Chapter 2. Stress, Principal Stresses, Strain Energy

Σχετικά έγγραφα
ADVANCED STRUCTURAL MECHANICS

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Homework 8 Model Solution Section

Chapter 7 Transformations of Stress and Strain

Mechanics of Materials Lab

University of Waterloo. ME Mechanical Design 1. Partial notes Part 1

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Strain gauge and rosettes

Matrices Review. Here is an example of matrices multiplication for a 3x3 matrix

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

ΚΕΦΑΛΑΙΟ 1 Ο 1.1. ΕΛΑΣΤΙΚΟ ΣΤΕΡΕΟ

Second Order Partial Differential Equations

θ p = deg ε n = με ε t = με γ nt = μrad

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint


SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Πρόλογος...11 Εισαγωγή Ελαστικότητα... 15

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Spherical Coordinates

1 String with massive end-points

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

Lecture 6 Mohr s Circle for Plane Stress

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Parametrized Surfaces

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

Section 8.3 Trigonometric Equations

Μηχανουργική Τεχνολογία & Εργαστήριο Ι

1. Sketch the ground reactions on the diagram and write the following equations (in units of kips and feet). (8 points) ΣF x = 0 = ΣF y = 0 =

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Congruence Classes of Invertible Matrices of Order 3 over F 2

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Lecture 5 Plane Stress Transformation Equations

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Kul Finite element method I, Exercise 08/2016

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

1. In calculating the shear flow associated with the nail shown, which areas should be included in the calculation of Q? (3 points) Areas (1) and (5)

CRASH COURSE IN PRECALCULUS

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Fundamentals of Metal Forming. 1. Overview 2. Material Behavior 3. Temperature Effects 4. Strain Rate Effect 5. Friction and Lubrication

If we restrict the domain of y = sin x to [ π 2, π 2

σ zz Stresses in 3-D σ yy τ yx σ xx z τ zy τ zx τ yz τ xz τ xy

CYLINDRICAL & SPHERICAL COORDINATES

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

MECHANICAL PROPERTIES OF MATERIALS

Inverse trigonometric functions & General Solution of Trigonometric Equations

Areas and Lengths in Polar Coordinates

EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ

= l. = l. (Hooke s Law) Tensile: Poisson s ratio. σ = Εε. τ = G γ. Relationships between Stress and Strain

Lifting Entry (continued)

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Math221: HW# 1 solutions

Module #8b Transformation des contraintes et des déformations 2D-3D : Cercle de Mohr

Example Sheet 3 Solutions

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

The Jordan Form of Complex Tridiagonal Matrices

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Differential equations

Solution Series 9. i=1 x i and i=1 x i.

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Fourier Analysis of Waves

On the Galois Group of Linear Difference-Differential Equations

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Rectangular Polar Parametric

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

the total number of electrons passing through the lamp.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Second Order RLC Filters

Intuitionistic Fuzzy Ideals of Near Rings

Differentiation exercise show differential equation

Answer sheet: Third Midterm for Math 2339

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Numerical Analysis FMN011

EXPERIMENTAL AND NUMERICAL STUDY OF A STEEL-TO-COMPOSITE ADHESIVE JOINT UNDER BENDING MOMENTS

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

EE512: Error Control Coding

Chapter 7a. Elements of Elasticity, Thermal Stresses

Solution to Review Problems for Midterm III

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

Coupled Fluid Flow and Elastoplastic Damage Analysis of Acid. Stimulated Chalk Reservoirs

Εφαρμοσμένα Μαθηματικά ΙΙ

Transcript:

Chapter Stress, Principal Stresses, Strain nergy Traction vector, stress tensor z z σz τ zy ΔA ΔF A ΔA ΔF x ΔF z ΔF y y τ zx τ xz τxy σx τ yx τ yz σy y A x x F i j k is the traction force acting on the area Δ A ΔAk Δ Δ Fx + Δ Fy + ΔFz ΔF lim z df σ z z ΔA ΔA 0, ΔF lim x df τ x zx ΔA ΔA 0, ΔFy τ zy lim ΔA ΔA 0 dfy τ xy τ yx, τ yz τ zy, τ zx τ xz Principal stresses At any point in a general state of stress, there are three mutually perpendicular principal planes which are free of shear stress. The normal stresses acting on the principal planes are called principal stresses and their directions are called principal directions. The highest and lowest principal stresses represent the maximum and minimum of all normal stresses on planes of any orientation at that point.

-Dimensional Case σ x τ xy τ yx σ y τ yx dy τ xy σ x d R a y cosθ m sinθ j m i d R n θ x y d R y d R dr σ d R n p d R x θp x σ y d R b n i + m j cosθ i + sin θj dr i j a σx τxy drb τxy mi σy mj dr drx i + dry j equilibrium requires that dr + dr + dr 0 a b dr σ x x xy dr y τxy σy m if dr is parallel to n then dr σ n 0 σx σ τxy 0 τxy σy σ m 0 τ nontrivial solution exists if σ σ x τ xy τ y xy σ σ 0 eigenvalues (principal stresses) σ x + σy σx σy σ ± ( ) +τ xy eigenvectors (principal directions) θ p 1 tan -1 τxy σx σy

3-Dimensional Case n i + mj + nk ( + m + n 1 ) dr + dr + dr + dr 0 a b c drx σx τxy τxz dry τxy σy τyz m dr n z τxz τyz σz dr σ n 0 if σx σ τxy τxz 0 τxy σy σ τ yz m 0 n 0 τxz τyz σz σ 3 I1 I I3 0 σ σ + σ I 1 σ x + σ y + σ z I σxσ y +σyσ z +σzσx τxy τyz τ zx I 3 σx σy σ z + τxy τyz τzx σxτyz σyτzx σz τ xy Because the stress tensor is symmetric, all three eigenvalues 1 3 σ σ σ are real and the eigenvectors are mutually orthogonal.

Normal and Shear Stress in Principal Directions e 3 e e 1 n e + me + ne ( + m + n 1 ) 1 3 dr [ σ] n or drx σ1 0 0 dry 0 0 σ m dr 0 0 σ z 3 n T dr σ n T σ e + σ me + σ n e 1 1 3 3 T σ + σ m + σ n 1 3 normal stress drn drn σ n Tn 1 3 σ n σ + σ m + σ n shear stress τ s T σ n τ s ( σ 1 + σ m + σ3n ) ( σ 1 + σ m + σ3n ) 1 3 1 3 τ s ( σ σ ) m + ( σ σ ) m n + ( σ σ ) n

Octahedral and Maximum Shear Stress e 3 e e 1 for the octahedral plane octahedral normal stress 1 1 1 n e + e + e 3 3 3 1 3 1 σ oct ( σ 1 + σ + σ 3 ) 3 1 σ oct ( σ x + σ y + σ z ) 3 σ oct I1 3 octahedral shear stress 1/ τ 1 oct ( σ1 σ ) + ( σ σ 3 ) + ( σ3 σ1 ) 3 1 1/ τ oct ( σx σ y ) + ( σy σ z ) + ( σz σ x ) + 6( τ xy + τ yz + τzx ) 3 1 1/ τ oct I1 6 I 3 maximum shear stress τ max σ1 σ3

Stress-Strain-Temperature Relations Isotropic material ε x σx ν( σ y + σz) + αδ T ε y σy ν( σ x + σz) + αδ T ε z σz ν( σ x + σy) + αδ T γ xy γ yz γ xz τxy G τ yz G τxz G (1 +ν ) G Plane state of stress ε x σx νσy + αδ T ε y σy νσx + αδ T σ x 1 ( x y ) αδt ε + νε ν 1 ν σ y 1 ( y x ) α ΔT ε + νε ν 1 ν τxy γ xy τ xy G γ xy G General state of stress σ x [(1 ) ] α Δ ν ε x + νε T y + νεz (1 +ν) (1 ν) 1 ν σ y α ΔT [(1 ν) ε y + νε z + νεx] (1 +ν) (1 ν) 1 ν σ z [(1 ) ] α Δ ν ε z + νε T x + νεy (1 +ν) (1 ν) 1 ν

Strain nergy Density D D kd F DF f du k u du 0 0 k dv V o 1 1 o ( εxσ x + εyσ y + εzσ z) + ( γxyτ xy + γyzτ yz + γxzτ xz) two-dimensional 1 1 G o ( σ x + σ y νσ x σ y ) + τ xy (1 ) ( ) G ε + ε + νε ε + γ ν o x y x y xy three-dimensional 1 o [ σ x +σ y +σz ν ( σxσ y +σyσ z +σxσz )] 1 ( + τ xy +τ yz +τxz ) G [(1 )( ) ( )] (1 +ν)(1 ν) o ν ε x +ε y +ε z + ν εxε y +εyε z +εxεz G + ( γ xy +γ yz +γxz)

Strain nergy of Beams I dv V o 1 1 [ ( )] ( ) G o σ x +σ y +σ z ν σ x σ y +σ y σ z +σ x σ z + τ xy +τ yz +τ xz extension o σ σ P A P 0 A A 0 P A torsion o τ G τ T r J T r 0 GJ A 0 T GJ

Strain nergy of Beams II bending o σ σ M y I M y 0 I A M 0 I shear-bending o τ G τ VQ I t V Q 0 GI A t 1 A Q k I A t 0 V kag

Strain nergy of Beams, Summary extension 0 P A torsion 0 T JG bending M 0 I shear-bending V k, AG 0 k A Q I t dydz Castigliano's first theorem Δ k P M k, k θk Castigliano's second theorem * Pk Δk, * M k θk

Strain nergy of Distortion Average normal stress 1 1 σ a ( σ x + σ y + σ z) ( σ 1 + σ + σ 3) 3 3 Deviatoric stresses s x σx σ a, s y σy σ a, s z σz σ a s τ s xy τ xy, s yz τ yz, zx zx Total strain energy density Distortion strain energy density 1 o [ σ x +σ y +σz ν ( σxσ y +σyσ z +σxσz )] 1 ( + τ xy +τ yz +τxz ) G 1 od [ sx + sy + sz ν ( sxsy + sysz + sxsz )] 1 ( + sxy + syz + sxz ) G 1 [( ) ( ) ( ) 6( od σ x σ y + σ y σ z + σ z σ x + τ xy + τ yz + τ xz)] 1G od 1 [( 1 ) ( 3 ) ( 3 1 ) ] 1G σ σ + σ σ + σ σ Octahedral stress 1 1/ τ oct ( σx σ y ) + ( σy σ z ) + ( σz σ x ) + 6( τ xy + τ yz + τzx 3 1/ τ 1 oct ( σ1 σ ) + ( σ σ 3 ) + ( σ3 σ1 ) 3

3 4G od τ oct ffective stress (also equivalent tensile stress or von Mises stress) σ τ e oct 3 1 [( ) ( ) ( ) 6( )] 1/ σ e σx σ y + σy σ z + σz σ x + τ xy + τ yz + τ xz 1 σ e ( σ σ ) + ( σ σ ) + ( σ σ ) 1 3 3 1 in uniaxial tension σ e σ x in hydrostatic stress σ e 0 1 od σ e 6 G 1/

Stress Concentration σ max d σ 0 P Dt D t σ nom P ( D d) t σ K σ max t nom 3 d d d Kt 3.00 3.13 + 3.66 1.53 D D D b σ max σ max a a max (1 ) 0 b σ + σ σ max σ 0