Sticky Leverage. Joao Gomes, Urban Jermann & Lukas Schmid. Wharton School, Duke & UCLA

Σχετικά έγγραφα



Managing Economic Fluctuations. Managing Macroeconomic Fluctuations 1

Monetary Policy Design in the Basic New Keynesian Model

Mean-Variance Analysis

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ θηλδύλνπ ζε κηθξνεπίπεδν.

Risk! " #$%&'() *!'+,'''## -. / # $

Other Test Constructions: Likelihood Ratio & Bayes Tests

DOI /J. 1SSN

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ST5224: Advanced Statistical Theory II

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

IMES DISCUSSION PAPER SERIES

Policy Coherence. JEL Classification : J12, J13, J21 Key words :

ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35

10.7 Performance of Second-Order System (Unit Step Response)

Section 8.3 Trigonometric Equations

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

Κόστος Κεφαλαίου. Estimating Inputs: Discount Rates

UMI Number: All rights reserved

Every set of first-order formulas is equivalent to an independent set

Ψηφιακή Οικονομία. Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

An Inventory of Continuous Distributions

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Second Order RLC Filters

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

«ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΔΙΟΙΚΗΣΗ» ΠΡΟΣΔΙΟΡΙΣΤΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ ΤΗΣ ΧΡΗΜΑΤΟΠΙΣΤΩΤΙΚΗΣ ΣΤΑΘΕΡΟΤΗΤΑΣ

Supplementary Appendix

ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ

The challenges of non-stable predicates

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Κόστος Κεφαλαίου. Estimating Inputs: Discount Rates

Thesis presentation. Turo Brunou

Introduction to Time Series Analysis. Lecture 16.

Durbin-Levinson recursive method

Ηλεκτρονικοί Υπολογιστές IV

These derivations are not part of the official forthcoming version of Vasilaky and Leonard

Notes on the Open Economy

Global energy use: Decoupling or convergence?

Διάρκεια μιας Ομολογίας (Duration) Ανοσοποίηση (Immunization)

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13

Lecture 7: Overdispersion in Poisson regression

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΚΗ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΣΤΡΑΤΗΓΙΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Assalamu `alaikum wr. wb.

þÿ¼ ½ ±Â : ÁÌ» Â Ä Å ÃÄ ²µ þÿä Å ÃÇ»¹º Í Á³ Å

Lecture 21: Scattering and FGR

2 Composition. Invertible Mappings

ITU-R BT ITU-R BT ( ) ITU-T J.61 (

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

: (1) ( ),, ;,,, (2),, :

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

4.6 Autoregressive Moving Average Model ARMA(1,1)

From the finite to the transfinite: Λµ-terms and streams

þÿ Á±½Äà Å, šåá¹±º Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

derivation of the Laplacian from rectangular to spherical coordinates

Solution Series 9. i=1 x i and i=1 x i.

Homework 3 Solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Uniform Convergence of Fourier Series Michael Taylor

Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Homework 8 Model Solution Section

NBER WORKING PAPER SERIES EQUILIBRIUM ASSET PRICES UNDER IMPERFECT CORPORATE CONTROL. James Dow Gary Gorton Arvind Krishnamurthy

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Productivity and Profitability Assessment using Financial Statements. Diego PRIOR

12. Radon-Nikodym Theorem

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

C.S. 430 Assignment 6, Sample Solutions

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Example Sheet 3 Solutions

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Forced Pendulum Numerical approach

Statistical Inference I Locally most powerful tests

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξένη Ορολογία. Ενότητα 5 : Financial Ratios

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Matrices and Determinants

Parametrized Surfaces

Part III - Pricing A Down-And-Out Call Option

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Surface Mount Aluminum Electrolytic Capacitors

D Alembert s Solution to the Wave Equation

A MULTIPLIER APPROACH TO UNDERSTANDING THE MACRO IMPLICATIONS OF HOUSEHOLD FINANCE

ΘΕΩΡΙΑ ΟΜΟΛΟΓΙΩΝ. ΤΙΜΟΛΟΓΗΣΗ,ΔΙΑΧΕΙΡΗΣΗ, ΕΙΔΙΚΑ ΘΕΜΑΤΑ.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Lifting Entry (continued)

Lecture 26: Circular domains

Numerical Analysis FMN011

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ

Finite difference method for 2-D heat equation

255 (log-normal distribution) 83, 106, 239 (malus) 26 - (Belgian BMS, Markovian presentation) 32 (median premium calculation principle) 186 À / Á (goo

Transcript:

Sticky Leverage Joao Gomes, Urban Jermann & Lukas Schmid Wharton School, Duke & UCLA

We consider nominal debt that is long-term and defaultable

We consider nominal debt that is long-term and defaultable Deflation risk for firms nominal debt

We consider nominal debt that is long-term and defaultable Deflation risk for firms nominal debt default

We consider nominal debt that is long-term and defaultable Deflation risk for firms nominal debt default debt overhang

We consider nominal debt that is long-term and defaultable Deflation risk for firms nominal debt default debt overhang We study this channel for monetary non-neutrality

Preview of findings Debt deflation is quantitatively powerful

Preview of findings Debt deflation is quantitatively powerful Sticky leverage is key

Preview of findings Debt deflation is quantitatively powerful Sticky leverage is key Taylor rules stabilize output

Related literature Debt deflation: De Fiore, Teles, and Tristani (2011), Kang and Pflueger (2012), Christiano, Motto and Rostagno (2009), Bhamra, Fisher and Kuehn (2011) Debt overhang: Occhino and Pescatori (2012), Moyen (2007), Hennessy (2004), Chen and Manso (2010) Default, general equilibrium: Gomes and Schmid (2013), Gourio (2012), Miao and Wang (2010) No quantitative business cycle analysis with nominal, long-term debt

Model Continuum of firms of measure one, firm j produces ) yt j = A t (k t j α ( ) nt j 1 α with aggregate productivity ln A t = ρ ln A t 1 + σε t, and ) ( ) k j t+1 (1 = δ + it j kt j g it j kt j

Model Continuum of firms of measure one, firm j produces ) yt j = A t (k t j α ( ) nt j 1 α with aggregate productivity ln A t = ρ ln A t 1 + σε t, and ) ( ) k j t+1 (1 = δ + it j kt j g it j kt j Define ) R t kt j max A t (k j α ( nt j t nt) j 1 α wt nt j

Model Continuum of firms of measure one, firm j produces ) yt j = A t (k t j α ( ) nt j 1 α with aggregate productivity ln A t = ρ ln A t 1 + σε t, and ) ( ) k j t+1 (1 = δ + it j kt j g it j kt j Define ) R t kt j max A t (k j α ( nt j t nt) j 1 α wt nt j After-tax operational profits, with idiosyncratic IID shock z j t ( ) (1 τ) R t kt j zt j kt j

Debt Nominal debt outstanding requires payment (c + λ) bj t µ t b t B t /P t 1, c coupon, λ amort., µ t inflation rate

Debt Nominal debt outstanding requires payment (c + λ) bj t µ t b t B t /P t 1, c coupon, λ amort., µ t inflation rate After issuing s j t p j t market value of debt b j t+1 = (1 λ) bj t µ t + sj t p j t

Default Firms default if (1 τ) ( R t k j t z j t k j t ) + V t (k j t, b j t, µ t ) < ((1 τ) c + λ) bj t µ t

Default Firms default if ( ) ) (1 τ) R t kt j zt j kt j + V t (k t j, bt, j µ t < ((1 τ) c + λ) bj t µ t ( ) V t kt j, bt, j µ t = max b j t+1,kj t+1 p j t ( ) b j t+1 (1 λ) bj t µ t It j + τδkt j + E t M t,t+1 ( ) 0, (1 τ) R t+1 k j t+1 zj t+1 kj t+1 max ((1 τ) c + λ) bj t+1 µ t+1 ) +V t+1 (k dφ (z t+1) j t+1, bj t+1, µ t+1

Debt pricing b j t+1 pj t = E t M t,t+1 z j z j, t+1 ] Φ(z j, t+1 [c ) + λ + (1 λ) p j b j t+1 t+1 µ + t+1 ( ) R (1 τ) t+1 k j t+1 z j t+1 kj t+1 ξk t+1 ) +V t+1 (k j t+1, bj t+1, µ t+1 + (1 λ) pj t+1 bj t+1 µ t+1 dφ (z t+1 )

Households, equilibrium max E {C,N} β t [(1 θ) ln C t + θ ln (3 N t )] t=0

Households, equilibrium max E {C,N} β t [(1 θ) ln C t + θ ln (3 N t )] t=0 Aggregate resource constraint y t [1 Φ (z )] ξ r ξk t = C t + I t

Households, equilibrium max E {C,N} β t [(1 θ) ln C t + θ ln (3 N t )] t=0 Aggregate resource constraint Inflation y t [1 Φ (z )] ξ r ξk t = C t + I t ln µ t = (1 ρ µ ) ln µ + ρ µ ln µ t 1 + ε µ t

Characterization Debt Overhang and Sticky Leverage v (ω, µ) = max ω,i z z [ ( ) p ω g (i) (1 λ) ω µ i + τδ +g (i) EM (1 τ) (R z ) ] ((1 τ) c + λ) ω µ + v (ω, µ ) dφ (z ) with ω b/k, i I /k, v V /k State of economy: (ω, K, µ, A)

Debt Overhang FOC i 1 pω = EM z z (1 τ) (R z ) ((1 τ) c + λ) ω µ +v (ω, µ ) dφ ( z )

Debt Overhang FOC i 1 pω = EM z z (1 τ) (R z ) ((1 τ) c + λ) ω µ +v (ω, µ ) dφ ( z ) Assume µ i.i.d., ξ r = 0, and no shocks for a long time so that µ t 1 = µ, ω t = ω

Debt Overhang FOC i 1 pω = EM z z (1 τ) (R z ) ((1 τ) c + λ) ω µ +v (ω, µ ) dφ ( z ) Assume µ i.i.d., ξ r = 0, and no shocks for a long time so that µ t 1 = µ, ω t = ω Then, shock on µ t has no effect on i if ω t+1 = ω

Sticky Leverage FOC ω pg (i) + p ( ω ω g (i) (1 λ) ω ) µ = g (i) EM Φ ( z ) 1 [ (1 τ) c + λ + (1 λ) p ] µ

Sticky Leverage Long-term debt, λ < 1 FOC ω pg (i) + p ( ω ω g (i) (1 λ) ω ) µ = g (i) EM Φ ( z ) 1 [ (1 τ) c + λ (1 λ) p ] µ

Sticky Leverage Long-term debt, λ < 1 FOC ω pg (i) + p ( ω ω g (i) (1 λ) ω ) µ = g (i) EM Φ ( z ) 1 [ (1 τ) c + λ (1 λ) p ] µ Assume µ i.i.d., ξ r = 0, and no shocks for a long time so that µ t 1 = µ, ω t = ω

Sticky Leverage Long-term debt, λ < 1 FOC ω pg (i) + p ( ω ω g (i) (1 λ) ω ) µ = g (i) EM Φ ( z ) 1 [ (1 τ) c + λ (1 λ) p ] µ Assume µ i.i.d., ξ r = 0, and no shocks for a long time so that µ t 1 = µ, ω t = ω A negative shock on µ t increases ω t+1 > ω.

Sticky Leverage Long-term debt, λ < 1 FOC ω pg (i) + p ( ω ω g (i) (1 λ) ω ) µ = g (i) EM Φ ( z ) 1 [ (1 τ) c + λ (1 λ) p ] µ Assume µ i.i.d., ξ r = 0, and no shocks for a long time so that µ t 1 = µ, ω t = ω A negative shock on µ t increases ω t+1 > ω. Sticky leverage: high ω/µ high ω B k /P

Calibration Parameter Description Value β Subjective Discount Factor 0.99 γ Risk Aversion 1 θ Elasticity of Labor 0.63 α Capital Share 0.36 δ Depreciation Rate 0.025 λ Debt Amortization Rate 0.06 ξ r Fraction of Resource Cost 1 ξ Default Loss 0.38 τ Tax Wedge 0.40 η 1 Distribution Parameter 0.6617

Inflation shock

Monetary policy rule ˆr f t = ρ R ˆr f t 1 + (1 ρ R ) { ν µ ˆµ t + ν y Ŷ t } + ζt

Monetary policy rule ˆr f t ˆr f t = ρ R ˆr f t 1 + (1 ρ R ) { ν µ ˆµ t + ν y Ŷ t } + ζt = 0.6 ˆr f t 1 + 0.4 { 1.5 ˆµ t + 0.5 Ŷ t } + ζt

Productivity shock

Wealth/capital shock

Conclusion Model with nominal long-term debt produces strong inflation non-neutrality without sticky prices

Conclusion Model with nominal long-term debt produces strong inflation non-neutrality without sticky prices Key mechanisms: sticky leverage and debt overhang

Conclusion Model with nominal long-term debt produces strong inflation non-neutrality without sticky prices Key mechanisms: sticky leverage and debt overhang Taylor rule implies inflation in response to low productivity and capital loss

One-period debt, λ = 1 FOC ω p + p ω ω = EM Φ ( z ) [ ((1 τ) c + 1) 1 µ ]

One-period debt, λ = 1 FOC ω p + p ω ω = EM Φ ( z ) [ ((1 τ) c + 1) 1 µ ] Assume µ i.i.d., ξ r = 0, and no shocks for a long time so that µ t 1 = µ, ω t = ω

One-period debt, λ = 1 FOC ω p + p ω ω = EM Φ ( z ) [ ((1 τ) c + 1) 1 µ ] Assume µ i.i.d., ξ r = 0, and no shocks for a long time so that µ t 1 = µ, ω t = ω Then, shock on µ t has no effect on ω t+1 = ω

Idiosyncratic Shocks Use general quadratic approximation φ(z) = η 1 + η 2 z + η 3 z 2 Symmetry z = z = 1, and E (z) = 0

Idiosyncratic Shocks Use general quadratic approximation φ(z) = η 1 + η 2 z + η 3 z 2 Symmetry z = z = 1, and E (z) = 0 One free parameter η 1

Shocks [ at µ t ] [ ρa ρ = a,µ ρ a,µ ρ µ ] [ ] [ at 1 ε a + t µ t 1 ε µ t ]

Shocks [ at µ t ] [ ρa ρ = a,µ ρ a,µ ρ µ ] [ ] [ at 1 ε a + t µ t 1 ε µ t ] AR(1) calibration ρ a = 0.97, σ a = 0.0070 ρ µ = 0.85, σ µ = 0.0040 ρ a,µ = ρ a,µ = ρ µa = 0

Shocks [ at µ t ] [ ρa ρ = a,µ ρ a,µ ρ µ ] [ ] [ at 1 ε a + t µ t 1 ε µ t ] AR(1) calibration ρ a = 0.97, σ a = 0.0070 ρ µ = 0.85, σ µ = 0.0040 VAR calibration A = ρ a,µ = ρ a,µ = ρ µa = 0 [ 0.98 0.094 0.012 0.85 ] σ a = 0.0074, σ µ = 0.0045, ρ µa = 0.19

Data Model Model AR(1) VAR(1) First Moments Investment/Output, I /Y 0.21 0.24 0.24 Leverage, ω 0.42 0.42 0.42 Default Rate, 1 Φ(z ) 0.42% 0.42% 0.42% Credit Spread 0.39% 0.39% 0.39% Second Moments σ Y 1.66% 1.58% 1.67% σ I /σ Y 4.12 4.22 4.48 σ C /σ Y 0.54 0.41 0.43 σ N /σ Y 1.07 0.49 0.54 σ ω 1.7% 1.5% 1.7%

Variance decomposition, AR(1) Y Inv Cons Hrs Lev Default Bench., ω = 0.42 TFP shock a 0.63 0.37 0.39 0.60 0.10 0.05 Inflation shock µ 0.37 0.63 0.61 0.40 0.90 0.95 Low Lev, ω = 0.32 TFP shock a 0.84 0.65 0.83 0.89 0.10 0.01 Inflation shock µ 0.16 0.35 0.17 0.11 0.90 0.99 High Lev, ω = 0.52 TFP shock a 0.40 0.21 0.29 0.55 0.03 0.03 Inflation shock µ 0.60 0.79 0.71 0.45 0.97 0.97

Variance decomposition, AR(1) Y Inv Cons Hrs Lev Default Bench., λ = 0.06 TFP shock a 0.63 0.37 0.39 0.60 0.10 0.05 Inflation shock µ 0.37 0.63 0.61 0.40 0.90 0.95 Long matu., λ = 0.03 TFP shock a 0.45 0.26 0.65 0.80 0.83 0.01 Inflation shock µ 0.55 0.74 0.35 0.20 0.17 0.99 One-period debt, λ = 1 TFP shock a 1 1 1 1 0.01 0.02 Inflation shock µ 0.00 0.00 0.00 0.00 0.99 0.98

Monetary policy shock

I m advocating 6 percent inflation for at least a couple of years, says Rogoff, 56, who s now a professor at Harvard University. It would ameliorate the debt bomb and help us work through the deleveraging process. (Bloomberg May 19, 2009 00:01 EDT).