Exercises in Electromagnetic Field

Σχετικά έγγραφα
the total number of electrons passing through the lamp.

[1] P Q. Fig. 3.1

Magnetically Coupled Circuits

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Aluminum Electrolytic Capacitors

Aluminum Electrolytic Capacitors (Large Can Type)

Surface Mount Aluminum Electrolytic Capacitors

Capacitors - Capacitance, Charge and Potential Difference

MECHANICAL PROPERTIES OF MATERIALS

Technical Report. General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor

Rating to Unit ma ma mw W C C. Unit Forward voltage Zener voltage. Condition

Summary of Specifications

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS

Metal thin film chip resistor networks

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC

MINIATURE ALUMINUM ELECTROLYTIC CAPACITORS. Characteristics. Leakage Current(MAX) I=Leakage Current(µA) C=Nominal Capacitance(µF) V=Rated Voltage(V)

Homework 8 Model Solution Section

2R2. 2 (L W H) [mm] Wire Wound SMD Power Inductor. Nominal Inductance Packing Tape & Reel. Design Code M ±20%

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

2013 REV 01 ELECTRONICS CAPACITORS. DC Applications Metallized Polypropylene Film Self Healing

FP series Anti-Bend (Soft termination) capacitor series

SCOPE OF ACCREDITATION TO ISO 17025:2005

Multilayer Ceramic Chip Capacitors

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

Single-channel Safety Barriers Series 9001

Multilayer Ceramic Chip Capacitors

High Voltage Ceramic Capacitor (Radial Disc Type)

Metal Oxide Varistors (MOV) Data Sheet

Spherical Coordinates

No Item Code Description Series Reference (1) Meritek Series CRA Thick Film Chip Resistor AEC-Q200 Qualified Type

Melf Carbon Film Resistor MMC Series

Gearmotor Data. SERIES GM9000: We have the GM9434H187-R1

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Type 947D Polypropylene, High Energy Density, DC Link Capacitors

THICK FILM LEAD FREE CHIP RESISTORS

SPBW06 & DPBW06 series

Metal Oxide Leaded Film Resistor

Cable Systems - Postive/Negative Seq Impedance

EE101: Resonance in RLC circuits

Parametrized Surfaces

RSDW08 & RDDW08 series

Thick Film Chip Resistors

Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520. official distributor of

Thin Film Chip Resistors

Control cable YSLY-JZ/-JB/-OZ/-OB


LR Series Metal Alloy Low-Resistance Resistor

Precision Metal Film Fixed Resistor Axial Leaded

MZ0.5GF SERIES ZENER DIODE TECHHICAL SPECIFICATION FEATURES. ABSOLUTE MAXIMUM RATINGE: (Ta=25 ) Parameter Symbols Limits Unit

CSK series. Current Sensing Chip Resistor. Features. Applications. Construction FAITHFUL LINK

Areas and Lengths in Polar Coordinates

Unshielded Power Inductor / PI Series

Photomultiplier Tube Assemblies

COMPOSITE INSULATOR. ANSI Standard Type COMPOSITE LONGE ROD SUSPENSION INSULATOR. PDI 16mm Diameter Rod Deadend Insulators

Long 3000 hour life at 105 C with high ripple current capability 2 and 3 pin versions available Can vent construction

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Metal Oxide Leaded Film Resistor

Operating Temperature Range ( C) ±1% (F) ± ~ 1M E-24 NRC /20 (0.05) W 25V 50V ±5% (J) Resistance Tolerance (Code)

C4C-C4H-C4G-C4M MKP Series AXIAL CAPACITORS PCB APPLICATIONS

LR Series Metal Alloy Low-Resistance Resistor

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

RJJ Miniature Aluminum Electrolytic Capacitors RJJ. Series RJJ High-Frequency, Low Impedance, Standard Type. Radial Type

4. Construction. 5. Dimensions Unit mm

4.6 Autoregressive Moving Average Model ARMA(1,1)

Prepolarized Microphones-Free Field

SOFT FERRITE CORE FOR EMI/EMC SUPPRESSION. AVERTEC Co., Ltd.

Terminal Contact UL Insulation Designation (provided with) style form system approval Flux tight

Screened electronic cable LiYCY

Areas and Lengths in Polar Coordinates

Calculating the propagation delay of coaxial cable

SMD - Resistors. TThin Film Precision Chip Resistor - SMDT Series. Product : Size: 0201/0402/0603/0805/1206/1210/2010/2512. official distributor of

Screened electronic cable LiYCY

Series AM2DZ 2 Watt DC-DC Converter

Current Sense Metal Strip Resistors (CSMS Series)

RC series Thick Film Chip Resistor

Πυκνωτές-Capacitors. q=cu C=ε 0 (S/d) παράλληλες επιφάνειες Εµβαδού S απόστασης d ε 0 =8, C/Vm διηλεκτρική σταθερά κενού

NTC Thermistor:SCK Series

PhysicsAndMathsTutor.com 1

Thick Film Array Chip Resistor

PRODUCT IDENTIFICATION SWPA 3012 S 1R0 N T

Sunlord Specifications subject to change without notice. Please check our website for latest information. Revised 2018/04/15

EE512: Error Control Coding

PPA Metallized polypropylene film capacitor MKP - Snubber/pulse - High current

CHAROONG THAI WIRE & CABLE PUBLIC COMPANY LIMITED

Approximation of distance between locations on earth given by latitude and longitude

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ. Χρήστος Αθ. Χριστοδούλου. Επιβλέπων: Καθηγητής Ιωάννης Αθ. Σταθόπουλος

SMD Shielded Power Inductors SPIA Series. SPIA Series. Product Identification

Higher Derivative Gravity Theories

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC

LR(-A) Series Metal Alloy Low-Resistance Resistor

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

DC-DC converter circuits for mobile phones, wearbale devices, DVCs, HDDs, etc.

+85 C General Purpose Miniature Aluminum Capacitors

IXBH42N170 IXBT42N170

ALUMINUM ELECTROLYTIC CAPACITORS LKG

High Current Chip Ferrite Bead MHC Series

NTC Thermistor:SCK Series

Trimmable Thick Film Chip Resistor

Transcript:

DR. GYURCSEK ISTVÁN Exercises in Electromagnetic Field Sources and additional materials (recommended) Gyurcsek I. Elmer Gy.: Theories in Electric Circuits, Globe Edit 206, ISBN:97833307343 Simonyi K.: Villamosságtan. AK Budapest 983, ISBN:963053434 gyurcsek.istvan@mik.pte.hu 208.07.09.

Stationary Electric Field EMF.0 Find I electric current, flows through the aluminum rod when mv is connected to its terminals. The length of rod is 0 cm, diameter is 5 mm and Al 0,025 mm 2 /m. Surfaces, where current enters / leaves the aluminum body, supposed to be equipotential. Solution diff. Ohm s law J σ E ρ E l I න A J da ρ න A E da V න E dr E l E V l 0 A I ρ V l A V ρ l V R A A d2 π 4 25 π 4 9.625 mm 2 R ρ l A 0.025 0. 9.625.2739 0 4 27.39 μω I V R 0 3.2739 0 4 7.85 A 2 gyurcsek.istvan@mik.pte.hu 208.07.09.

Stationary Electric Field EMF.02 Find I AB then I CD when mv is connected to AB then CD terminals. Al 0,025 mm 2 /m Surfaces, where the current enters and leaves the aluminum body, supposed to be equipotential. Solution R ρ l A l σ A Integral formula with conditions Homogeneous material or is constant Constant length beside cross-section Constant cross-section beside length 3 gyurcsek.istvan@mik.pte.hu 208.07.09.

Stationary Electric Field R ABm ρ l A R CDm ρ l A 4 gyurcsek.istvan@mik.pte.hu 208.07.09.

Stationary Electric Field A m h d m π 2 h d k + d b 2 2 π 020 mm 2 l AB d k d b 2 70 mm 0.07 m R ABm ρ l AB A m.74 0 7 Ω I ABm V R ABm 5.834 ka 5 gyurcsek.istvan@mik.pte.hu 208.07.09.

Stationary Electric Field l m d m π 2 d k + d b 2 2 π 204.2 mm 0.2042 m A CD h d k d b 2 3500 mm 2 R CDm ρ l m A CD.46 0 6 Ω I CDm U R CDm 685 A 6 gyurcsek.istvan@mik.pte.hu 208.07.09.

Stationary Electric Field dr AB ρ r k R AB න dr AB න r b l A(r) ρ dr h r π r k ρ r b dr h r π ρ h π න r b r k r dr 7 gyurcsek.istvan@mik.pte.hu 208.07.09.

Stationary Electric Field R AB ρ h π න r b r k r dr ρ h π ln r r b r k ρ h π ln r k ln r b ρ h π ln r k r b R AB 2.5 0 8 0.05 π ln 200 60.962 0 7 Ω I AB V R AB 5,29 A 5,834 A 8 gyurcsek.istvan@mik.pte.hu 208.07.09.

Stationary Electric Field dg CD dr CD r k G CD න dg CD න rb r k r b da ρ l(r) h dr ρ r π h dr ρ r π h ρ π න rk rb r dr 9 gyurcsek.istvan@mik.pte.hu 208.07.09.

Stationary Electric Field G CD h ρ π න rk rb r dr h ρ π ln r r k r b h ρ π ln r k ln r b h ρ π ln r k r b G CD.5 2.5 0 8 π ln 200 60 7.665 05 S I CD V R CD R CD G CD.3046 0 6 Ω 0 3.3046 0 6 766 A 685 A 0 gyurcsek.istvan@mik.pte.hu 208.07.09.

Stationary Electric Field EMF.03 Calculate the earth resistance when the ground is wet and when it is dry. gyurcsek.istvan@mik.pte.hu 208.07.09.

Stationary Electric Field dr l σa(r) dr σ 2π r 2 R f σ 2π r rg σ 2π r G 2π σ r G R f න r G dr σ 2π r 2 σ 2π න r G r 2 dr R fwet 2π σ WET r G 3.83 Ω R fdry 2π σ DRY r G 38.3 Ω 2 gyurcsek.istvan@mik.pte.hu 208.07.09.

Stationary Electric Field EMF.04 Find the electric potential of the rod when the ground is wet and when it is dry. V fwet I R fwet 000 3.83 3.83 kv V fdry I R fdry 000 38.3 38.3 kv 3 gyurcsek.istvan@mik.pte.hu 208.07.09.

Stationary Electric Field EMF.05 Calculate the step voltage between the m and.5 m distant points to the lightning rod when the ground is wet and when it is dry. 4 gyurcsek.istvan@mik.pte.hu 208.07.09.

Stationary Electric Field R,2WET 2π σ WET r r 2 2π 0..5 0.53 Ω R,2DRY 2π σ DRY r r 2 R,2 r 2 2π σ න r 2 dr 2π σ r 2 r r r 2π σ r r 2 2π 0 3.5 53. Ω V,2WET I R,2WET 000 0.53 53 V V,2DRY I R,2DRY 000 53. 53. kv 5 gyurcsek.istvan@mik.pte.hu 208.07.09.

Stationary Electric Field Another way... J r I A r I 2π r 2 E r σ J(r) I σ 2π r 2 V,2 න r r 2 E(r)dr න r r 2 I σ 2π r 2 dr I 2π σ න r r 2 r 2 dr I 2π σ r r 2 I V(r) 2π σ r 6 gyurcsek.istvan@mik.pte.hu 208.07.09.

Stationary Electric Field EMF.06 Calculate the dissipated power in earth when the ground is wet and when it is dry. P WET V fwet I 383 000 3.83 MW P DRY V fdry I 38300 000 38.3 MW 7 gyurcsek.istvan@mik.pte.hu 208.07.09.

Stationary Electric Field Another way (differential Joule s-law) p r E r J r P V න V P V න r G P WET p r dv, I σ 2π r 2 I 2 σ 4π 2 r 4 2π r2 dr I 2π r 2 I 2 σ 4π 2 r 4 dv A dr 2π r 2 dr I2 2π σ න r G 000 2 0. 2π 0.5 3.83 MW P DRY r 2 dr I 2 2π σ r G 000 2 0 3 2π 0.5 38.3 MW 8 gyurcsek.istvan@mik.pte.hu 208.07.09.

Stationary vs. Static EF EMF.07 Calculate the electric current through each capacitor if the connected voltage is V 2 V. Find the dissipated power in each of layers and within the capacitors. Parameters A 20 cm 2 d 2,5 mm 6 0-8 / m 2 3 0-9 / m d mm d 2,5 mm A 8 cm 2 A 2 2 cm 2. 9 gyurcsek.istvan@mik.pte.hu 208.07.09.

Stationary vs. Static EF R a d σ A + d 2 σ 2 A I a V R a R ρ l A l σ A 0 3 6 0 8 20 0 4 +.5 0 3 3 0 9 8.33 + 250 258.33 MΩ 20 0 4 2 258.33 06 46.45 na P a I a 2 R a 46.45 0 9 2 8.33 0 6 7.98 nw P a P a + P a2 7.98 + 539.4 557.4 nw Comment Notice the analog behavior of static and stationary electric field in series capacitors. C a Q V C a + C a2 G a I V G a + G a2 P a2 I a 2 R a2 46.45 0 9 2 250 0 6 539.4 nw A + ε d A + σ d ε 2 A d 2 σ 2 A d 2 20 gyurcsek.istvan@mik.pte.hu 208.07.09. d ε A + d 2 ε 2 A d σ A + d 2 σ 2 A ε ε 2 A ε 2 d + ε d 2 σ σ 2 A σ 2 d + σ d 2

Stationary vs. Static EF R b R b R b2 I b V R b 2 48.45 d σ A 0.2477 μa d σ 2 A 2 2.5 0 3 6 0 8 8 0 4 2.5 0 3 3 0 9 2 0 4 52.08 0 6 694.4 0 6 48.45 MΩ P b P b + P b2 V2 R b + V2 R b2 22 52.08 + 22 694.4 2.765 + 0.2074 2.9724 μw Comment Notice the analog behavior of static and stationary electric field in parallel capacitors. A C b ε d + ε A 2 2 d A G b σ d + σ A 2 2 d 2 gyurcsek.istvan@mik.pte.hu 208.07.09.

Stationary vs. Static EF EMF.08 Find the leakage current through insulating layers in the km long high voltage coaxial cable and also calculate the dissipated power in the insulation. r 0,5 cm r 2,5 cm r 3 2 cm r 4 2,2 cm 0-8 / m 2 5 0-9 / m V 7 kv 22 gyurcsek.istvan@mik.pte.hu 208.07.09.

Stationary vs. Static EF R σ l 2π න r r2 r dr + σ 2 l 2π න r2 r3 r dr R l 2π σ r2 r3 ln rቚ + ln rቚ r σ 2 r2 dr dr σ(r) A(r) dr σ(r) l 2π r R 2π l ln r 2 r σ + ln r 3 r2 σ 2 r3 R න r dr r2 σ(r) l 2π r න r dr r3 σ l 2π r + න r2 dr σ 2 l 2π r 2π 0 3.5 2 ln ln 0.5 +.5 0 8 5 0 9 26.642 kω 23 gyurcsek.istvan@mik.pte.hu 208.07.09.

Stationary vs. Static EF I V R 7 26.642 262.7 ma, P V I 7000 0.2627 839 W Comment Notice the analog behavior of static and stationary electric field in bilateral capacitor & cable. C 2π l ln r 2 ln r 3 r r2 ε + ε 2, G 2π l ln r 2 r σ + ln r 3 r2 σ 2 24 gyurcsek.istvan@mik.pte.hu 208.07.09.

Stationary vs. Static EF EMF.09 Find the leakage current through insulating layers in the spherical capacitor and also calculate the dissipated power in the insulation. r 0,5 cm r 2,5 cm r 3 2 cm r 4 2,2 cm 0-8 / m 2 5 0-9 / m V 7 kv 25 gyurcsek.istvan@mik.pte.hu 208.07.09.

Stationary vs. Static EF r3 R න r dr r2 dr σ(r) 4π r 2 න σ 4π r 2 + න σ 2 4π r 2 r r2 r3 dr R r2 σ 4π න r 2 dr + r3 σ 2 4π න r 2 dr r r2 dr dr σ(r) A(r) dr σ(r) 4π r 2 R 4π σ r อ r2 r r3 + อ σ 2 r r2 R 4π r r 2 σ + r 2 r 3 σ 2 4π 0.5.5 0 8 +.5 2 5 0 9 3.29 MΩ 26 gyurcsek.istvan@mik.pte.hu 208.07.09.

Stationary vs. Static EF I V R 7 03.329 0 7 5.2647 ma, P V I 7 03 5.2647 0 3 36.853 W Comment Notice the analog behavior of static and stationary electric field in spherical capacitor & conductor. C 4π r 2 r r r 2 ε + r 3 r 2 r 2 r 3 ε 2, G 4π r 2 r r r 2 σ + r 3 r 2 r 2 r 3 σ 2 27 gyurcsek.istvan@mik.pte.hu 208.07.09.

Temp Dependency EMF.0 The electric current through a 230V/00W electric bulb, connected to the main voltage at 20 C ambient temperature is times higher than the current at 2400 C operating temperature. Find the temperature coefficient of tungsten filament. R n R 0 + α θ n θ 0 P n 00 W I 0 I n V R0 α θ n θ 0 0 α 0 θ n θ 0 R n + α θ V R n θ 0 0 Rn 0 2400 20 4.2 0 3 K R n V2 P n 2302 00 529 Ω R 0 R n 529 48. Ω α metal 4 0 3 K 28 gyurcsek.istvan@mik.pte.hu 208.07.09.

Temp Dependency EMF. Windings resistivity of an electric motor is calculated with specific resistivity ρ Cu.904 0-8 m instead of the catalog parameter of σ Cu 56 m/ mm 2 given at 25 C ambient temperature. Find the temperature coefficient of chopper (α Cu ) if the operating temperature is 42 C. θ 25 ρ Cu σ Cu 56 0.07857 Ωmm2 m.7857 0 8 Ωm ρ(θ) ρ 0 + α θ θ 0 α ρ θ ρ 0 ρ 0 θ θ 0.904 0 8.7857 0 8.7857 0 8 42 25 3.9 0 3 K α metal 4 0 3 K 29 gyurcsek.istvan@mik.pte.hu 208.07.09.

Temp Dependency EMF.2 Windings conductivity of an electric motor is calculated with specific σ Cu 48 m/ mm 2 instead of the catalog parameter of σ Cu 56 m/ mm 2 given at 25 C ambient temperature. Find the operating temperature. θ ρ ρ 0 α ρ 0 α 4 0 3 K ρ(θ) ρ 0 + α θ 48 56 4.67 56 4 0 3 θ θ 0 + θ 25 + 4.67 66.67 30 gyurcsek.istvan@mik.pte.hu 208.07.09.

Temp Dependency EMF.3 Calculate the power of the load when v 230 V ambient temperature is 40 C higher than the original θ 0. Resistors are given as the followings. R θ 0 4 Ω, α 0.002 K, P 2 300 W, α 2 0.004 K Solution v v + v 2 i R + P 2 i i2 R i v + P 2 0 4 i 2 230 i + 300 0 i,2 230 ± 2302 4 4 300 2 4 56.6 A ቊ.33 A R 2() P 2 2 i 300 56.6 2 0.095 Ω (short circuit) R 2(2) P 2 2 i 300 68.24 Ω (normal load) 2.332 3 gyurcsek.istvan@mik.pte.hu 208.07.09.

Temp Dependency R R + α θ 4 + 0.002 40 4.32 Ω R 2() R 2() + α 2 θ 0.095 + 0.004 40 0. Ω R 2(2) R 2(2) + α 2 θ 68.24 + 0.004 40 95.6 Ω i i 2 v R 5.9 A P + R 2() 2() v R.5 A P + R 2(2) 2(2) i 2 R 2() i 2 2 R 2(2) 297.28 W 259.44 W In case of short circuit the decrease of power is less because R b is dominant with its less temperature dependency. 32 gyurcsek.istvan@mik.pte.hu 208.07.09.

Temp Dependency EMF.4 Calculate the equivalent temperature coefficient of series resistors if R has α and R 2 has α 2 temperature coefficient. Solution R θ R 0 + α θ R 2 θ R 20 + α 2 θ R 2 θ R θ + R 2 θ R 0 + α θ + R 20 + α 2 θ R 0 + R 0 α θ + R 20 + R 20 α 2 θ R 0 + R 20 + R 0 α θ + R 20 α 2 θ R 0 + R 20 + α R 0 + α 2 R 20 R 0 + R 20 θ R 20 R 0 + R 20 α 2 α R 0 + α 2 R 20 R 0 + R 20 R 2 θ R 20 + α 2 θ 33 gyurcsek.istvan@mik.pte.hu 208.07.09.

Stationary MF EMF.5 Find the magnetic excitation, the magnetic induction and the magnetic flux in the core. Θ N I 000 000 A N I 000 H l N I H l 4 40 2.5 0 2 666.67 A m B μ 0 μ r H 4π 0 7 000 666.67 0.838 T Φ B A 0.838 0 4 83.8 μwb EMF.6 Find the magnetic excitation, the magnetic induction and the magnetic flux in the toroid when N250, d20 mm, D k 80 mm, I720 ma, μ r 300 Θ N I 250 0.72 800 A H l N I H B μ 0 μ r H 4π 0 7 300 76.2 0.7 T Φ B A B d2 π 4 36.76 μwb 34 gyurcsek.istvan@mik.pte.hu 208.07.09. N I l N I D k π 76.2 A m

Questions 35 gyurcsek.istvan@mik.pte.hu 208.07.09.