Pseudo-compressibility 방법에서이상유동해석을위한 Level Set 방법의적용 Level Set Method Applied on Pseudo-compressibility Method for the Analysis of Two-phase Flow
|
|
- Δαμοκλής Μιαούλης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 w w Áw œwz 7 «3 y, pp. 58~65, 25 9 Pseudo-compressibility 방법에서이상유동해석을위한 Level Set 방법의적용 Level Set Method Applied on Pseudo-compressibility Method for the Analysis of Two-phase Flow *Á½ *Á **Á ** Seung-Won Ihm*, Chongam Kim*, Jae-Seol Shim** and Dong-Young Lee** : Level Set w» wì w w ww. Level Set w l y w, w y ƒ wš e w. Level Set w w w w, pseudo-compressibility wì t. w ƒ w š t w š, ew w w wì w. w g t»s w w q w k w. w :, Level Set, pseudo-compressibility, š t,»s w, q Abstract : In order to analyze incompressible two-phase flow, Level Set method was applied on pseudocompressibility formulation. Level Set function is defined as a signed distance function from the phase interface, and gives the information of the each phase location and the geometric data to the flow. In this study, Level Set function transport equation was coupled with flow conservation equations, and owing to pseudo-compressibility technique we could solve the resultant vector equation iteratively. Two-phase flow analysis code was developed on general curvilinear coordinate, and numerical tests of bubble dynamics and surging wave problems demonstrate its capability successfully. Keywords : two-phase flow, Level Set method, pseudo-compressibility method, general curvilinear coordinate, bubble dynamics, surging wave.» (phase) w w œw w», œ w. w y w w, v r w w œ (cavita-tion) x, þƒ l (boiling) x (two-phase flow). e w w» w e w ƒ v w. w j w (Unverdi and Tryggvason, 992 ) ü w w w (Hirt and Nichols, 98; Osher and Sethian, 988 ) w, w x ƒ ƒ wš 3 y w z y š. ü w w t volume * w» wœœw (Corresponding author: Chongam Kim, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 5-744, Korea. chongam@ snu.ac.kr) **w w Áw œw (Coastal and Harbor Engineering Research Division, KORDI) 58
2 Pseudo-compressibility w w Level Set 59 of fluid(vof) Hirt and Nichols (98) w z š. w wš v w w, v w. wr Osher and Sethian(988) v ƒ y w w Level Set w. Level Set w l y w, w y wš, w œ. Level Set VOF w, VOF š v š, w ù š x y w (, 23). x ¾ Level Set w w t w, t projection pressure correction (Zhu and Sethian, 992; Osher and Fedkiw, 2). Level Set w w l Chorin(967) pseudo-compressibility wì t w. š t w w ƒ w w, g» s w w q w w w». u u l ùkü. t š Navier- Stokes w. ρ u u u p + µ 2 u + ρg + σκδn t» ρ, µ, ƒ, g ƒ l. t w () (2) σκδn σ t, κ( n) š, n w ùkü. δ w dirac delta w.» ƒ w w sx (hydrostatic equilibrium) k p ρ g š š ƒ w, w y r» w., p, ρ w sx k š, ρ ρ +ρ', p p + p' l (2) x. u u u t (3)» p'. 2.2 Pseudo-compressibility () (3) l w wì tš w, () w w w w»ƒ. Chorin(967) w š x(hyperbolic)» w ƒ (pseudo time) τ w. p β u ρ τ (4), (5) τ w w w (), (3) z š, ƒ w š x w w. (4) β ƒ, w y 2 w (Ok, 993). 2.3 Level Set Level Set w Φ š, w w, w ƒ. w Level Set w w (Sussman, 994). p' µ u ---g σκδn ρ ρ ρ ρ u p µ u u u ρ ---- g σκδn u τ ρ ρ ρ ρ t φ u φ t (3) (4) (5) (6) Pseudo-compressibility w» w ƒ ρ'
3 6 Á½ Á Á τ w w sww (6) x. (7) t e š, Φ y e w. w 2 2 ùkü, H ε e ùkü Heaviside w. ε e y w» w Ì, j».5. φ φ u φ τ t ρ ρ + ( ρ 2 ρ )H ε ( φ), µ µ + ( µ 2 µ )H ε ( φ) H ε ( φ) if φ < ε φ + ε sin( πφ ε) ε 2π if φ ε if φ > ε Fig. Level Set w e. w e φ š, w, w ƒ ƒ φ e ùkú. ù ƒ yw, (8) e e Ì ü w. (5) ùkù t w w n dirac delta w δ Level Set w φ l w. n( φ) φ φ (7) (8) (9) --( + cos( πφ ε) ) ε, if φ ε δ δ( φ) 2, otherwise () () Ì 2εü t w w (Brackbill et al., 992). wr (7) t ùƒ Level Set w w w» w»y t φ φ sign( φ )( φ ) τ j φ w. () () t» x. 4., 4.2 e tƒ ú, 4.3 e ƒ τƒ 5 ú () Ì ü g. 2.4 t x w w w ξ η š t w w. x-y t ξ η t y (Hoffmann, 2). ξ ξ ξ x y x η η x η y y ξ x, ξ y, η x, η y y metric š, ξ η. (4), (5) Level Set w (7) t lx ùkü. Q τ J Q E F ξ η S v + S g + S s S t p ρ( φ) u v φ uu, E -- J uu + + βu ξ x p ρ( φ) ξ y p ρ( φ) φu, (2) µ ( φ) u xx + u yy S ij Jρ( φ) v xx + v yy, S s Jρ( φ) τκ( φ)δ( φ)n x ( φ) τκ( φ)δ( φ)n y ( φ) Fig.. Numerical property in Level Set approach. S t J t u v φ
4 Pseudo-compressibility w w Level Set 6 S v w, S g w, S s t w ùkü, S t t w w 2 z w. J ξ x η y η x ξ y, U ξ x u + ξ y v, V η x u + η y v ƒƒ ξ,η const.. 3. ew 3. z w v E, F ü w, (2) (Hoffmann, 2). A B Q E F S J τ ξ η ξ η v + S g + S s S t (3)» QQ n+ -Q n š, n ƒ time level. n+ Q z w» w Q w t Yoon and Jameson (988) LU-SGS w. Jacobian w A E B F,, š, Q Q » w. ƒ w (steady) k ƒ, τ w (Hirsh, 989). 3.2 œ y (3) v E F Rogers and Kwak (99) t w. v š ù, w w Level Set w sww w. E ξ w v E w E ξ i + 2 E i 2 i+/2 v (Rogers and Kwak, 99). E i + 2 ± E i + 2 R n -- ( E i + E i + ) -- E + ( i + E 2 i + 2 ) 2 2 A ± ( Q) Q i + 2 (4) (5) Q e, e s³w. Jacobian w A. n A βξ x βξ y E Q ξ x U + ξ x u ξ x u -- J ξ y ξ x v U + ξ y v ξ x φ ξ y φ U (6) (5) A ± w š y w. A ± J --XΛ± X U U Λ U D U + D X DU ( + D) DU ( D) ξ y ξ y V ξ x D ξ y V + ξ x D ξ x ξ x V ξ y D ξ x V + ξ y D φ( ξ x + ξ y ) φ( ξ x + ξ y ) (7) Λ ƒ w A š, Λ ± š y ù. X š š l w š, D U. η w β( ξ x + ξ y ) v F w Jacobian w B w ξ η w ã. š œ y» w e 3 MUSCL w (Hirsh, 989). w e yƒ e y y w» w minmod van Leer w (limiter) w (Hirsch, 989). w r v 2 w., w (nonslip) w. 4.3 w ww, ñ (slip) w. wš, w. t» w v ƒ. 4.3 q q y j» w ƒ (sponge layer, or absorbing beach) w (Barone 23).
5 62 Á½ Á Á Q RQ ( ) ax ( )( Q Q ref ) τ + x L x ax ( ) a o L (8) x d q ¼ ƒ ¼ L w š, a 8 w. Q ref Q l». 3, x o L x x o 4. ew , t sww w g w» w»s w w.»s»s x p ƒ. 4.3 w q mw w g ƒ š t w š, w j š w w w w ƒ r. 4. Chang»s Chang et al.(996) Level Set w ƒ»sƒ w ww w w. Boussinesq ƒ w š, y w.»»s (.5,.35). š,»s (.5,.65).5.»s ƒƒ, t σ.5 t j skirt x w. Fig. 2 Chang et al.(996). ùkü š, Fig. 3 w.»s x ew y w. 4.2 Unverdi»s Unverdi et al.(992) w w ƒ ƒƒ 4 w w.»s.264,.2343 š, t σ.882 t j Fig. 4 Unverdi et al.(992) w, w. Fig. 5 w w.»s w»sƒ š f, t j w w. w Fig. 2. Bubble shape of Chang et al. at t,.,.2,.3,.4 sec. Fig. 3. Bubble shape of present approach at t.,.2,.3,.4 sec.(non-dimensional size)
6 Pseudo-compressibility w w Level Set 63 spherical cap xkƒ. Fig. 5 k w q. Fig. 4. Bubble shape (a) and indicator function (b) of Unverdi et al.(992). 4.3 w q w c*.34 m ¼ L m x U.849 m/s w q ƒ w w (Liou, 2). ew Fig. 6 w w U w. ƒ û» w w j, g t wš, wz w ƒ j w w w ƒ r» w kw. Liou(2) w w w w, w wš w ü Fig. 4 w w, w z ùkü indicator w ƒ ü û. Unverdi et al.(992)»s»s x w ww, Fig. 6. Surging wave problem. Fig. 5. Present result at every.2 sec. (non-dimensional size)
7 64 Á½ Á Á Fig. 9. Pressure around wave surface. Fig. 7. Computational region and grid. Fig. 8. Pressure variation due to hydrofoil. Fig.. Comparison of wave elevation. VOF w (½, 22; x Á½, 23). œ» w w, Liou ƒ ƒ w. w x ƒ o α 5 NACA2 w. Froude Fr U gc, x *.567 w q ¼ λ2πfr m l 3.3 w ƒ 7.98m x m w. œ» ƒƒ kg/m kg/m 3 š, t 2 σ.882 kg/s w ( x, 992). Fig. 7 w 23 2 w š. w w. m w», Level Set w Ì ε.2m w. w Fig. 8~ r e y w ùkü. Fig. 8 w y, û ü š, z q ƒ w. Fig. 9 (» 325Pa) w. w -y w Fig.. Velocity vectors near the interface. ƒw ƒ w x z w y w. w Fig. xe Liou(2) w. Liou (2) ƒ x5 l w. w w w qx xe Liou(2) ew y w. q q ¼ x dw ew 2., l Fig. œ» y w Ì r.
8 Pseudo-compressibility w w Level Set w w Level Set w sww pseudo-com-pressibility w. wì Level Set w lx wì w t ý, w ƒ w t w. e» w ü t Jacobian w w š, š l w., t š w w g»s q w w. w œw ù sw ƒ», wz ù z sww ƒ v w q. w w ww w» y (KORDI PE292) w.. š x ½, Ÿy, ½ (22). n w q w q x w. w w Áw œwz, 4(2), 7-8. x (992). w»..,, ½ (23). w w Level Set» volume of fluid». w w œ wz w z, KSAS x, ½ (23). e w e. w w Áw œw z, 5(3), Barone, M.F. (23). Receptivity of compressible mixing layers. Ph.D. Dissertation, Stanford Univ., U.S.A. Brackbill, J.U., Kothe, D.B. and Zemach, C. (992). A continuum method for modeling surface tension. J. Comput. Phys.,, Chang, Y.C., Hou, T.Y., Merrian, B. and Osher, S. (996). A level set formulation of Eularian interface capturing methods for incompressible fluid flow. J. Comput. Phys., 24, Chorin, A.J. (967). A numerical method for solving incompressible viscous flow problems. J. Comput. Phys., 2, Hirsch, C. (989). Numerical Computation of Internal and External Flows. John Wiley & Sons, U.K. Hirt, C.W. and Nichols, B.D. (98). Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys., 39, Hoffmann, K.A. and Chiang, S.T. (2). Computational Fluid Dynamics, 4th Ed. Engineering Education System, Kansas, U.S.A. Liou, B.H. (2). Calculation of nonlinear free surface waves with a fully-implicit adaptive-grid method. Ph.D. Dissertation, Princeton Univ., U.S.A. Ok, H. (993). Development of an incompressible Navier- Stokes solver and its application to the calculation of separated flow. Ph.D. Dissertation, Univ. of Washington, U.S.A. Osher, S. and Fedkiw, R.P. (2). Level set methods: an overview and some recent results. J. Comput. Phys., 69, Osher, S. and Sethian, J.A. (988). Front propagation with curvature dependent speed: Algorithms based on Hamilton- Jacobi formulations. J. Comput. Phys., 79, Rogers, S.E. and Kwak, D. (99). Upwind differencing scheme for the time-accurate incompressible Navier-Stokes equations. AIAA J., 28(2), Sussman, M., Smereka, P. and Osher, S. (994). A level set approach for computing solutions to incompressible twophase flow. J. Comput. Phys., 4, Unverdi, S.O. and Tryggvason, G. (992). A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys.,, Yoon, S. and Jameson, A. (988). Lower-upper symmetric- Gauss-Seidel method for the Euler and Navier Stokes equations. AIAA J., 26(9), Zhu, J. and Sethian, J. (992). Projection methods coupled to level set interface techniques. J. Comput. Phys., 2, Received February 8, 25 Accepted July 26, 25
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
Study of Excess Gibbs Energy for a Lattice Solution by Random Number Simulation
Journal of the Korean Chemical Society 007, Vol. 5, o. 4 Printed in the Republic of Korea ù x mw ½ w š w * w yw (007. 5. Study of Excess Gibbs Energy for a Lattice Solution by Random umber Simulation Hae-Young
Discretization of the Convection Term
FMIA F. Moukalled L. Mangani M. Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical oundation o the Finite Volume Method (FVM) and its applications in
3-dimensional motion simulation of a ship in waves using composite grid method
1 E14-1 3-dimensional motion simulation of a ship in waves using composite grid method matsuo@triton.naoe.t.u-tokyo.ac.jp, park@triton.naoe.t.u-tokyo.ac.jp, sato@triton.naoe.t.u-tokyo.ac.jp, miyata@triton.naoe.t.u-tokyo.ac.jp,
Computing the Gradient
FMIA F. Moukalled L. Mangani M. Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical oundation o the Finite Volume Method (FVM) and its applications in
Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model
1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017
34 4 17 1 JOURNAL OF SHANGHAI POLYTECHNIC UNIVERSITY Vol. 34 No. 4 Dec. 17 : 11-4543(174-83-8 DOI: 1.1957/j.cnki.jsspu.17.4.6 (, 19 :,,,,,, : ; ; ; ; ; : O 41.8 : A, [1],,,,, Jung [] Legendre, [3] Chebyshev
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
L p approach to free boundary problems of the Navier-Stokes equation
L p approach to free boundary problems of the Navier-Stokes equation e-mail address: yshibata@waseda.jp 28 4 1 e-mail address: ssshimi@ipc.shizuoka.ac.jp Ω R n (n 2) v Ω. Ω,,,, perturbed infinite layer,
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
Eulerian Simulation of Large Deformations
Eulerian Simulation of Large Deformations Shayan Hoshyari April, 2018 Some Applications 1 Biomechanical Engineering 2 / 11 Some Applications 1 Biomechanical Engineering 2 Muscle Animation 2 / 11 Some Applications
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " 0 1 2 3 4 5 6 7 8 9 : ; ; < = : ; > : 0? @ 8? 4 A 1 4 B 3 C 8? D C B? E F 4 5 8 3 G @ H I@ A 1 4 D G 8 5 1 @ J C
Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl
Around Vortices: from Cont. to Quantum Mech. Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Maicon José Benvenutti (UNICAMP)
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.
upplement on Radiation tress and Wave etup/et down Radiation tress oncerned wit te force (or momentum flu) eerted on te rit and side of a plane water on te left and side of te plane. plane z "Radiation
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo
Bull. Earthq. Res. Inst. Univ. Tokyo Vol. 2.,**3 pp.,,3,.* * +, -. +, -. Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo Kunihiko Shimazaki *, Tsuyoshi Haraguchi, Takeo Ishibe +, -.
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Geodesic Equations for the Wormhole Metric
Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes
ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΠΟΧΙΑΚΗΣ ΠΑΡΑΚΤΙΑΣ ΑΝΑΒΛΥΣΗΣ ΣΤΟ Β.Α. ΑΙΓΑΙΟ. Τμήμα Επιστημών της Θάλασσας, Πανεπιστήμιο Αιγαίου 2
8ο Πανελλήνιο Συμποσιο Ωκεανογραφίας & Αλιείας 183 ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΠΟΧΙΑΚΗΣ ΠΑΡΑΚΤΙΑΣ ΑΝΑΒΛΥΣΗΣ ΣΤΟ Β.Α. ΑΙΓΑΙΟ Γ. Δ. Κακαγιάννης 1, Β. Ζερβάκης 1 και Κ. Νίττης 2 1 Τμήμα Επιστημών της Θάλασσας, Πανεπιστήμιο
Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil
J. Jpn. Soc. Soil Phys. No. +*0, p.- +*,**1 Eh * ** Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil Daisuke MURAKAMI* and Tatsuaki KASUBUCHI** * The United Graduate
Wavelet based matrix compression for boundary integral equations on complex geometries
1 Wavelet based matrix compression for boundary integral equations on complex geometries Ulf Kähler Chemnitz University of Technology Workshop on Fast Boundary Element Methods in Industrial Applications
No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A
7 2016 7 No. 7 Modular Machine Tool & Automatic Manufacturing Technique Jul. 2016 1001-2265 2016 07-0122 - 05 DOI 10. 13462 /j. cnki. mmtamt. 2016. 07. 035 * 100124 TH166 TG659 A Precision Modeling and
Graded Refractive-Index
Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, ΥΠΟΛΟΓΙΣΤΙΚΑ ΠΑΚΕΤΑ. ΕΦΑΡΜΟΓΕΣ και ΠΑΡΑΔΕΙΓΜΑΤΑ
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, ΥΠΟΛΟΓΙΣΤΙΚΑ ΠΑΚΕΤΑ ΕΦΑΡΜΟΓΕΣ και ΠΑΡΑΔΕΙΓΜΑΤΑ 1 NUMERICAL METHODS General Taxonomy: FINITE DIFFERENCE, FINITE ELEMENTS, FINITE VOLUME, SPECTRAL METHODS, MESHLESS METHODS Some popular
SHUILI XUEBAO. KFVS( Kinetic Flux Vector Splitting) Boltzmann, KFVS( Kinetic Flux Vector Splitting) BGK(Bhatnagar2Gross2Krook) (Well2balanced),
2006 7 SHUILI XUEBAO 7 7 :05592950 (2006) 0720858207 KFVS 2, (, 0020 ;2, ) :Boltzmann, KFVS( Kinetic Flux Vector Splitting),, KFVS,, : ; ; ; KFVS ; :TV4 :A 90, [,2 ] Boltzmann, KFVS( Kinetic Flux Vector
Hydrologic Process in Wetland
J. Jpn. Soc. Soil Phys. No. +*-, p.1+12,**0 * Hydrologic Process in Wetland Characteristics of a Mire in a Snowy Region Makoto NAKATSUGAWA** ** Toyohashi O$ce of River Works, Chubu Regional Development
1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]
212 2 ( 4 252 ) No.2 in 212 (Total No.252 Vol.4) doi 1.3969/j.issn.1673-7237.212.2.16 STANDARD & TESTING 1 2 2 (1. 2184 2. 2184) CensusX12 ARMA ARMA TU111.19 A 1673-7237(212)2-55-5 Time Series Analysis
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Τομέας Περιβαλλοντικής Υδραυλικής και Γεωπεριβαλλοντικής Μηχανικής (III) Εργαστήριο Γεωπεριβαλλοντικής Μηχανικής TECHNICAL UNIVERSITY OF CRETE SCHOOL of
6.4 Superposition of Linear Plane Progressive Waves
.0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais
Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]
Supporting Information Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ] Eun Young Lee, Seung Yeon Jang, and Myunghyun Paik Suh* School of Chemistry,
Detection and Recognition of Traffic Signal Using Machine Learning
1 1 1 Detection and Recognition of Traffic Signal Using Machine Learning Akihiro Nakano, 1 Hiroshi Koyasu 1 and Hitoshi Maekawa 1 To improve road safety by assisting the driver, traffic signal recognition
ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα
ΣΔΥΝΟΛΟΓΙΚΟ ΔΚΠΑΙΓΔΤΣΙΚΟ ΙΓΡΤΜΑ ΘΔΑΛΟΝΙΚΗ ΥΟΛΗ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ & ΓΙΑΣΡΟΦΗ ΣΜΗΜΑ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή Αζαλαζηάδνπ Βαξβάξα
Eects of Gas-Surface Interaction Model in Hypersonic Rareed Gas Flow
4 D-5 Eects of Gas-Surface Interaction Model in Hypersonic Rareed Gas Flow,, 3--, E-mail tsuboi@ab.eng.isas.ac.jp, 7-3-, E-mail ymats@mech.t.u-tokyo.ac.jp Nobuyuki Tsuboi, Institute of Space and Astronautical
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΔΥΝΑΜΙΚΗΣ ΤΟΥ ΕΔΑΦΙΚΟΥ ΝΕΡΟΥ ΣΤΗΝ ΠΕΡΙΠΤΩΣΗ ΑΡΔΕΥΣΗΣ ΜΕ ΥΠΟΓΕΙΟΥΣ ΣΤΑΛΑΚΤΗΦΟΡΟΥΣ ΣΩΛΗΝΕΣ ΣΕ ΔΙΑΣΤΡΩΜΕΝΑ ΕΔΑΦΗ
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΑΕΙΦΟΡΙΚΗ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Δημήτριος Πάντζαλης Πτυχιούχος Γεωπόνος Α.Π.Θ.
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ
ΕΘΝΙΚΟ ΜΕΣΟΒΙΟ ΠΟΛΤΣΕΧΝΕΙΟ ΣΜΗΜΑ ΑΓΡΟΝΟΜΩΝ-ΣΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΣΟΜΕΑ ΣΟΠΟΓΡΑΦΙΑ ΕΡΓΑΣΗΡΙΟ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Oscillatory Gap Damping
Oscillatory Gap Damping Find the damping due to the linear motion of a viscous gas in in a gap with an oscillating size: ) Find the motion in a gap due to an oscillating external force; ) Recast the solution
P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö
P11-2015-60. É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œ Œ ˆ Š Œ ˆ ˆ Œˆ ˆŸ ƒ Š ˆŒ Š ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê 2 Œμ μ²ó ± μ Ê É Ò
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F
ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric
wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
Evolution of Novel Studies on Thermofluid Dynamics with Combustion
MEMOIRS OF SHONAN INSTITUTE OF TECHNOLOGY Vol. 42, No. 1, 2008 * Evolution of Novel Studies on Thermofluid Dynamics with Combustion Hiroyuki SATO* This paper mentions the recent development of combustion
Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling
1th AIAA/CEAS Aeroacoustics Conference, May 006 interactions Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Interaction M. Glesser 1, A. Billon 1, V. Valeau, and A. Sakout 1 mglesser@univ-lr.fr
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,
The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog
Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where
Multi-GPU numerical simulation of electromagnetic waves
Multi-GPU numerical simulation of electromagnetic waves Philippe Helluy, Thomas Strub To cite this version: Philippe Helluy, Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM:
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
ΤΕΧΝΙΚΕΣ ΔΙΑΓΝΩΣΗΣ ΤΗΣ ΝΟΣΟΥ ΑΛΤΣΧΑΙΜΕΡ ΜΕ FMRI
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΤΕΧΝΙΚΕΣ ΔΙΑΓΝΩΣΗΣ ΤΗΣ ΝΟΣΟΥ ΑΛΤΣΧΑΙΜΕΡ ΜΕ FMRI ΔΙΠΛΩΜΑΤΙΚΗ
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Introduction to Theory of. Elasticity. Kengo Nakajima Summer
Introduction to Theor of lasticit Summer Kengo Nakajima Technical & Scientific Computing I (48-7) Seminar on Computer Science (48-4) elast Theor of lasticit Target Stress Governing quations elast 3 Theor
12 2006 Journal of the Institute of Science and Engineering. Chuo University
12 2006 Journal of the Institute of Science and Engineering. Chuo University abstract In order to study the mitigation effect on urban heated environment of urban park, the microclimate observations have
Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±
Ó³ Ÿ. 2009.. 6, º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ Œ ˆ ˆ Œ ˆŒ ˆ ˆ ˆ ˆ ˆ Ÿ Œ ƒ ˆ ˆŠ ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ÿ. ʲ ±μ ± ˆ É ÉÊÉ Ö μ Ë ± μ²ó ±μ ± ³ ʱ, Š ±μ, μ²óï Œ É ³ É Î ±μ ±μ³
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
LUNGOO R. Control Engineering for Development of a Mechanical Ventilator for ICU Use Spontaneous Breathing Lung Simulator LUNGOO
ol. 6, No.3 7/(7) IU UNGOO ontrol Engineering for Development of a Mechanical entilator for IU Use Spontaneous Breathing ung Simulator UNGOO Kenji OZAKI*yoji IIDA*Kazutoshi SOGA* and Yasuhiro UENO* A lung
Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ
Ó³ Ÿ. 218.. 15, º 2(214).. 171Ä176 Š Œ œ ƒˆˆ ˆ ˆŠ ˆ ˆ ˆ Š Š Œ Œ Ÿ ˆ Š ˆ Š ˆ ˆŠ Œ œ ˆ.. Š Ö,, 1,.. ˆ μ,,.. μ³ μ,.. ÉÓÖ μ,,.š. ʳÖ,, Í μ ²Ó Ò ² μ É ²Ó ± Ö Ò Ê É É Œˆ ˆ, Œμ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ ± Ê É
) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,
ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ
EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΕΙΟ Τμήμα Μηχανικών Μεταλλείων-Μεταλλουργών ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Κιτσάκη Μαρίνα
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
P ˆ.. Ö±μ 1,.. ²μ 1,..ˆ μ 1,.. μ²μ μ 1,2,.. μ ² μ 3,.. É ±μ 1,.. 4. Š ƒ ˆ ˆ Š Š ˆ Š ˆ Šˆ. ² μ Ê ² Ó³ Ÿ
P10-2012-138 ˆ.. Ö±μ 1,.. ²μ 1,..ˆ μ 1,.. μ²μ μ 1,2,.. μ ² μ 3,.. É ±μ 1,.. 4 Š ƒ ˆ ˆ Š Š ˆ Š ˆ Šˆ ² μ Ê ² Ó³ Ÿ 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê 2 ˆ É ÉÊÉ É μ É Î ±μ Ô± ³ É ²Ó μ μë ±, ÊÐ μ 3 ˆ É ÉÊÉ μë ± ±² ɱ,
Research on real-time inverse kinematics algorithms for 6R robots
25 6 2008 2 Control Theory & Applications Vol. 25 No. 6 Dec. 2008 : 000 852(2008)06 037 05 6R,,, (, 30027) : 6R. 6 6R6.., -, 6R., 2.03 ms, 6R. : 6R; ; ; : TP242.2 : A Research on real-time inverse kinematics
Quick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)
J. Comput. Chem. Jpn., Vol. 5, No. 1, pp. 29 38 (2006) Microsoft Excel, 184-8588 2-24-16 e-mail: yosimura@cc.tuat.ac.jp (Received: July 28, 2005; Accepted for publication: October 24, 2005; Published on
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..
Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and
Study of urban housing development projects: The general planning of Alexandria City
Paper published at Alexandria Engineering Journal, vol, No, July, Study of urban housing development projects: The general planning of Alexandria City Hisham El Shimy Architecture Department, Faculty of
Η Ρευστομηχανική από τον Αρχιμήδη μέχρι σήμερα. μια σύντομη ιστορική αναδρομή
Η Ρευστομηχανική από τον Αρχιμήδη μέχρι σήμερα μια σύντομη ιστορική αναδρομή Μιχαήλ Ξένος Επίκ. Καθ. Τμήμα Μαθηματικών, Τομέας Εφαρμοσμένων Μαθηματικών και Μηχανικής Έρευνας Τα αρχαία χρόνια και ο Αρχιμήδης
ER-Tree (Extended R*-Tree)
1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley
2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011
2.019 Design of Ocean Systems Lecture 6 Seakeeping (II) February 21, 2011 ω, λ,v p,v g Wave adiation Problem z ζ 3 (t) = ζ 3 cos(ωt) ζ 3 (t) = ω ζ 3 sin(ωt) ζ 3 (t) = ω 2 ζ3 cos(ωt) x 2a ~n Total: P (t)
GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU
GPGPU Grover 1, 2 1 3 4 Grover Grover OpenMP GPGPU Grover qubit OpenMP GPGPU, 1.47 qubit On Large Scale Simulation of Grover s Algorithm by Using GPGPU Hiroshi Shibata, 1, 2 Tomoya Suzuki, 1 Seiya Okubo
4.4 Superposition of Linear Plane Progressive Waves
.0 Marine Hydrodynamics, Fall 08 Lecture 6 Copyright c 08 MIT - Department of Mechanical Engineering, All rights reserved..0 - Marine Hydrodynamics Lecture 6 4.4 Superposition of Linear Plane Progressive
RECIPROCATING COMPRESSOR CALCULATION SHEET
Gas properties, flowrate and conditions 1 Gas name Air RECIPRCATING CMPRESSR CALCULATIN SHEET WITH INTERCLER ( Sheet : 1. f 4.) Item or symbol Quantity Unit Item or symbol Quantity Unit 2 Suction pressure,
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 018.. 49.. 4.. 907Ä917 Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ.. ³μ, ˆ. ˆ. Ë μ μ,.. ³ ʲ μ ± Ë ²Ó Ò Ö Ò Í É Å μ ± ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ô± ³ É ²Ó μ Ë ±, μ, μ Ö μ ² Ìμ μé Ê Ö ±
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
CYLINDRICAL & SPHERICAL COORDINATES
CYLINDRICAL & SPHERICAL COORDINATES Here we eamine two of the more popular alternative -dimensional coordinate sstems to the rectangular coordinate sstem. First recall the basis of the Rectangular Coordinate