Error Evaluation and Monotonic Convergence in Numerical Simulation of Flow

Σχετικά έγγραφα
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

High order interpolation function for surface contact problem

3-dimensional motion simulation of a ship in waves using composite grid method

Computing the Gradient

Discretization of Generalized Convection-Diffusion

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΔΥΝΑΜΙΚΗΣ ΤΟΥ ΕΔΑΦΙΚΟΥ ΝΕΡΟΥ ΣΤΗΝ ΠΕΡΙΠΤΩΣΗ ΑΡΔΕΥΣΗΣ ΜΕ ΥΠΟΓΕΙΟΥΣ ΣΤΑΛΑΚΤΗΦΟΡΟΥΣ ΣΩΛΗΝΕΣ ΣΕ ΔΙΑΣΤΡΩΜΕΝΑ ΕΔΑΦΗ

Eulerian Simulation of Large Deformations

Eects of Gas-Surface Interaction Model in Hypersonic Rareed Gas Flow

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, ΥΠΟΛΟΓΙΣΤΙΚΑ ΠΑΚΕΤΑ. ΕΦΑΡΜΟΓΕΣ και ΠΑΡΑΔΕΙΓΜΑΤΑ

ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ

Η Ρευστομηχανική από τον Αρχιμήδη μέχρι σήμερα. μια σύντομη ιστορική αναδρομή

Finite difference method for 2-D heat equation

Swirl diffusers, Variable swirl diffusers Swirl diffusers

Βιβλιογραφία-Αρθρογραφία

Oscillatory Gap Damping

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

Discretization of the Convection Term

Development of Simulation Method for Multiphase Flows : Application to Gas-Liquid and Gas-Solid Two Phase Flows

ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΡΟΗΣ ΜΗ-ΝΕΥΤΩΝΙΚΟΥ ΡΕΥΣΤΟΥ

Αριθµητικές Μέθοδοι Collocation. Απεικόνιση σε Σύγχρονες Υπολογιστικές Αρχιτεκτονικές

ΒΙΟΓΡΑΦΙΚΟ ΥΠΟΜΝΗΜΑ ΝΑΡΗΣ ΣΤΕΡΓΙΟΣ

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων

L p approach to free boundary problems of the Navier-Stokes equation

Wavelet based matrix compression for boundary integral equations on complex geometries

2.1

Thi=Τ1. Thο=Τ2. Tci=Τ3. Tco=Τ4. Thm=Τ5. Tcm=Τ6

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

ΥΠΟΛΟΓΙΣΤΙΚΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ. Εισαγωγή

Turbulent Flow Measurement with Hot-wire Anemometer

Διδακτορική Διατριβή Α : Αριθμητική προσομοίωση της τρισδιάστατης τυρβώδους ροής θραυομένων κυμάτων στην παράκτια ζώνη απόσβεσης

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

Analysis o n Characteristic s of Fire Smoke in Highway Tunnel by CFD Simulatio n

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

Numerical Methods for Civil Engineers. Lecture 10 Ordinary Differential Equations. Ordinary Differential Equations. d x dx.

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ : Πτυχίο Χημικού Μηχανικού της Πολυτεχνικής Σχολής του Α- ριστοτελείου Πανεπιστημίου Θεσσαλονίκης.

Συγκριτική Αξιολόγηση Προσοµοιωµάτων Τοιχείων και Πυρήνων Κτηρίων µε τη Μέθοδο των Πεπερασµένων Στοιχείων και Πειραµατικά Αποτελέσµατα

Approximation of distance between locations on earth given by latitude and longitude

Research on divergence correction method in 3D numerical modeling of 3D controlled source electromagnetic fields

A System Dynamics Model on Multiple2Echelon Control

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΡΟΗΣ ΜΗ-ΝΕΥΤΩΝΙΚΩΝ ΡΕΥΣΤΩΝ ΣΕ μ- ΚΑΝΑΛΙΑ ΜΕ ΔΙΑΜΟΡΦΩΜΕΝΗ ΕΠΙΦΑΝΕΙΑ

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΙΔΑΣ Α. ΣΠΥΡΟΥ Διδακτορικό σε Υπολογιστική Εμβιομηχανική, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας.

the total number of electrons passing through the lamp.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

1/10. 10dB. Jacob (7)

BMI/CS 776 Lecture #14: Multiple Alignment - MUSCLE. Colin Dewey


MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points.

an example of interactive airfoil design

Yahoo 2. SNS Social Networking Service [3,5,12] Copyright c by ORSJ. Unauthorized reproduction of this article is prohibited.

CHINESE JOURNAL OF COMPUTATIONAL PHYSICS ] A. T e ) = ei ( T i - T e ) + er ( T r - T e ), T i ) = ei ( T e - T i ), T r ) = er ( T e - T r ),

H ΕΠΙ ΡΑΣΗ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΚΑΙ ΤΗΝ ΑΝΑΛΥΤΙΚΗ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ TΩΝ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΩΝ ΒΙΟΕΠΙΣΤΗΜΩΝ

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ Νικολάου Μαλαματάρη του Αθανασίου. 22 Απριλίου 1963, Θεσσαλονίκη, Ελλάς

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Λέκτορας στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων, Πανεπιστήμιο Πειραιώς, Ιανουάριος 2012-Μάρτιος 2014.

Development of Finer Spray Atomization for Fuel Injectors of Gasoline Engines

Singuläre Störungsrechnung und ihre Anwendung in der Aerodynamik. Stefan Braun

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

Fused Bis-Benzothiadiazoles as Electron Acceptors

SHUILI XUEBAO. KFVS( Kinetic Flux Vector Splitting) Boltzmann, KFVS( Kinetic Flux Vector Splitting) BGK(Bhatnagar2Gross2Krook) (Well2balanced),


Ceramic PTC Thermistor Overload Protection

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

(Proper Orthogonal Decomposition, POD) POD POD Galerkin Projection PIV. Proper Orthogonal Decomposition in Fluid Flow Analysis: 1.

Lifting Entry (continued)

Magnetically Coupled Circuits

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ Ζαχαρούλα Καλογηράτου

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Numerical simulation of Earth s gravitational field recovery from SST based on the energy conservation principle

Presentation Structure

Improvement of wave height forecast in deep and intermediate waters with the use of stochastic methods

Parametrized Surfaces

Ρευστομηχανική. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

6.3 Forecasting ARMA processes

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

SCOPE OF ACCREDITATION TO ISO 17025:2005

C F E E E F FF E F B F F A EA C AEC

Motion analysis and simulation of a stratospheric airship

Παίζοντας με τις φυσαλίδες: εμβάθυνση σε ένα απλό πείραμα μελέτης της ευθύγραμμης ομαλής κίνησης

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ-ΜΟΝΑΔΑ ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΡΕΥΣΤΟΔΥΝΑΜΙΚΗΣ

SIMULATION DRIVEN PRODUCT DEVELOPMENT

ΜΕΘΟΔΟΙ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΖΕΝΙΘΕΙΑΣ ΤΡΟΠΟΣΦΑΙΡΙΚΗΣ ΥΣΤΕΡΗΣΗΣ ΣΕ ΜΟΝΙΜΟΥΣ ΣΤΑΘΜΟΥΣ GNSS

Effects of Heat And Mass Transfer of Thin Film Region on the Stability of the Capillary Evaporating Meniscus

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

Ψηφιακή Επεξεργασία Φωνής

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία

The toxicity of three chitin synthesis inhibitors to Calliptamus italicus Othoptera Acridoidea

Εφαρμογή της μεθόδου πεπερασμένων διαφορών στην εξίσωση θερμότητας

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ 1. ΠΡΟΣΩΠΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

Transcript:

2122 6 15. CFD Error Evaluation and Monotonic Convergence in Numerical Simulation of Flow Toshiyuki HAYASE 1 3 CFD 1 5 CFD 6 98-8577 2-1-1 E-mail: hayase@ifs.tohoku.ac.jp Richardson Extrapolation Grid Convergence IndexGCI 3 2 Richardson Extrapolation Grid Convergence IndexGCI 2 2.1 Validation Verification 2 Validation Verification 4 1Validation 2Verification 1 validation

7 2 verification verification validation verification validation verification 2.2 Grid Convergence IndexGCI Grid Convergence IndexGCI Roache 3 Richardson Extrapolation f h Taylor f = f + g 1 h + g 2 h 2 + g 3 h 3 + 1 f h = 2 g 1 = 2 h 1 h 2 (h 1 < h 2 ) f 1 f 2 f f = f 1 + f 1 f 2 r 2 1 + O ( h 3) r 2 / r = h 2 h1 (> 1) 2 3 2 3 f Richardson Extrapolation Roache p f 1 f 2 3 GCI 1 GCI 2 4 h 2 f 2 GCI 1 = 3 ε r p 1, GCI 2 = 3 ε r p r p 1, ε = f 2 f 1 f 1 5 GCI 7 1 2 QUICK 3 11 SIMPLER 2 QUICK 2 12 2 2 3% 2 κ ε 2 2 13 LES κ ε 14 17 f = f 1 + f 1 f 2 r p 1 + O (hp+1 ) 4

8 3.1 1 X 1 X 2 X 3 U 1 U 2 U 3 div U = 6 U T + ( U grad ) U = grad P + 1 2 U 7 Re Re Re = Ũ m b / ν 8 Blasius Ũ m = 2 P / λl ρ, λ = 2 P / L =.316Re 1/4 9 X 2 1 X 3 O 1 U 3 U 2 1 U 1 L X 1 L P SIMPLER 18 QUICK 2 19 2 2 CRAY C916 1 X 1 1 Present DNSHuser and Biringen Grid system GridA GridB GridC DNSA DNSB Grid points N 1 N 2 N 3 2 1 2 4 2 2 8 4 2 64 81 2 96 1 2.1 (.4.1 (.3 Grid spacing h 1 h 2 h 3.2.1 2.1.5 2.5.25 2.21) 2.17) 2 Mean grid size h mean = 3 h 1 h 2 h 3.126.63.32.11-.35.1-.3 Time step QUICK ht for 5 % error torelance in U m CENTRAL.1.94.5.42.5.44.25.3.25.27.1.17.157.126 Convective term discretization 3rd-order QUICK or 2nd-order central 5th-order upwind Time derivative term discretization 2nd-order 3-time-level implicit 4th-order Runge-Kutta Total residual at convergence.1.1.15 - - CPU time [s] for one time step 2 15 1 - - Periodical length L 4 6.4 Pressure difference P.649.125 Standard Reynolds number Re (Re τ ) 9573 94846

9 L 2 τ = ν / ε ( Ũ m / b ) 1 4 Su 15 6.3Madabhushi 14 6.4Huser 17 L = 4 L GRIDAB C 3 P Re 9 1 1 22 τ =.15 2 AB QUICK CENTRAL 1.8 21 1.7 1.6 1.5 1.4 1.3 1.2 3.2 1.1 Kolmogorov time scale 1...5.1.15.2 aquick 2 1.4 1.3 QUICK 2 CENTRAL AC 1.2 1.1 1. QUICK.9.8.7 QUICK Kolmogorov time scale Choi 2.6..5.1.15.2 2 bcentral U m U m

1 (a) QUICK, (b) QUICK, (c) QUICK,.2 64.2 64.24 (d) CENTRAL, (e) CENTRAL, (f) CENTRAL,.2 64.2 64.24 3 U 1 S 1 (ω n ) = E U 1 (t 2 m) exp ( jω n t m ) m=1 (n = 1,, ), 11 ω n = 2πn / ( ) E[ ] Nd N d N d (α n ) = U c S 1 (ω n ) 12 / α n = ω n Uc 3afQUICK CENTRAL 3 Huser DNS 17 3a L/k k = 1, 2, 3, α B 1 4 4 QUICK CENTRAL 3 2

11 18 18 16 14 Kolmogorov time scale 16 14 Kolmogorov time scale 12 1 12 1 B 8 6 4 2 B 8 6 4 2..5.1.15.2..5.1.15.2 aquick bcentral 4.2.1 * = h mean h mean = 3 h1 h 2 h 3 14 *.2.1 Bulk velocity Bandwidth QUICK CENTRAL.2.2.1.2 h mean 1/5 CENTRAL QUICK 1/2 ht 1 5 ht = φ 2 1 13 φ 2 φ 1 φ 1 φ 2 1 2 φ 13 5 2 5% ht 3.3 6 2 QUICK CENTRAL U τ = P / (4L) y + = U τ Re y Huser DNS / U 1 Uτ = y + 6a QUICK A DNS BC DNS

12 35 35 U 1 /U 3 25 2 15 DNS (B) U 1 /U 3 25 2 15 DNS (B) 1 1 5 5 1 1 y + y + aquick bcentral 6-5/3-5/3.5 5 aquick 7.5 5 bcentral 6b CENTRAL A DNS B DNS C DNS QUICK CEN- TRAL 7 7a QUICK CENTRAL QUICK CENTRAL C α 5/3 8 QUICK CENTRAL 8aQUICK CENTRAL 1 2 8aCENTRAL h mean =.63 QUICK

13 1.7 2 1.5 Kolmogorov length scale QUICK 18 16 14 CENTRAL U m 1. DNS (B) B 12 1 8 6 QUICK CENTRAL 4 2 Kolmogorov length scale.5..5.1.15..5.1.15 h mean a 8 CENTRAL QUICK CENTRAL 2 1 CENTRAL QUICK 8a 2 QUICK Huser DNS 8a 3 ( ν / ε ) 1/4 η = b = ν 3/4 b (.1Ũ 3 m / b ) 1/4 15 DNSB C DNSB CDNS 8bQUICK CENTRAL 2 Scheme QUICK p = 2 CENTRAL p = 2 h mean b GCI Grid Error%GCI 1 %GCI 2 % A 64-138 B 21 34 54 C 9 14 - A 7-15 B 23 38 32 C 16 8 - DNSA CENTRAL h mean α B QUICK 2 GCI 8a GCI 2 QUICK 3 2 p = 2 QUICK GCI GCI

14 CENTRAL C GCI B BC CENTRAL GCI GRID A CENTRAL 4 2 QUICK QUICK J. A. C. HumphreyR. Greif 1U. B. Mehta : Some Aspects of Uncertainty in Computational Fluid Dynamics Results, Trans. ASME, J. Fluids Eng. 1131991538 543. 2A. O. Demuren & R. V. Wilson : Estimating Uncertainty in Computations of Two-Dimensional Separated Flows, Trans. ASME, J. Fluids Eng. 116 1994216 22. 3P. J. Roache : Perspective: A Method for Uniform Reporting of Grid Refinement Studies, Trans. ASME, J. Fluids Eng. 116199445 413. 4P. J. Roache : Quantification of Uncertainty in Computational Fluid Dynamics, Ann. Rev. Fluid Mech. 291997123 16. 5P. J. Roache : Verification of Codes and Calculations, AIAA Journal 361998696 72. 6C. J. Freitas : Policy Statement on the Control of Numerical Accuracy, Trans. ASME, J. Fluids Eng. 1151993339 34. 7I. Celik & W. Zhang : Calculation of Numerical Uncertainty Using Richardson Extrapolation: Application to Some Simple Turbulent Flow Calculations, Trans. ASME, J. Fluids Eng. 1171995 439 445. 8I. Celik & O. Karatekin : Numerical Experiments on Application of Richardson Extrapolation with Nonuniform Grids, Trans. ASME, J. Fluids Eng. 1191997584 59. 9J. Bergstrom & R. Gebart : Estimation of Numerical Accuracy for the Flow Field in a Draft Tube, Int. J. Numerical Method for Heat and Fluid Flow 91999472 486. 1C. Chen, R. Lotz & B. Thompson : Assessment of Numerical Uncertainty Around Shocks and Corners on Blunt Trailing-Edge Supercritical Airfoils, Computers and Fluids 312225 4. 11T. Hayase : Monotonic Convergence Property of Turbulent Flow Solution With Central Difference and QUICK Schemes, Trans. ASME, J. Fluids Eng. 1211999351 358. 12H. Schlichting : Boundary Layer Theory, 7th English Ed.McGraw Hill, 1979612. 13A. O. Demuren & W. Rodi : Calculation of Tur-

15 bulence Driven Secondary Motion in Non Circular Ducts, Trans. ASME, J. Fluids Eng. 141984 189 222. 14R. Madabhushi & S. Vanka : Large Eddy Simulation of Turbulence-Driven Secondary Flow in a Square Duct, Physics of Fluids A 319912734 2745. 15M. Su & R. Friedrich : Investigation of Fully Developed Turbulent Flow in a Straight Duct with Large Eddy Simulation, Trans. ASME, J. Fluids Eng. 1161994677 684. 16H. K. Myong & T. Kobayashi : Prediction of Three-Dimensional Developing Turbulent Flow in a Square Duct with an Anisotropic Low-Reynolds- Number κ ε Model, Trans. ASME, J. Fluids Eng. 113199168 615. 17A. Huser & S. Biringen : Direct Numerical Simulation of Turbulent Flow in a Square Duct, J. Fluid Mechanics 257199365 95. 18S. V. Patankar : Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, DC/New York, 198. 19T. Hayase, J. A. C. Humphrey & R. Greif : A Consistently Formulated QUICK Scheme for Fast and Stable Convergence Using Finite Volume Iterative Calculation Procedures, J. Computational Physics 98199218 118. 2C. A. J. Fletcher : Computational Techniques for Fluid Dynamics, 1Springer Verlag, 198832. 21T. Hayase & Y. Suematsu : Direct Numerical Simulation of Turbulent Flow in a Square Pipe, Proceedings of 3rd Triennial International Symposium on Fluid Control, Measurement and Visualization Ed. W. C. Yang and R. L. Woods, 199199 16. 22H. Choi & P. Moin : Effects of the Computational Time Step on Numerical Solutions of Turbulent Flow, J. Computational Physics 11319941 4.