Brownian sheet and the reflectionless potential. Setsuo TANIGUCHI. Faculty of Math., Kyushu Univ. Fukuoka , JAPAN

Σχετικά έγγραφα
REFLECTIONLESS POTENTIALS AND STOCHASTIC ANALYSIS. Setsuo TANIGUCHI. Faculty of Mathematics, Kyushu Univ.

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Example Sheet 3 Solutions

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:


D Alembert s Solution to the Wave Equation

Solutions to Exercise Sheet 5

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Homework 8 Model Solution Section

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Second Order Partial Differential Equations

Uniform Convergence of Fourier Series Michael Taylor

Solution Series 9. i=1 x i and i=1 x i.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Reminders: linear functions

ST5224: Advanced Statistical Theory II

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

On the Galois Group of Linear Difference-Differential Equations

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Inverse trigonometric functions & General Solution of Trigonometric Equations

Math221: HW# 1 solutions

Math 248 Homework 1. Edward Burkard. Exercise 1. Prove the following Fourier Transforms where a > 0 and c R: f (x) = b. f(x c) = e.

EE512: Error Control Coding

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Parametrized Surfaces

Every set of first-order formulas is equivalent to an independent set

Probability and Random Processes (Part II)

70. Let Y be a metrizable topological space and let A Ď Y. Show that Cl Y A scl Y A.

The circle theorem and related theorems for Gauss-type quadrature rules

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Local Approximation with Kernels

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

SPECIAL FUNCTIONS and POLYNOMIALS

w o = R 1 p. (1) R = p =. = 1

Iterated trilinear fourier integrals with arbitrary symbols

2 Composition. Invertible Mappings

Finite Field Problems: Solutions

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)

Matrices and Determinants

Spherical Coordinates

Empirical best prediction under area-level Poisson mixed models

Statistical Inference I Locally most powerful tests

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Double Integrals, Iterated Integrals, Cross-sections

Durbin-Levinson recursive method

Answer sheet: Third Midterm for Math 2339

6.3 Forecasting ARMA processes

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

( y) Partial Differential Equations

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Problem Set 3: Solutions

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

A Note on Intuitionistic Fuzzy. Equivalence Relation

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

Math 6 SL Probability Distributions Practice Test Mark Scheme

Geodesic Equations for the Wormhole Metric

1 String with massive end-points

The one-dimensional periodic Schrödinger equation

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Section 8.3 Trigonometric Equations

Fractional Colorings and Zykov Products of graphs

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

MA 342N Assignment 1 Due 24 February 2016

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Homomorphism in Intuitionistic Fuzzy Automata

4.6 Autoregressive Moving Average Model ARMA(1,1)

C.S. 430 Assignment 6, Sample Solutions

de Rham Theorem May 10, 2016

Differentiation exercise show differential equation

Approximation of distance between locations on earth given by latitude and longitude


Fourier Analysis of Waves

Homework 3 Solutions

Lecture 15 - Root System Axiomatics

F19MC2 Solutions 9 Complex Analysis

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Mellin transforms and asymptotics: Harmonic sums

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

12. Radon-Nikodym Theorem

Math 5440 Problem Set 4 Solutions

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009

SOLVING CUBICS AND QUARTICS BY RADICALS

Transcript:

Brownian sheet and the reflectionless potential Setsuo TANIGUCHI Faculty of Math., Kyushu Univ. Fukuoka 812-8581, JAPAN June 1, 24, at Keio Univ. http://www.math.kyushu-u.ac.jp/~taniguch/ Partially supported by Grant-in-Aid for Scientific Research (A)(1) 14241 1

The KdV equation v t = (3/2)vv x + (1/4)v xxx Nonlin. differ. eq. for a shallow water wave. n-soliton solutions; at t =, behaves n1 a j sech 2 ( c j (x c j + δ j )/2). For n N, the space of scattering data; S n = { (η j, m j ) (, ) 2n η i η j (i j) }. u s :reflectionless potential For s S n, u s (x) = 2(d/dx) 2 log det(i + G s (x)), ( mi m j e (η i+η j )x) where G s (x) = η i + η j If s(t) = (η j, m j exp[ 2ηj 3 t]), then v(x, t) = u s(t) (x) solves the KdV equation. 1 i,j n. 2

Kotani s homeo. Given λ >, Ξ cl ([ λ, ]) = {u s s S n, n N, Spec( (d/dx) 2 + u s ) [ λ, )}, Ξ([ λ, ]) = Ξ cl ([ λ, ]) unif conv on cpts, Σ([ λ, λ ]) = {σ meas. on [ λ, λ ] s.t. [ λ, λ ] {λ ζ 2 } 1 σ(dζ) 1}. Θ : Ξ([ λ, ]) Σ([ λ, λ ])(homeo) Let u Ξ([ λ, ]). 1) For λ C \ R,!f± u (x, λ) so that L u f± u = λf ± u, f ± u () = 1, f ± u L2 (R ± ). 2) σ± u s.t. R (1 + ξ2 ) 1 σ± u (dξ) < & ±(f± u ) (, λ) = α u ± + βu ± z + ( 1 R ξ z ξ ) 1+ξ σ u 2 ± (dξ) 3) σ u = Θ(u) is defined by (,] f( ± ξ ) 1 ξ σ u ± (dξ) = R f(ζ)σ u(ζ). 3

Marchenko and Dyson formulae: For x >, where u(x) = 2 d dx Ku + (x, x), (M) = 2 d2 u,x log det(i + F dx2 + ), (D) F u + (x, y) = ( 2 / x y) ( R (1 cos ξx)(1 cos ξy) ξ 2 σ+ u (dξ) x y). K+ u (x, y) + F + u (x, y) + x F+ u (y, t)ku + (x, t)dt =, F u,x + g = x F+ u (, z)g(z)dz. 4

Let σ u = Θ(u), {X σu (x)} x R be the centered Gaussian process with cov. R σu (x, y) R (eζ(x+y) e ζ x y )/(2ζ)σ u (dζ). Kotani showed R σu = F+ u, and hence u(x) = 4 d2 ( ( dx 2log exp 1 x ) ) X σu (y) 2 dy dp. 2 Let G = {{X(y)} y cent Gau pr with R σ, σ M (R)}, where M (R) = {σ meas. suppσ R}. Θ : Ξ([ λ, ]) G, λ > Question; Expressing u in terms of σ u. 5

For σ Σ n = { n j=1 c 2 j δ p j p i p j, c j > }, assume m, 1 j(1) < < j(m) n s.t. p j p j+1, (H) p j(l) >, p j(l)+1 = p j(l), and #{ p 1,..., p n } = n m. Let < r 1 < < r n m be the roots of nj=1 c 2 j /(p2 j r) + 1 =. Define < η 1 < < η n, < m 1,..., m n by {η 1,...,η n } = {p j(1),...,p j(m),r 1/2 1,...,r 1/2 c 2 j(l)+1 η k + η i 2η i c 2 η j(l) k i k η i p k + η i, m i = p k η i 2η i k i k j(l),j(l)+1 η k + η i η k η i if i = j(l), n p k + η i. p k η i k=1 n m }. ψ n : Σ n σ (η 1,..., η n, m 1,..., m n ) S n. 6

Theorem 1 (Ikeda-T.) For σ Σ n, set ξ σ (y) = e yd σ y X σ (y) = c, ξ σ (y), [ I σ (x) = exp 1 2 e zd σ db(z), x ] X σ (y) 2 dy dp, where B is an n-dim Bm on (, F, P ), D σ = diag(p j ), c = t (c 1,..., c n ). Then Θ 1 = ψ n on Σ n in the sense that u ψn (σ) (x) = 4(d/dx)2 log I σ (x), Question; Can one express the uniform convergence on compacts of generalized ref less potentials in terms of Gaussian processes? 7

Let {W (p, x)} (p,x) [, ) 2 be the Brownian sheet on (, F, P ), i.e., the centered Gaussian system with cov W (p, x)w (q, y)dp = (p q)(x y) The Wiener integral is defined so that L 2 ([, ) 2 ) h iso hdw L2 (P ) [, ) 2 s.t. dw = W (b, d) [, ) 2 χ [a,b) [c,d) W (a, d) W (b, c) + W (a, c), For any q < < q n, W q...q n (y) = ( {q j q j 1 } 1/2{ W (q j, y) W (q j 1, y) }) 1 j n is an n-dim Bm, and for f L 2 ([, ); R n ), y f(z), dw q...q n (z) = n j=1 [, ) 2 f j (z) qj q j 1 χ [qj 1,q j ) [,y)(q, z)w (dq, dz), 8

Let T > and take {h( ; t) t [, T ]} L 2 ([, ) 2 ) s.t. [, ) 2 h(v; t) h(v; s) 2 dv K sup s<t T t s <. Set X(y) = [, ) 2 h( ; y)dw. Then X(t) X(s) 2m dp (2m)! 2 m m! Km t s m Thus {X(y)} y [,T ] admits a conti. ver. Theorem 2. C m,t > s.t. for any {h( ; t) t [, T ]} as above, X(t) X(s) 2m sup s<t T t s m (3/2) dp C m,tk m, sup X(y) 2m dp C m,t K m. y [,T ] ) sup s<t T φ(t) φ(s) α / t s β 2 2 3α+2( β ) α T T φ(t) φ(s) α β 2 dtds. t s β 9

a, g : [, ) R; p.w.conti., cpt supp., h a,g (q, z; y) = e (y z)(q a) g(q)χ [,y) (z) X a,g (y) = h a,g( ; y)dw. [, ) 2 ˆp = {p n } n=1, ĉ = {c n} n=1 R. Suppose p n = p n(ˆp) if n n(ˆp), j=2 p j p j 1 <, j=1 c 2 j <, where n(ˆp) = min{k N p k+1 {p 1,..., p k }}. For a, b R with a b < p 1, h a,b,ˆp,ĉ (q, z; y) = e (y z)pj c j j=1 χ qj q [qj 1,q j 1 j ) [,y)(q, z), Y a,b,ˆp,ĉ (y) = h a,b,ˆp,ĉ( ; y)dw. [, ) 2 where q = b + a, q k = q + k j=1 p j p j 1 (p = b). 1

p = {p j } n j=1, c = {c j} n j=1 R with p i p j. For a, b R with a b < p 1, define q < q 1 < < q n as above. ξ a,b,p (y) = y e (y z)d(p) dw q...q n (z) X a,b,p,c (y) = c, ξ a,b,p (y), where D(p) = diag(p j ). Extend p, c to ˆp, ĉ, and observe X a,b,p,c (y) = Y a,b,ˆp,ĉ (y). Redefine the Wiener f nal rel to ref less pot; [ Ψ a,b,p,c (x) = exp 1 x ] X a,b,p,c (y) 2 dy dp. 2 Ψ a,b,p,c is C, and Ψ a,b,p,c (x) = 1 { 2 nj=1 c 2 4 j + + 2X a,b,p,c (x)x a,b,p,d(p)c (x) X a,b,p,c (x) 4} exp [ 2 1 x X a,b,p,c (y) 2 dy ] dp. 11

Covariances are given by X a,g (x)x a,g (y)dp = a g(q + a) 2eq(x+y) e q x y dq, 2q Y a,b,ˆp,ĉ (x)y a,b,ˆp,ĉ (y)dp = j=1 c 2 j 2p j { e (x+y)p j e x y p j }, X a,b,p,c (x)x a,b,p,c (y)dp = n j=1 c 2 j 2p j { e (x+y)p j e x y p j }. R σ (x, y) = {e ζ(x+y) e ζ x y }/(2ζ)σ(dζ); σ(dζ) =χ [ a, ) g(ζ + a) 2 dζ, n c 2 j δ p j (dζ), c 2 j δ p j (dζ). j=1 j=1 12

Theorem 3. Let a, b a, g : [, ) R; suppg [a + b, T ] ( T > ). Take m(1) < m(2) < N, p n = {p n j }m(n) j=1, cn = {c n j }m(n) j=1, s.t. (a) b < p n 1 < < pn m(n) = T a, (b) c n j = g(pn j + a){pn j pn j 1 }1/2, (c) max j {p n j pn j 1 } (pn = b). pw conti., Then, (i) X a,b,p n L2,cn(y) X a,g (y), (ii) X a,b,p n,c w n X a,g on C([, T ]; R), ( T ) (iii) Ψ (j) a,b,p n,c n Ψ (j) a,g uniformly on cpts, j =, 1, 2. { Ψ a,g (x) = 1 2 g(y) 2 dy 4 } + 2X a,g (x)x a, g (x) X a,g (x) 4 [ exp 1 2 x where g(y) = (y a)g(y). ] X a,g (y) 2 dy dp. 13

Theorem 4. Let a, T >, and σ a finite meas., suppσ ( a, T a). Take φ, C (R) with φ = 1, and set φ n (x) = nφ(nx), g n (x) = {φ n σ(x a)} 1/2. w Then (i) X a,gn Xσ on C([, T ]; R), where X σ is the cent Gau pr with cov R σ ; R σ (x, y) = {e ζ(x+y) e ζ x y }/(2ζ)σ(dζ) (ii) Ψ (j) a,g n Ψ (j) σ uniformly on cpts, j =, 1, 2. Cor. p n = {p n j }m(n) j=1, cn = {c n j }m(n) j=1 s.t. (i) X a,b,p n,c w n X σ on C([, T ]; R), (ii) Ψ (j) a,b,p n,c n Ψ (j) σ uniformly on cpts, j =, 1, 2. In particular, the ref less potential 4(d/dx) 2 log Φ a,b,p n,cn(x) tends to the generalized one 4(d/dx) 2 log Ψ σ (x) uniformly on cpts. 14

Key ingredients; 1) Exact expression of the second derivatives. 2) Estimation of Hölderian norms; a) (Thm.3) For Y a,b,ˆp,ĉ, Kˆp,ĉ,T = 2e 2T M(ˆp) {1 + T 2 M(ˆp) 2 }S(ĉ), M(ˆp) = sup p j, S(ĉ) = j c2 j. sup n Kˆp n,ĉ n,t <, sup n Kˆp n,d(ˆp n )ĉ n,t <. b) (Thm.4) For X a,g, K a,g,t = 2(T + a + 1) 2 (T 2 + 1) e 2T (T +a) g 2 dq. sup n K a,gn,t <, sup n K a, gn,t <. 15

{X(x)} x ; a conti Gau pr with cov R(x, y) {N(x)} x ; a 1-dim Bm indep of X G(x) = x X(y)dy + N(x), x. G x = σ(g(y) : y x), ˆX(x) = E[X(x) G x ], γ X (x) (X(x) ˆX(x)) 2 dp. K(x, y), L(x, y); the Volterra kernels K(x, y) + x K(x, z)r(z, y)dz = R(x, y), L(x, y) K(x, y) x y K(x, z)l(z, y)dz =. Then L(x, y) = χ [,x] (y) X(x)(X(y) ˆX(y))dP. In particular, γ X (x) = L(x, x) = K(x, x). Kleptsyna and Le Breton showed; x 2 exp[ 1 X(y) 2 dy]dp = exp[ 1 x 2 γ X (y)dy] Hence 4 d2 dx 2 log( exp[ 1 x 2 X(y) 2 dy ] dp ) = 2 d ( K(x, x)). dx Substitute X = X σu. The Marchenko formula recovered via the Gaussian process. 16

Let (η j, m j ) = ψ n (σ p,c ). U O(n) s.t. D(p) 2 + c c = UR 2 U 1 (R = diag(η)). Set φ(y, t) = U{cosh(yR + tr 3 ) sinh(yr + tr 3 )R 1 U 1 D(p)U}U 1, β t = (( y φ)φ 1 )(, t) D(p), q(x, t) = 1 x 2 X a,b,p,c (y) 2 dy 2 1 β tξ a,b,p (x), ξ a,b,p (x), v(x, t) = 4 2 x log( eq(x,t) dp ). Theorem 5 (I&T) v(x, t) solves the KdV. Theorem 6 (T) It holds that e ζq(x,t) dp = {e xtrd(p) det[c(x; B(ζ)) (ζβ t + D(p))s(x; B(ζ))]} 1/2, where c(x; A) = cosh(xa 1/2 ), s(x; A) = A 1/2 sinh(xa 1/2 ). Naïve question (open); If n, then? 17