A Ξ E Ω N
Kοντά στόν Xριστό Δ I M H N I A I O Φ Y Λ Λ A Δ I O Π A I Δ I K Ω N E N O P I A K Ω N Σ Y N A Ξ E Ω N I E P A Σ M H T P O Π O Λ E Ω Σ I E P A Π Y T N H Σ K A I Σ H T E I A Σ T E Y X O Σ 6 7 ο Μ Α Ρ Τ Ι
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
ΕΥΡΩΠΑΙΚΗ ΕΝΩΣΗ ΕΥΡΩΠΑΙΚΟ ΚΟΙΝΩΝΙΚΟ ΤΑΜΕΙΟ
Κ α τ ά ρ τ ι σ η, Π ι σ τ ο π ο ί η σ η κ α ι Σ υ μ β ο υ λ ε υ τ ι κ ή μ ε σ τ ό χ ο τ η ν ε ν δ υ ν ά μ ω σ η τ ω ν δ ε ξ ι ο τ ή τ ω ν α ν έ ρ γ ω ν ν έ ω ν 1 8-2 4 ε τ ώ ν, σ ε ε ι δ ι κ ό τ η τ ε
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. 2003
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο Θέµα Α. α) Έστω η συνάρτηση στο κάθε f δ) R τις τιµές του γ) Αν η συνάρτηση παραγωγίσιµη σε αυτό. Τότε ισχύει
ΠΡΩΤΟΔΙΚΕΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ Εκλογικών
ΠΡΩΤΟΔΙΚΕΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ Εκλογικών Χρήσιμο Β Ο Η Θ Η Μ Α Ο Δ Η Γ Ο Σ του Αντιπροσώπου της Δικαστικής Αρχής (Περιέχονται σχέδια και έντυπα για διευκόλυνση του έργου των Αντιπροσώπων της Δικαστικής Αρχής
ΟΙ ΕΜΦΥΛΙΕΣ ΔΙΑΜΑΧΕΣ ΚΑΙ ΣΥΓΚΡΟΥΣΕΙΣ
Οι Μανιάτες στην Επανάσταση του 1821 343 ΜΕΡΟΣ ΔΕΥΤΕΡΟ ΟΙ ΕΜΦΥΛΙΕΣ ΔΙΑΜΑΧΕΣ ΚΑΙ ΣΥΓΚΡΟΥΣΕΙΣ Η Β Εθνοσυνέλευση του Άστρους Οι εκλογές των πληρεξουσίων 1239 για τη συμμετοχή τους στη Β Εθνοσυνέλευση προκηρύχθηκαν
25η Μαρτίου. ιπλoγιορτή για την Ελλάδα. Πηνελόπη Μωραΐτου Μαρία Μωραΐτου. Με αυτοκόλλητα. Πέγκυ Φούρκα. Εικονογράφηση:
Πηνελόπη Μωραΐτου Μαρία Μωραΐτου 25η Μαρτίου ιπλoγιορτή για την Ελλάδα Με αυτοκόλλητα Εικονογράφηση: Πέγκυ Φούρκα Πηνελόπη Μωραΐτου - Μαρία Μωραΐτου 25η ΜΑΡΤΙΟΥ- ΙΠΛΟΓΙΟΡΤΗ ΓΙΑ ΤΗΝ ΕΛΛΑ Α Εικονογράφηση:
15PROC003570450 2015-12-24
ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΔΗΜΟΣΙΩΝ ΕΠΕΝΔΥΣΕΩΝ ΕΣΠΑ ΑΥΤΟΤΕΛΕΣ ΤΜΗΜΑ ΕΟΧ ΕΘΝΙΚΟ ΣΗΜΕΙΟ ΕΠΑΦΗΣ ΔΙΑΧΕΙΡΙΣΤΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ(PROGRAM OPERATOR) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΑΤΤΙΚΗΣ ΔΗΜΟΣ ΝΕΑΣ ΙΩΝΙΑΣ Δ/ΝΣΗ ΤΕΧΝΙΚΩΝ ΥΠΗΡΕΣΙΩΝ
ΑΡΙΘΜΟΣ 0769/2014 2015 ΣΥΜΒΑΣΗ ΧΡΗΜΑΤΟΔΟΤΗΣΗΣ Ι.ΝΕ.ΔΙ.ΒΙ.Μ. - ΣΧΟΛΙΚΗ ΕΠΙΤΡΟΠΗ ΣΧΟΛΕΙΩΝ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΗΜΟΥ ΠΑΤΡΕΩΝ
ΑΡΙΘΜΟΣ 0769/2014 2015 ΣΥΜΒΑΣΗ ΧΡΗΜΑΤΟΔΟΤΗΣΗΣ Ι.ΝΕ.ΔΙ.ΒΙ.Μ. - ΣΧΟΛΙΚΗ ΕΠΙΤΡΟΠΗ ΣΧΟΛΕΙΩΝ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΗΜΟΥ ΠΑΤΡΕΩΝ (Συμπληρωματική της Υπ. Αριθ.555/2014-2015 Σύμβασης) Στην Αθήνα, σήμερα, 13/5/2015,
ΑΡΙΘΜΟΣ 0501/2012 2013 ΣΥΜΒΑΣΗ ΕΠΙΧΟΡΗΓΗΣΗΣ Ι.ΝΕ.ΔΙ.ΒΙ.Μ. - ΣΧΟΛΙΚΗ ΕΠΙΤΡΟΠΗ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΗΜΟΥ ΣΚΟΠΕΛΟΥ
ΑΡΙΘΜΟΣ 0501/2012 2013 ΣΥΜΒΑΣΗ ΕΠΙΧΟΡΗΓΗΣΗΣ Ι.ΝΕ.ΔΙ.ΒΙ.Μ. - ΣΧΟΛΙΚΗ ΕΠΙΤΡΟΠΗ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΗΜΟΥ ΣΚΟΠΕΛΟΥ Στην Αθήνα, σήμερα, 10/12/2012, οι υπογράφοντες τη παρούσα: Αφενός το Ν.Π.Ι.Δ. με την
ΑΔΑ: 6Ψ8Μ9-ΩΙΕ. ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ Βαθμός Ασφαλείας : Να διατηρηθεί μέχρι : Μαρούσι, 24-06-2014 Αρ. Πρωτ. 97654/Δ2
ΑΔΑ: 6Ψ8Μ9-ΩΙΕ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ --- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΔΙΟΙΚΗΣΗΣ ΠΡΩΤΟΒΑΘΜΙΑΣ & ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΠΡΟΣΩΠΙΚΟΥ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΤΜΗΜΑ Α ΔΙΟΡΙΣΜΩΝ
Tabela najbolj pogostih matematičnih in drugih posebnih znakov v naslovih ter vnos in razrešitev le-teh v polju 200 in drugih poljih
MONOGRAFIJE Dodatek E Tabela najbolj pogostih matematičnih in drugih posebnih znakov v naslovih ter vnos in razrešitev le-teh v polju 200 in drugih poljih Začetek in zaključek vnosa matematičnih in drugih
ΠΑΡΑΡΤΗΜΑ Β ΔΙΑΚΗΡΥΞΗ ΑΝΟΙΧΤΗΣ ΔΙΑΔΙΚΑΣΙΑΣ. (Τύπος Β) Για έργα που δεν εμπίπτουν στο πεδίο εφαρμογής των Οδηγιών 2004/18/ΕΚ και 2004/17/ΕΚ
ΠΑΡΑΡΤΗΜΑ Β ΔΙΑΚΗΡΥΞΗ ΑΝΟΙΧΤΗΣ ΔΙΑΔΙΚΑΣΙΑΣ (Τύπος Β) Για έργα που δεν εμπίπτουν στο πεδίο εφαρμογής των Οδηγιών 2004/18/ΕΚ και 2004/17/ΕΚ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΔΗΜΟΣ ΘΕΣΣΑΛΟΝΙΚΗΣ
Δ Ι Μ Η Ν Ι Α Ι Α Ε Κ Δ Ο Σ Η Ι Ε Ρ Α Σ Μ Η Τ Ρ Ο Π Ο Λ Ε Ω Σ Ι Ε Ρ Α Π Υ Τ Ν Η Σ Κ Α Ι Σ Η Τ Ε Ι Α Σ
Δ Ι Μ Η Ν Ι Α Ι Α Ε Κ Δ Ο Σ Η Ι Ε Ρ Α Σ Μ Η Τ Ρ Ο Π Ο Λ Ε Ω Σ Ι Ε Ρ Α Π Υ Τ Ν Η Σ Κ Α Ι Σ Η Τ Ε Ι Α Σ Ἄγκυρα Ἐλπίδος Π Ε Ρ Ι Ο Δ Ο Σ Β Τ Ε Υ Χ Ο Σ 7 4 Μ Α Ϊ Ο Σ - Ι Ο Υ Ν Ι Ο Σ 2 0 1 3 Περιεχόμενα Πατριαρχική
Συµβουλεύοµαι το κρυπτογραφικό αλφάβητο της Φιλικής Εταιρείας και. Ελευθερία ή Θάνατος. γ35343 ωβη3οω3η
3 Συµβουλεύοµαι το κρυπτογραφικό αλφάβητο της Φιλικής Εταιρείας και Κρυπτογραφικό αλφάβητο της Φιλικής Εταιρείας α β γ δ ε ζ θ ι κ λ µ ν ξ ο π ρ σ τ φ χ ψ ω η ξ υ ψ ω 1 2 3 4 5 6 7 4α 8 9 ο α β γ δ 9α
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ 1 η Υ.ΠΕ ΑΤΤΙΚΗΣ Γ.Ν.Α. «Ο ΕΥΑΓΓΕΛΙΣΜΟΣ- ΟΦΘΑΛΜΙΑΤΡΕΙΟ ΑΘΗΝΩΝ- ΠΟΛΥΚΛΙΝΙΚΗ»-Ν.Π... ΑΘΗΝΑ 06-11-2015 ΕΤΟΣ Ι ΡΥΣΗΣ 1884
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ 1 η Υ.ΠΕ ΑΤΤΙΚΗΣ Γ.Ν.Α. «Ο ΕΥΑΓΓΕΛΙΣΜΟΣ- ΟΦΘΑΛΜΙΑΤΡΕΙΟ ΑΘΗΝΩΝ- ΠΟΛΥΚΛΙΝΙΚΗ»-Ν.Π... ΑΘΗΝΑ 06-11-2015 ΕΤΟΣ Ι ΡΥΣΗΣ 1884 ΤΜΗΜΑ ΓΡΑΜΜΑΤΕΙΑΣ ΙΑΤΡΟΙ 08:00 20.00 20.00 08.00 ΓΕΝΙΚΗ ΕΦΗΜΕΡΙΑ
Θέμα Υγιεινή & Ασφάλεια στην Εργασία - φ Α^ρισ/
ΤΕΧΝΟΛΟΓΙΚΟ Εκπαιδευτικό Ιδρυμα Καβαλας Σ χ ο λ ή Τ ε χ ν ο λ ο γ ι κ ώ ν Ε φ α ρ μ ο γ ώ ν Τ μ ή μ α Τ ε χ ν ο λ ο γ ία ς & Χ η μ ε ί α ς Π ε τ ρ ε λ α ί ο υ & Φ / ς ικ ο υ Α έ ρ ιο υ Π τ υ χ ι α κ ή
Σημαντική. Υπάρχουν πολλοί που πιστεύουν ότι το πρόβλημα του Τσίπρα. παρέμβαση των βουλευτών Κ. Σέλτσα και Γ. Σηφάκη για τη.
ΤΕ- Ε β δ ο μ α δ ι α ί α Ε φ η μ ε ρ ί δ α τ η ς Φ λ ώ ρ ι ν α ς Σημαντική παρέμβαση των βουλευτών Κ. Σέλτσα και Γ. Σηφάκη για τη σελ.3 λίμνη Βεγορίτιδα Σ ύ λ λ η ψ η τ ρ ι ώ ν α τ ό μ ω ν γ ι α κ λ ο
: ( : . 15.1001.200 2004/18/ 2004/17/ 2015
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΗΜΟΤΙΚΗ ΕΠΙΧΕΙΡΗΣΗ Υ ΡΕΥΣΗΣ ΑΠΟΧΕΤΕΥΣΗΣ ΛΕΣΒΟΥ ΤΕΧΝΙΚΗ ΥΠΗΡΕΣΙΑ ΕΡΓΟ: ΧΡΗΜΑΤΟ ΟΤΗΣΗ : ΚΑΤΑΣΚΕΥΗ ΕΡΓΩΝ ΑΠΟΧΕΤΕΥΣΗΣ ΑΚΑΘΑΡΤΩΝ ΣΤΗΝ ΠΕΡΙΟΧΗ ΜΑΚΡΥ ΓΙΑΛΟΥ (ΚΑΡΑΠΑΝΑΓΙΩΤΗ- ΣΚΑΜΑΝ ΡΙΟΥ) Ι ΙΟΙ
Ε Λ Λ Η Ν Ι Κ Η ΔΗΜΟΚΡΑΤΙΑ
Ε Λ Λ Η Ν Ι Κ Η ΔΗΜΟΚΡΑΤΙΑ Αναρτητέα στο διαδίκτυο: Α.Δ.Α.: Ε Λ Λ Η Ν Ι Κ Η ΑΣΤΥΝΟΜΙΑ ΓΕΝΙΚΗ ΑΣΤΥΝ.Δ/ΝΣΗ ΠΕΡΙΦΕΡΕΙΑΣ ΠΕΛΟΠΟΝΝΗΣΟΥ ΝΑΥΠΛΙΟ 13 Νοεμβρίου 2013 ΑΣΤΥΝΟΜΙΚΗ ΔΙΕΥΘΥΝΣΗ ΑΡΓΟΛΙΔΑΣ ΓΡΑΦΕΙΟ ΜΕΡΙΚΗΣ
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕΔΡΙΑΣΗ ΡΙΣΤ. Πέµπτη 31 Ιανουαρίου 2013
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕΔΡΙΑΣΗ ΡΙΣΤ Πέµπτη 31 Ιανουαρίου 2013 ΘΕΜΑΤΑ Α. ΕΙΔΙΚΑ ΘΕΜΑΤΑ 1. Επικύρωση Πρακτικών, σελ. 7055, 7129 2. Ανακοινώνεται ότι τη συνεδρίαση παρακολουθούν µαθητές από το 1ο Γυµνάσιο
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕ ΡΙΑΣΗ Ν. Πέµπτη 28 Ιανουαρίου 2010
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕ ΡΙΑΣΗ Ν Πέµπτη 28 Ιανουαρίου 2010 ΘΕΜΑΤΑ Α. ΕΙ ΙΚΑ ΘΕΜΑΤΑ 1. Επικύρωση Πρακτικών, σελ. 2917,2977 2. Αδεια απουσίας του Βουλευτή κ. Κ. Μητσοτάκη, σελ. 2961 3. Ανακοινώνεται ότι
ΝΕΟ ΛΥΚΕΙΟ 2014 ΕΦΑΡΜΟΓΗ ΓΙΑ ΤΟΥΣ ΜΑΘΗΤΕΣ ΤΗΣ Α ΤΑΞΗΣ ΛΥΚΕΙΟΥ (ΣΧΟΛΙΚΟ ΈΤΟΣ: 2013-2014)
ΝΕΟ ΛΥΚΕΙΟ 2014 ΕΦΑΡΜΟΓΗ ΓΙΑ ΤΟΥΣ ΜΑΘΗΤΕΣ ΤΗΣ Α ΤΑΞΗΣ ΛΥΚΕΙΟΥ (ΣΧΟΛΙΚΟ ΈΤΟΣ: 2013-2014) Α Λ Υ Κ Ε Ι Ο Υ Η Α' τάξη Ημερησίου Γενικού Λυκείου αποτελεί τάξη γενικής παιδείας 35 συνολικά ωρών εβδομαδιαίως
Ε Π Ι Τ Ρ Ο Π Η Α Ν Α Π Τ Υ Ξ Η Σ Π Ο Ο Σ Φ Α Ι Ρ Ο Υ ΑΓΩΝΙΣΤΙΚΗ ΠΕΡΙΟ ΟΣ 2014-2015 ΒΑΘΜΟΛΟΓΙΕΣ ΠΡΩΤΑΘΛΗΜΑΤΩΝ ΥΠΟΔΟΜΩΝ
Ε Π Ι Τ Ρ Ο Π Η Α Ν Α Π Τ Υ Ξ Η Σ Π Ο Ο Σ Φ Α Ι Ρ Ο Υ Κ Α Ι Π Ρ Ω Τ Α Θ Λ Η Μ Α Τ Ω Ν Υ Π Ο Ο Μ Ω Ν ΑΓΩΝΙΣΤΙΚΗ ΠΕΡΙΟ ΟΣ 2014-2015 ΒΑΘΜΟΛΟΓΙΕΣ ΠΡΩΤΑΘΛΗΜΑΤΩΝ ΥΠΟΔΟΜΩΝ Κ Α Τ ΗΚΑΤΗΓΟΡΙΑ Γ Ο Ρ Ι Α ΝΕΩΝ Ν Ε
ΑΡΙΘΜΟΣ 0540/2012 2013 ΣΥΜΒΑΣΗ ΕΠΙΧΟΡΗΓΗΣΗΣ Ι.ΝΕ.ΔΙ.ΒΙ.Μ. - ΣΧΟΛΙΚΗ ΕΠΙΤΡΟΠΗ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΗΜΟΥ ΒΟΛΟΥ
ΑΡΙΘΜΟΣ 0540/2012 2013 ΣΥΜΒΑΣΗ ΕΠΙΧΟΡΗΓΗΣΗΣ Ι.ΝΕ.ΔΙ.ΒΙ.Μ. - ΣΧΟΛΙΚΗ ΕΠΙΤΡΟΠΗ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΗΜΟΥ ΒΟΛΟΥ Στην Αθήνα, σήμερα, 13/12/2012, οι υπογράφοντες τη παρούσα: Αφενός το Ν.Π.Ι.Δ. με την επωνυμία
ΑΡΙΘΜΟΣ 0555/2012 2013 ΣΥΜΒΑΣΗ ΕΠΙΧΟΡΗΓΗΣΗΣ Ι.ΝΕ.ΔΙ.ΒΙ.Μ. - ΕΝΙΑΙΑ ΣΧΟΛΙΚΗ ΕΠΙΤΡΟΠΗ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΗΜΟΥ ΧΙΟΥ
ΑΡΙΘΜΟΣ 0555/2012 2013 ΣΥΜΒΑΣΗ ΕΠΙΧΟΡΗΓΗΣΗΣ Ι.ΝΕ.ΔΙ.ΒΙ.Μ. - ΕΝΙΑΙΑ ΣΧΟΛΙΚΗ ΕΠΙΤΡΟΠΗ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΗΜΟΥ ΧΙΟΥ Στην Αθήνα, σήμερα, 13/12/2012, οι υπογράφοντες τη παρούσα: Αφενός το Ν.Π.Ι.Δ. με
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕΔΡΙΑΣΗ ΡΜ. Πέµπτη 7 Μαρτίου 2013
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕΔΡΙΑΣΗ ΡΜ Πέµπτη 7 Μαρτίου 2013 ΘΕΜΑΤΑ Α. ΕΙΔΙΚΑ ΘΕΜΑΤΑ 1. Επικύρωση Πρακτικών, σελ. 8674 2. Άδεια απουσίας των Βουλευτών κ. κ. Γ. Ψαριανού και Γ. Παπανδρέου, σελ. 8647, 8753 3.
ΜΕΛΕΤΗΣ ΔΙΑΓΝΩΣΗΣ ΑΝΑΓΚΩΝ ΤΗΣ ΑΓΟΡΑΣ ΕΡΓΑΣΙΑΣ ΠΕΡΙΦΕΡΕΙΑΣ ΠΕΛΟΠΟΝΝΗΣΟΥ
Σελίδα 1 από 100 Σελίδα 2 από 100 Υπεύθυνη Δήλωση Δηλώνω υπεύθυνα και εν γνώσει των συνεπειών του νόμου ότι το παραδοτέο με τίτλο «Μελέτη Διάγνωσης των Αναγκών της Αγοράς Εργασίας στην Πελοπόννησο» αποτελεί
ΑΝΥΨΩΤΙΚΑ ΜΗΧΑΝΗΜΑΤΑ
Υ Π Ο Υ Ρ Γ Ε Ι Ο ΑΝΑΠΤΥΞΗΣ, ΑΝΤΑΓΩΝΙΣΤΙΚΟΤΗΤΑΣ, ΥΠΟΔΟΜΩΝ, ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΔΙΚΤΥΩΝ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΒΙΟΜΗΧΑΝΙΑΣ ΑΝΥΨΩΤΙΚΑ ΜΗΧΑΝΗΜΑΤΑ Ο Δ Η Γ Ο Σ Ε Φ Α Ρ Μ Ο Γ Η Σ Τ Η Σ Ν Ο Μ Ο Θ Ε Σ Ι Α Σ 1 η ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ
Τμήμα Φιλοσοφίας: Εαρινό εξάμηνο 2014-2015
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΑΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ Έναρξη μαθημάτων εαρινού εξαμήνου 2014-2015: 16.02.2015 Λήξη μαθημάτων εαρινού εξαμήνου 2014-2015: 29.05.2015 Διεξαγωγή εξετάσεων
ΕΡΓΟ: «ΕΦΑΡΜΟΓΕΣ ΕΙΚΟΝΙΚΗΣ ΠΡΑΓΜΑΤΙΚΟΤΗΤΑΣ ΣΤΗ ΒΟΙΩΤΙΑ: ΜΑΝΤΕΙΟ ΤΡΟΦΩΝΙΟΥ ΚΑΙ ΜΥΚΗΝΑΪΚΗ ΘΗΒΑ»
ΕΡΓΟ: «ΕΦΑΡΜΟΓΕΣ ΕΙΚΟΝΙΚΗΣ ΠΡΑΓΜΑΤΙΚΟΤΗΤΑΣ ΣΤΗ ΒΟΙΩΤΙΑ:» ΠΡΟΚΗΡΥΞΗ ΔΙΑΓΩΝΙΣΜΟΥ ΤΟΥ ΙΔΡΥΜΑΤΟΣ ΜΕΙΖΟΝΟΣ ΕΛΛΗΝΙΣΜΟΥ ΓΙΑ ΤΗΝ «ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΕΙΚΟΝΙΚΗΣ ΑΝΑΠΑΡΑΣΤΑΣΗΣ ΜΝΗΜΕΙΩΝ ΒΟΙΩΤΙΑΣ, ΕΦΑΡΜΟΓΩΝ ΙΣΤΟΡΙΚΗΣ,
Ε Λ Ε Γ Κ Τ Ι Κ Ο Σ Υ Ν Ε Δ Ρ Ι Ο ΣΕ Ο Λ Ο Μ Ε Λ Ε Ι Α
Επί του Απολογισμού των εσόδων και εξόδων του Κράτους έτους 2006 και του Γενικού Ισολογισμού της 31 ης Δεκεμβρίου 2006, σύμφωνα με το άρθρο 98 παρ. 1 περ. ε σε συνδυασμό με το άρθρο 79 παρ. 7 του Συντάγματος
15PROC003586744 2015-12-29
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΑΤΤΙΚΗΣ ΔΗΜΟΣ ΝΕΑΣ ΙΩΝΙΑΣ Δ/ΝΣΗ ΤΕΧΝΙΚΩΝ ΥΠΗΡΕΣΙΩΝ ΝΕΑ ΙΩΝΙΑ Αρ. πρωτ. : 37515/17-12-2015 ΥΠΟΕΡΓΟ: ΠΡΟΫΠΟΛΟΓΙΣΜΟΣ: Παροχή Εξειδικευμένων Συμβουλευτικών Υπηρεσιών για την Υλοποίηση
συμφώνησαν, συνομολόγησαν και αποδέχτηκαν τα ακόλουθα:
ΑΡΙΘΜΟΣ 0511/2012 2013 ΣΥΜΒΑΣΗ ΕΠΙΧΟΡΗΓΗΣΗΣ Ι.ΝΕ.ΔΙ.ΒΙ.Μ. - ΕΝΙΑΙΑ ΣΧΟΛΙΚΗ ΕΠΙΤΡΟΠΗ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΔΗΜΟΥ ΖΑΚΥΝΘΟΥ "ΠΑΝΑΓΙΩΤΗΣ ΧΙΩΤΗΣ" Στην Αθήνα, σήμερα, 13/12/2012, οι υπογράφοντες τη παρούσα: Αφενός
ΘΕΜΑ : Κώδικας Ορθής Γεωργικής Πρακτικής για την Προστασία των Νερών από τη Νιτρορύπανση Γεωργικής Προέλευσης.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΡΑΓΩΓΙΚΗΣ ΑΝΑΣΥΓΚΡΟΤΗΣΗΣ, ΠΕΡΙΒΑΛΛΟΝΤΟΣ & ΕΝΕΡΓΕΙΑΣ ΓΕΝ. Δ/ΝΣΗ ΒΙΩΣΙΜΗΣ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ Δ/ΝΣΗ ΧΩΡΟΤΑΞΙΑΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ & ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ Τμήμα Προστασίας Φυσικών
ΑΠΟΦΑΣΙΖΕΙ: Υποψηφιότητα για τη θέση του Προέδρου μπορούν να υποβάλουν Καθηγητές Πρώτης Βαθμίδας ή Αναπληρωτές Καθηγητές.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΑΝΑΡΤΗΤΕΟ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΤΜΗΜΑ ΦΑΡΜΑΚΕΥΤΙΚΗΣ Γραμματεία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Πληροφορίες: Κ. Συμεωνίδου Θεσσαλονίκη, 13-10-2015 Τηλ.: 2310997613
14PROC002511086 2014-12-30
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Έδεσσα 30.12.2014 3 η ΥΓΕΙΟΝΟΜΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΜΑΚΕ ΟΝΙΑΣ Α.Π.: 14462 ΓΕΝΙΚΟ ΝΟΣΟΚΟΜΕΙΟ ΠΕΛΛΑΣ ΤΜΗΜΑ ΠΡΟΜΗΘΕΙΩΝ ΠΛΗΡΟΦΟΡΙΕΣ: ΓΚΕΝΤΖΗΣ. Τηλ. 23813 50184 FAX : 23810 22418 Ι Α Κ Η Ρ Υ Ξ
Άρρενες Ομάδες ηλικιών
Περιγραθή ηόποσ μόνιμης διαμονής / κλάδος οικονομικής δραζηηριόηηηας ΑΠΟΚΔΝΣΡΧΜΔΝΖ ΓΙΟΙΚΖΖ ΚΡΖΣΖ (Έδξα: Ζξάθιεηνλ,ην) Και των δύο φύλων Ομάδες ηλικιών Άρρενες Ομάδες ηλικιών Θήλεις Ομάδες ηλικιών Σύνολο
Το, -18 μόλις σελίδων-, «Βοήθημα» που ακολουθεί, διατίθεται μόνον εδώ, διαδικτυακά, και δεν αποτελεί μέρος της έντυπης έκδοσης της «Ελευθερίας».
Το, -18 μόλις σελίδων-, «Βοήθημα» που ακολουθεί, διατίθεται μόνον εδώ, διαδικτυακά, και δεν αποτελεί μέρος της έντυπης έκδοσης της «Ελευθερίας». 1 ΕΝΑ ΣΥΝΤΟΜΟ ΒΟΗΘΗΜΑ ΓΙΑ ΤΗΝ «ΕΛΕΥΘΕΡΙΑ» -----------------------------------------------------------------------------------------------------
ΕΒ ΟΜΑ ΙΑΙΟ ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑ Α ΕΞΑΜΗΝΟΥ 2012-2013
ΕΒ ΟΜΑ ΙΑΙΟ ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑ Α ΕΞΑΜΗΝΟΥ 2012-2013 Θ. Ζυγκιρίδης- Μ. Λούτα- Θ. Ζυγκιρίδης- Μ. Λούτα- Θ. Ζυγκιρίδης- Π. Αγγελίδης- Μ. Λούτα- Π. Αγγελίδης-,Β Θ. Ζυγκιρίδης- Π. Αγγελίδης- Μ. Λούτα- Π. Αγγελίδης-,Β
ΓΙΑ ΕΦΗΒΟΥΣ ΚΑΙ ΕΝΗΛΙΚΟΥΣ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ
ΓΙΑ ΕΦΗΒΟΥΣ ΚΑΙ ΕΝΗΛΙΚΟΥΣ Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν Μ Ν Α Δ Ε Σ Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕΔΡΙΑΣΗ Ο. Τετάρτη 8 Ιουλίου 2015
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕΔΡΙΑΣΗ Ο Τετάρτη 8 Ιουλίου 2015 ΘΕΜΑΤΑ Α. ΕΙΔΙΚΑ ΘΕΜΑΤΑ 1. Ανακοινώνεται ότι τη συνεδρίαση παρακολουθούν µαθητές από το 5ο και το 15ο Γυµνάσιο Περιστερίου, σελ. 4174 2. Η Ειδική
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΤΜΗΜΑ ΔΙΑΚΟΠΗΣ ΕΡΓΑΣΙΩΝ ΤΗΣ ΒΟΥΛΗΣ ΘΕΡΟΣ 2014 ΣΥΝΕΔΡΙΑΣΗ ΛΒ Πέµπτη 4 Σεπτεµβρίου 2014
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΤΜΗΜΑ ΔΙΑΚΟΠΗΣ ΕΡΓΑΣΙΩΝ ΤΗΣ ΒΟΥΛΗΣ ΘΕΡΟΣ 2014 ΣΥΝΕΔΡΙΑΣΗ ΛΒ Πέµπτη 4 Σεπτεµβρίου 2014 ΘΕΜΑΤΑ Α. ΕΙΔΙΚΑ ΘΕΜΑΤΑ 1. Επικύρωση Πρακτικών, σελ. 2493, 2569 2. Επί διαδικαστικού θέµατος,
Π Ι Ν Α Κ Α Σ Κ Α Τ Α Τ Α Ξ Η Σ Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Μ Ε Ρ Ι Κ Η Σ Α Π Α Σ Χ Ο Λ Η Σ Η Σ (Α.Π. ΑΝΑΚΟΙΝΩΣΗΣ 21809/20-11-2009)
Π Ι Ν Α Κ Α Σ Κ Α Τ Α Τ Α Ξ Η Σ Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Μ Ε Ρ Ι Κ Η Σ Α Π Α Σ Χ Ο Λ Η Σ Η Σ (Α.Π. ΑΝΑΚΟΙΝΩΣΗΣ 21809/20-11-2009) Α/Α ΕΙ ΙΚΟΤΗΤΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΚΩ. ΚΟΙΝΩΝΙΚΗ ΟΜΑ Α ΕΜΠΕΙΡΙΑ 1 ΠΕ
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩN ΤΜΗΜΑ ΙΑΚΟΠΗΣ ΕΡΓΑΣΙΩΝ ΤΗΣ ΒΟΥΛΗΣ ΘΕΡΟΥΣ 2009 ΣΥΝΕ ΡΙΑΣΗ ΣΤ Τρίτη 23 Ιουνίου 2009
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩN ΤΜΗΜΑ ΙΑΚΟΠΗΣ ΕΡΓΑΣΙΩΝ ΤΗΣ ΒΟΥΛΗΣ ΘΕΡΟΥΣ 2009 ΣΥΝΕ ΡΙΑΣΗ ΣΤ Τρίτη 23 Ιουνίου 2009 ΘΕΜΑΤΑ Α. ΕΙ ΙΚΑ ΘΕΜΑΤΑ 1. Επικύρωση Πρακτικών, σελ. 445 2. Ανακοινώνεται η συνεδρίαση ιαρκούς Επιτροπής,
ΟΡOI ΔΙΑΓΩΝΙΣΜΟΥ WIND Play & Win
ΟΡOI ΔΙΑΓΩΝΙΣΜΟΥ WIND Play & Win η ε λ Π ά η ξ α ζ ή κ ε ξ α ζ η η ο δ ε θ α π έ λ η ε ( 1 5 ) η ν π κ ή λ α Η ν π ι ί ν π, ε κ έ ξ α Π α ξ α ζ θ ε π ή, η ν π έ η ν π ο δ ύ ν ρ η ι η ά δ ε ο δ ε θ α έ
θ) Ο αριθμός των εγκύρων ψηφοδελτίων που έλαβε κάθε ένας συνδυασμός ή μεμονωμένος υποψήφιος ανέρχεται:
θ) Ο αριθμός των εγκύρων ψηφοδελτίων που έλαβε κάθε ένας συνδυασμός ή μεμονωμένος υποψήφιος ανέρχεται: 6 7 8 9 0 ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ ΣΥΝΑΣΠΙΣΜΟΣ ΡΙΖΟΣΠΑΣΤΙΚΗΣ ΑΡΙΣΤΕΡΑΣ ΠΑΝΕΛΛΗΝΙΟ ΣΟΣΙΑΛΙΣΤΙΚΟ ΚΙΝΗΜΑ (ΠΑ.ΣΟ.Κ)
Ν έ α ς κ ρ ή ν η ς κ α ι Καλαμαριάς ο Αρχιμανδρίτης Ι ο υ σ τ ί ν ο ς Μ π α ρ δ ά κ α ς. σελ.3
Ε β δ ο μ α δ ι α ί α Ε φ η μ ε ρ ί δ α τ η ς Φ λ ώ ρ ι ν α ς Μητροπολίτης Ν έ α ς κ ρ ή ν η ς κ α ι Καλαμαριάς ο Αρχιμανδρίτης Ι ο υ σ τ ί ν ο ς Μ π α ρ δ ά κ α ς Ημερίδα με θέμα : «Εξορυκτική δραστηριότητα
ΣΥΝΟΠΤΙΚΗ ΜΕΛΕΤΗ ΠΥΡΟΠΡΟΣΤΑΣΙΑΣ
AΡΙΘΜΟΣ ΜΗΤΡΩΟΥ Π.Υ. ΑΡΙΘΜΟΣ ΑΠΑΛ.ΑΔΕΙΑΣ ΥΒΕΤ ΕΠΩΝΥΜΙΑ - ΤΙΤΛΟΣ ΕΠΙΧΕΙΡΗΣΗΣ ΣΥΝΟΠΤΙΚΗ ΜΕΛΕΤΗ ΠΥΡΟΠΡΟΣΤΑΣΙΑΣ Που συντάχθηκε σύμφωνα με.... από τον.... Α. ΣΤΟΙΧΕΙΑ ΕΠΙΧΕΙΡΗΣΗΣ 1. Είδος επιχείρησης 2. Κατάταξη
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2015
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2015 ΗΜΕΡΟΜΗΝΙΑ ΗΜΕΡΑ ΩΡΑ ΜΑΘΗΜΑ ΚΑΘΗΓΗΤΗΣ ΑΙΘΟΥΣΑ ΕΞΑΜΗΝΟ 03/09/15 ΠΕΜΠΤΗ 12:00-14:00 04/09/15 ΠΑΡΑΣΚΕΥΗ 10:00-12:00 ΕΚΚΛ/ΚΗ ΑΡΧ/ΝΙΚΗ ΒΥΖ/ΝΗΣ Κ' ΜΕΤΑΒΥΖ/ΝΗΣ ΠΕΡΙΟΔΟΥ ΕΙΣΑΓΩΓΗ
Αρ. Πρωτ. Δήμου Ιλίου:43618/25.09.2015 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΑΤΤΙΚΗΣ
Αρ. Πρωτ. Δήμου Ιλίου:43618/25.09.2015 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΑΤΤΙΚΗΣ 38 η Τακτική Συνεδρίαση Οικονομική Επιτροπής ΔΗΜΟΣ Ι Λ Ι Ο Υ την 24.09.2015 Η Οικονομική Επιτροπή Ιλίου συνήλθε στο Δημαρχιακό Μέγαρο
Ο ΔΗΜΟΣ ΧΑΝΙΩΝ. ε π α ν α π ρ ο κ η ρ ύ σ ε ι. την με ανοικτό δημόσιο μειοδοτικό διαγωνισμό επιλογή αναδόχου για την υπηρεσία:
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΧΑΝΙΩΝ ΔΗΜΟΣ ΧΑΝΙΩΝ Δ/ΝΣΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΠΡΑΣΙΝΟΥ & ΚΑΘΑΡΙΟΤΗΤΑΣ Κυδωνίας 29, Χανιά Κρήτης, Τ.Κ. 73 135 Τηλ.: 28213 41777-8, site :www.chania.gr, e-mail: d-pervallon@chania.gr
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕΔΡΙΑΣΗ Ρ. Τετάρτη 7 Μαρτίου 2012
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕΔΡΙΑΣΗ Ρ Τετάρτη 7 Μαρτίου 2012 ΘΘΕΜΑΤΑ Α. ΕΙΔΙΚΑ ΘΕΜΑΤΑ 1. Επικύρωση Πρακτικών, σελ. 6733 2. Ανακοινώνεται ότι τη συνεδρίαση παρακολουθούν µαθητές από το 1ο Γυµνάσιο Πειραιά,
Διδά δά ον σκ τα τ ς α ιστο τ ρία στο στ δ ημ η ο μ τικό κ σχο σχ λ ο είο Οργάνω Οργάν ση υλικού Φλωρεντία Πιτζιόλη
Διδάσκοντας ιστορία στο δημοτικό σχολείο Οργάνωση υλικού: Φλωρεντία Πιτζιόλη-Τιμοθέου, ΕΔΕ, Πρόεδρος Ενδοτμηματικής Επιτροπής Κοινωνικών Θεμάτων Χαρά Μακρυγιάννη, Παιδαγωγικό Ινστιτούτο Κύπρου Συνεργάστηκαν:
Booleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
Μ Ε Λ Ε Τ Η. ΠΡΟΜΗΘΕΙΑ κ ΤΟΠΟΘΕΤΗΣΗ ΣΙΔΗΡΟΪΣΤΩΝ ΜΕ ΦΩΤΟΒΟΛΤΑΪΚΑ ΦΩΤΙΣΤΙΚΑ ΣΩΜΑΤΑ ΓΙΑ ΠΑΡΚΑ ΤΟΥ ΔΗΜΟΥ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Μ Ε Λ Ε Τ Η ΠΡΟΜΗΘΕΙΑ κ ΤΟΠΟΘΕΤΗΣΗ ΣΙΔΗΡΟΪΣΤΩΝ ΜΕ ΦΩΤΟΒΟΛΤΑΪΚΑ ΦΩΤΙΣΤΙΚΑ ΣΩΜΑΤΑ ΓΙΑ ΠΑΡΚΑ ΤΟΥ ΔΗΜΟΥ ΠΡΟΥΠΟΛΟΓΙΣΜΟΣ : 195.120,00 Φ.Π.Α. 23% : 44.877,60 ΣΥΝΟΛΙΚΗ ΔΑΠΑΝΗ : 239.997,60 ΕΥΡΩ
Η συμπαραστάτης του Πολίτη Τάσα Σιώμου στον Δήμο Αμυνταίου σελ.3. Τα παράπονα στον Δήμαρχο από μαθητές του 1ου Δημοτικού Σχολείου Αμυνταίου
Ε β δ ο μ α δ ι α ί α Ε φ η μ ε ρ ί δ α τ η ς Φ λ ώ ρ ι ν α ς Χ ά ν ο υ μ ε κ α ι τ ο 1 ο Σ ύ ν τ α γ μ α Π ε ζ ι κ ο ύ ; Συνέντευξη Τύπου του Αντιπεριφερειάρχη Στέφανου Μπίρου για τα τρέχοντα θέματα της
ΠΤΤΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕ ΘΕΜΑ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΤΤΙΚΟ ΙΔΡΤΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΤΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕ ΘΕΜΑ Δ Ι Α Κ Ι Ν Η Σ Η Τ Ω Ν Α Γ Α Θ Ω Ν Σ Τ Ο Ι Χ Ε Ι Α ΠΟΥ Π Ρ Ο Β Λ Ε Π Ο Ν Τ Α Ι Α Π Ο Τ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΞ. ΕΠΕΙΓΟΝ- ΠΡΟΘΕΣΜΙΑ
Να διατηρηθεί μέχρι: Βαθμός Ασφαλείας : ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΞ. ΕΠΕΙΓΟΝ- ΠΡΟΘΕΣΜΙΑ ----- Μαρούσι, 24-06-2014 ΔΙΕΥΘΥΝΣΗ ΠΑΙΔΕΙΑΣ ΟΜΟΓΕΝΩΝ Αρ. Πρωτ. 944 Ε /97270/Ζ1 ΚΑΙ
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕΔΡΙΑΣΗ ΡΚΣΤ. Τετάρτη 4 Μαΐου 2011
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕΔΡΙΑΣΗ ΡΚΣΤ Τετάρτη 4 Μαΐου 2011 ΘΕΜΑΤΑ Α. ΕΙΔΙΚΑ ΘΕΜΑΤΑ 1. Επικύρωση Πρακτικών, σελ. 9434 2. Ανακοινώνεται ότι τη συνεδρίαση παρακολουθούν μαθητές από το 9ο Δημοτικό Σχολείο Αλίμου,
ΔΙΑΚΗΡΥΞΗ ΑΡ. 44/2014 ΔΙΕΘΝΗ ΑΝΟΙΚΤΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΔΗΜΟΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΥΓΕΙΑΣ 7 Η ΥΓΕΙΟΝΟΜΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΚΡΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΑΚΟ ΓΕΝΙΚΟ ΝΟΣΟΚΟΜΕΙΟ ΗΡΑΚΛΕΙΟΥ - Γ.Ν. ΒΕΝΙΖΕΛΕΙΟ Λεωφ. Κνωσσού, Τ.Θ. 44, Ηράκλειο Κρήτης ΑΦΜ 999161766, Α ΔΟΥ Ηρακλείου
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕ ΡΙΑΣΗ ΡΙΣΤ. Παρασκευή 7 Μαΐου 2010
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕ ΡΙΑΣΗ ΡΙΣΤ Παρασκευή 7 Μαΐου 2010 ΘΕΜΑΤΑ Α. ΕΙ ΙΚΑ ΘΕΜΑΤΑ 1. Επικύρωση Πρακτικών, σελ. 6859, 6893 2. Ανακοινώνεται ότι τη συνεδρίαση παρακολουθούν µαθητές από το 2ο ηµοτικό Σχολείο
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕΔΡΙΑΣΗ ΡΖ. Πέµπτη 17 Ιανουαρίου 2013
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΥΝΕΔΡΙΑΣΗ ΡΖ Πέµπτη 17 Ιανουαρίου 2013 ΘΕΜΑΤΑ Α. ΕΙΔΙΚΑ ΘΕΜΑΤΑ 1. Επικύρωση Πρακτικών, σελ. 6695 2. Ανακοινώνεται ότι τη συνεδρίαση παρακολουθούν µαθητές από το 2ο Δηµοτικό Σχολείο
θ α ν ά σ η ς τ ρ ι α ρ ί δ η ς Lacrimosa ή τ ο α π έ π ρ ω τ Σ χ ι σ μ ή γ ι α δ ύ ο π ρ ό σ ω π α σ ε δ υ ο π ρ ά ξ ε ι ς
θ α ν ά σ η ς τ ρ ι α ρ ί δ η ς Lacrimosa ή τ ο α π έ π ρ ω τ ο Σ χ ι σ μ ή γ ι α δ ύ ο π ρ ό σ ω π α σ ε δ υ ο π ρ ά ξ ε ι ς 1 2 η αλήθεια είναι το αντίθετο της αγάπης σημείωση Και το Lacrimosa (όπως
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
Η χριστουγεννιάτικη αλφαβήτα από το Α1 και το Α2. Α όπως Αστέρι Ν όπως νανούρισμα. Δ όπως Δώρα Π όπως Πρωτοχρονιά
Εκδίδονται από το 10/θ Δημοτικό Σχολείο Μήλου τηλέφωνο 2287021346 Δεκέμβριος 2012 αριθμός φύλου 49ο Η χριστουγεννιάτικη αλφαβήτα από το Α1 και το Α2 Α όπως Αστέρι Ν όπως νανούρισμα Β όπως Βοσκός Ξ όπως
ΔΙΑΚΗΡΥΞΗ ΑΝΟΙΧΤΗΣ ΔΗΜΟΠΡΑΣΙΑΣ. (Τύπος Β) Για έργα που δεν εμπίπτουν στο πεδίο εφαρμογής των Οδηγιών 2004/18 και 2004/17
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΘΕΣΣΑΛΟΝΙΚΗΣ ΔΗΜΟΣ ΔΕΛΤΑ ΕΡΓΟ: ΚΡΑΣΠΕΔΩΣΗ -ΠΛΑΚΟΣΤΡΩΣΗ ΗΛΕΚΤΡΟΦΩΤΙΣΜΟΣ ΟΔΟΥ ΝΙΚΗΣ ΣΤΗ Ν. ΜΑΓΝΗΣΙΑ ΤΜΗΜΑ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ & ΠΟΛΕΟΔΟΜΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΧΡΗΜΑΤΟΔΟΤΗΣΗ: ΣΑΤΑ ΑΡ.ΜΕΛΕΤΗΣ:
Μ Ε Ε Γ Γ Ρ Α Φ Ε Σ Π Ρ Ο Σ Φ Ο Ρ Ε Σ Κ Α Ι Δ Υ Ν Α Τ Ο Τ Η Τ Α Π Ρ Ο Φ Ο Ρ Ι Κ Η Σ Β Ε Λ Τ Ι Ω Σ Η Σ Μ Α Ϊ Ο Σ 2 0 1 5
Π Ρ Ο Κ Η Ρ Υ Ξ Η Α Ν Ο Ι Κ Τ Ο Υ Π Λ Ε Ι Ο Δ Ο Τ Ι Κ Ο Υ Δ Ι Α Γ Ω Ν Ι Σ Μ Ο Υ Γ Ι Α Τ Η Ν Ε Κ Μ Ι Σ Θ Ω Σ Η Ο Ι Κ Ο Π Ε Δ Ο Υ Σ Τ Η Ν Δ Ρ Α Μ Α ( Τ Ω Ν Μ Ε α / α 1 4 2 4 0 κ α ι 1 4 2 4 1 Α Ν Τ Α Λ Λ
σελ.3 σελ.3 σελ.4 σελ.4 Ο Β ο υ λ ε υ τ ή ς Φ λ ώ ρ ι ν α ς τ η ς Ν. Δ. κ. Ε υ σ τ ά θ ι ο ς Κ ω ν σ τ α ν τ ι ν ί δ η ς σελ.4
ΕΤΟΣ 4o ΑΡ. ΦΥΛΛΟΥ: 207 ΤΙΜΗ ΦΥΛΛΟΥ: 1 ΕΥΡΩ Ε β δ ο μ α δ ι α ί α Ε φ η μ ε ρ ί δ α τ η ς Φ λ ώ ρ ι ν α ς E-mail: ixo@nextnet.gr Ιστός: http://echo.nextnet.gr Ε π ί σ κ ε ψ η τ ο υ π ρ ο έ δ ρ ο υ τ ο