arxiv: v1 [math.na] 15 Nov 2018

Σχετικά έγγραφα
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Deterministic Policy Gradient Algorithms: Supplementary Material

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Section 8.3 Trigonometric Equations

Homework 3 Solutions

2 Composition. Invertible Mappings

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

EXISTENCE AND UNIQUENESS THEOREM FOR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITION

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

Parametrized Surfaces

Every set of first-order formulas is equivalent to an independent set

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

EE512: Error Control Coding

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

derivation of the Laplacian from rectangular to spherical coordinates

P4 Stress and Strain Dr. A.B. Zavatsky HT08 Lecture 5 Plane Stress Transformation Equations

Research Article Existence of Positive Solutions for Fourth-Order Three-Point Boundary Value Problems

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Reminders: linear functions

Example Sheet 3 Solutions

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

4.6 Autoregressive Moving Average Model ARMA(1,1)

Numerical Analysis FMN011

( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det

Second Order Partial Differential Equations

6.3 Forecasting ARMA processes

Approximation of distance between locations on earth given by latitude and longitude

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

On mean-field stochastic maximum principle for near-optimal controls for Poisson jump diffusion with applications

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

A Note on Intuitionistic Fuzzy. Equivalence Relation

Statistical Inference I Locally most powerful tests

Solutions to Exercise Sheet 5

New bounds for spherical two-distance sets and equiangular lines

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

C.S. 430 Assignment 6, Sample Solutions

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Mellin transforms and asymptotics: Harmonic sums

Matrices and Determinants

Homomorphism in Intuitionistic Fuzzy Automata

D Alembert s Solution to the Wave Equation

Other Test Constructions: Likelihood Ratio & Bayes Tests

Math221: HW# 1 solutions

Congruence Classes of Invertible Matrices of Order 3 over F 2

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13

Homework 8 Model Solution Section

Fractional Colorings and Zykov Products of graphs

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Approximate System Reliability Evaluation

Symmetric Stress-Energy Tensor

6. MAXIMUM LIKELIHOOD ESTIMATION

Section 7.6 Double and Half Angle Formulas

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

1 String with massive end-points

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Parallel transport and geodesics

Chapter 3: Ordinal Numbers

Problem Set 3: Solutions

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Continuous Distribution Arising from the Three Gap Theorem

Lecture 13 - Root Space Decomposition II

10.7 Performance of Second-Order System (Unit Step Response)

Turkish Journal of I N E Q U A L I T I E S

On the Galois Group of Linear Difference-Differential Equations

SURVEY AND NEW RESULTS ON BOUNDARY-VALUE PROBLEMS OF SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSE EFFECTS

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Phase-Field Force Convergence

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Commutative Monoids in Intuitionistic Fuzzy Sets

Section 9.2 Polar Equations and Graphs

w o = R 1 p. (1) R = p =. = 1

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Bounding Nonsplitting Enumeration Degrees

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

TMA4115 Matematikk 3

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

From the finite to the transfinite: Λµ-terms and streams

Discretization of Generalized Convection-Diffusion

ST5224: Advanced Statistical Theory II

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Second Order RLC Filters

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

On a four-dimensional hyperbolic manifold with finite volume

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Finite difference method for 2-D heat equation

Lecture 2. Soundness and completeness of propositional logic

Transcript:

STABLE DISCRETIZATIONS OF ELASTIC FLOW IN RIEMANNIAN MANIFOLDS JOHN W. BARRETT, HARALD GARCKE, AND ROBERT NÜRNBERG arxiv:8.0630v mat.na 5 Nov 08 Abtract. Te elatic flow, wic i te L -gradient flow of te elatic energy, a everal application in geometry and elaticity teory. We preent table dicretization for te elatic flow in two-dimenional Riemannian manifold tat are conformally flat, i.e. conformally equivalent to te Euclidean pace. Example include te yperbolic plane, te yperbolic dik, te elliptic plane a well a any conformal parameterization of a two-dimenional manifold in R d, d 3. Numerical reult ow te robutne of te metod, a well a quadratic convergence wit repect to te pace dicretization. Key word. Elatic flow, yperbolic plane, yperbolic dik, elliptic plane, Riemannian manifold, geodeic elatic flow, finite element approximation, tability, equiditribution AMS ubject claification. 65M60, 53C44, 53A30, 35K55. Introduction. Elatic flow of curve in a two-dimenional Riemannian manifold M, g i given a te L -gradient flow of te elatic energy κ g, were κ g i te geodeic curvature. It a been own, ee 6 for te general cae and for te yperbolic plane, tat te gradient flow of te elatic energy i given a. V g = κ g g g κ3 g S 0 κ g, were V g i te normal velocity of te curve wit repect to te metric g, g = g, denoting arclengt, and S 0 i te ectional curvature of g. Te evolution law. decreae te curvature energy κ g, and long term limit are expected to be critical point of ti energy. Tee critical point are called free elaticae, ee 6, and are of interet in geometry and mecanic. In particular, let u mention tat a curve i an abolute minimizer if and only if it i a geodeic. Recently te flow. wa tudied in,, for te cae of te yperbolic plane, relying on earlier reult in 4 for a flat background metric. Te yperbolic plane i a particular cae of a manifold wit non-poitive ectional curvature, wic i of particular interet a te et of free elaticae i muc ricer, ee 6. In ti paper, we allow for a general conformally flat metric. Example include te yperbolic plane, te yperbolic dik, te elliptic plane, a well a any conformal parameterization of a two-dimenional manifold in R d, d 3. For parameterized yperurface in R 3, earlier autor, ee e.g. 9, 7, 8,, 4, ued te urrounding pace in teir numerical approximation, wic lead to error in direction normal to te yperurface. Ti will be avoided by te intrinic approac ued in ti paper. In particular, our numerical metod lead to approximate olution wic remain on te yperurface after application of te parameterization map. In addition, in ti paper we will preent a firt numerical analyi for elatic flow in manifold not embedded in R 3. Ti in particular make it poible to compute elatic flow of curve in te yperbolic plane in a table way. For finite element approximation of. introduced in 6 it doe not appear poible to prove a tability reult. It i te aim of ti paper to introduce novel approximation for. tat can be own to be table. In particular, we will ow Department of Matematic, Imperial College London, London, SW7 AZ, UK Fakultät für Matematik, Univerität Regenburg, 93040 Regenburg, Germany

J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG tat te emidicrete continuou-in-time approximation admit a gradient flow tructure. For relevant literature on conformal metric we refer to 9, 5. Curvature driven flow in yperbolic pace ave been tudied by 0,,,, 6, and related numerical approximation of elatic flow of curve can be found in 4, 3, 5, 8 for te Euclidean cae, and in 9, 7, 8,, 4 for te cae of curve on yperurface in R 3. Te outline of ti paper i a follow. After formulating te problem in detail in te next ection, we will derive in Section 3 weak formulation wic will be te bai for our finite element approximation. In Section 4 we introduce continuou-intime, dicrete-in-pace dicretization wic are baed on te weak formulation. For tee emidicrete formulation a tability reult will be own, wic i te main contribution of ti work. In Section 5 we ten formulate fully dicrete variant for wic we ow exitence and uniquene. In Section 6 we preent everal numerical computation wic ow convergence rate a well a te robutne of te approac. Finally, in te appendix we ow te conitency of te weak formulation preented in Section 3.. Matematical formulation. Let I = R/Z be te periodic interval 0,. Let x : I R be a parameterization of a cloed curve Γ R. On auming tat x ρ > 0 on I, we introduce te arclengt of te curve, i.e. = x ρ ρ, and et. τ = x and ν = τ, were denote a clockwie rotation by π. For te curvature κ of Γt it old tat. κ ν = κ = τ = x = xρ. x ρ x ρ ρ Let H R be an open et wit metric tenor.3 v, w g z = g z v. w v, w R for z H, were v. w = v T w i te tandard Euclidean inner product, and were g : H R >0 i a moot poitive weigt function. Te lengt induced by.3 i defined a.4 v g z = v, v g z = g z v v R for z H. For λ R, we define te generalized elatic energy a.5 W g,λ x = κg λ x ρ g dρ, were.6 κ g = g x κ ν. ln g x I i te curvature of te curve wit repect to te metric g, ee 6 for detail. Generalized elatic flow i defined a te L gradient flow of.5, and it wa etablied in 6 tat a trong formulation i given by.7 V g = g x xt. ν = κ g g g κ3 g S 0 κ g λ κ g,

were g = g x and ELASTIC FLOW IN RIEMANNIAN MANIFOLDS 3.8 S 0 = ln g g i te ectional curvature of g. We refer to 6 for furter detail. Te two weak formulation of.7, for λ = 0, introduced in 6 are baed on te equivalent equation g x x t. ν = x ρ κ g ρ g x x ρ ρ g x κ 3 g g x S0 x κ g. Te firt ue κ a a variable, wile te econd ue κ g a a variable. U: Let x0 H I. For t 0, T find xt H I and κt H I uc tat g x x t. ν χ x ρ dρ = g x g x κ ν. ln g x χ ρ x ρ dρ I I ρ g x κ ν. ln g x 3 χ xρ dρ I.9a S 0 x κ ν. ln g x χ x ρ dρ χ H I, I.9b κ ν. η x ρ dρ x ρ. η ρ x ρ dρ = 0 η H I. I I W: Let x0 H I. For t 0, T find xt H I and κ g t H I uc tat g x x t. ν χ x ρ dρ = g x κg ρ χ ρ x ρ dρ g x κ 3 g χ x ρ dρ I.0a.0b g x κ g ν. η x ρ dρ I I I S 0 x g x κg χ x ρ dρ χ H I, I g x ρ. η ρ x. η g x x ρ x ρ dρ = 0 η H I. For te numerical approximation baed on U and W it doe not appear poible to prove tability reult tat ow tat dicrete analogue of.5, for λ = 0, decreae monotonically in time. Baed on te tecnique in 5, it i poible to introduce alternative weak formulation, for wic emidicrete continuou-in-time finite element approximation admit uc a tability reult. We end ti ection wit ome example metric tat are of particular interet in differential geometry. Two familie of metric are given by.a g z = z. e µ, µ R, wit H = H = { z R : z. e > 0}, and.b g z = 4 α z, wit H = { D α = { z R : z < α } α > 0, R α 0. I

4 J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG Te cae.a wit µ = model te yperbolic plane, wile µ = 0 correpond to te Euclidean cae. Te cae.b wit α = give a model for te yperbolic dik, wile α = model te geometry of te elliptic plane. Of coure, α = 0 collape to te Euclidean cae. Furter metric of interet are induced by conformal parameterization Φ : H R d, d 3, of te two-dimenional Riemannian manifold M R d, i.e. M = ΦH and e Φ z = e Φ z and e Φ z. e Φ z = 0 for all z H. Here example include te Mercator projection of te unit pere witout te nort and te out pole, Φ z = co z. e co z. e, in z. e, in z. e T, o tat.c g z = co z. e, wit H = R, a well a te catenoid parameterization Φ z = co z. e co z. e, co z. e in z. e, z. e T, o tat.d g z = co z. e, wit H = R. Baed on 0, p. 593 we alo recall te following conformal parameterization of a toru wit large radiu R > and mall radiu r = from 6. In particular, we let = R and define Φ z = co z. e z. e z. e co, in, in z. e T, o tat.e g z = co z. e, wit H = R. 3. Weak formulation. We define te firt variation of a quantity depending in a differentiable way on x, in te direction χ a 3. x A x A x ε χ A x χ = lim, ε 0 ε and oberve tat, for x ufficiently moot, 3. x A x x t = d dt A x. For later ue, on noting 3.,. and.4, we oberve tat 3.3a x gβ x χ = β g β x χ. g x = β g β x χ. ln g x β R, 3.3b ln g x χ = D ln g x χ, x x x ρ χ = x ρ. χ ρ 3.3c = τ. χ ρ = τ. χ x ρ, x ρ 3.3d x x ρ g χ = τ. χ χ. ln g x x ρ g, x τ x ρ χ = χ = χ ρ x x ρ x ρ x ρ x ρ. χ ρ x ρ = χ τ χ. τ x ρ 3.3e 3.3f = χ. ν ν, x ν χ = x τ χ = χ. ν ν = χ. ν τ,

3.3g ELASTIC FLOW IN RIEMANNIAN MANIFOLDS 5 x ν x ρ χ = x x ρ χ = χ ρ = χ x ρ, were we alway aume tat χ i ufficiently moot o tat all te quantitie are defined almot everywere. E.g. χ L I for 3.3a, 3.3b, and χ W, I for 3.3c 3.3g. In addition, on recalling., we ave for all a, b R tat 3.4a 3.4b a. b = a. b, a = a. τ τ a. ν ν = a. ν τ a. τ ν = a. ν τ a. τ ν. Let, denote te L inner product on I. In te following we will dicu te L gradient flow of te energy 3.5 W g,λ x = κ g λ, x ρ g = g x κ ν. ln g x λ g x, xρ, treating eiter κ or κ g formally a an independent variable tat a to atify te ide contraint.9b, or.0b, repectively. For te weak formulation of te L gradient flow obtained in ti way, it can be own tat tey are conitent wit te trong formulation.7, ee te appendix. Moreover, we will formally etabli tat olution to tee weak formulation are indeed olution to te L gradient flow of 3.5. Mimicking tee tability proof on te dicrete level will yield te main reult of ti paper. 3.6 3.. Baed on κ. We define te Lagrangian L x, κ, y = g x κ ν. ln g x λ g x, xρ κ ν, y x ρ x, y x ρ, wic i obtained on combining 3.5 and te ide contraint 3.7 κ ν, η x ρ x, η x ρ = 0 η H I, recall.9b and.. Taking variation η H I in y, and etting y L η = 0 we obtain 3.7. Combining 3.7 and.9b yield, on recalling., tat κ = κ, and we are going to ue ti identity from now. Taking variation χ L I in κ and etting κ L χ = 0 lead to 3.8 g x κ ν. ln g x y. ν, χ x ρ = 0 χ L I, wic implie tat 3.9 y. ν = g x κ ν. ln g x κ = g x y. ν ν. ln g x. Taking variation χ H I in x, and ten etting V g, g x χ. ν x ρ g = g 3 x x t. ν, χ. ν x ρ = x L χ, were we ave noted.7 and.4, yield, on recalling., tat κ g 3 x xt. ν, χ. ν x ρ = ν. ln g x, x g x xρ χ g x κ ν. ln g x, ν. ln g x χ x ρ x

6 J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG 3.0 κ y, x ν x ρ χ y ρ, x τ χ λ, x g x xρ χ, for all χ H I. On cooing χ = x t in 3.0 we obtain, on noting 3., tat κ g 3 x xt. ν, x ρ = ν. ln g x, g x xρ t g x κ ν. ln g x, ν. ln g x t x ρ 3. κ y, ν x ρ t yρ, τ t λ, g x xρ. Differentiating 3.7 wit repect to time, and ten cooing η = y yield, on recalling tat κ = κ, tat 3. κ t, y. ν x ρ κ y, ν x ρ t τ t, y ρ = 0. Combining 3., 3. and 3.9 give, on noting 3.5, tat κ g 3 x xt. ν, x ρ = ν. ln g x, g x xρ t g x κ ν. ln g x, ν. ln g x t x ρ κ t, g x κ ν. ln g x x ρ λ, g x xρ 3.3 = d dt W g,λ x. Te above yield te gradient flow property of te new weak formulation, on noting from.7 and.4 tat te left and ide of 3.3 can be equivalently written a Vg, x ρ g. In order to derive a uitable weak formulation, we now return to 3.0. Combining 3.0, 3.3 and 3.4a yield tat g 3 x xt. ν, χ. ν x ρ = g x κ ν. ln g x λ g x, χ. τ x ρ 4 g x κ ν. ln g x λ g x, χ. ln g x xρ g x κ ν. ln g x ν, D ln g x χ x ρ g x κ ν. ln g x ln g x, ν. χ x ρ y. ν, χ. ν x ρ 3.4 κ y, χ x ρ χ H I. Overall we obtain te following weak formulation. P: Let x0 H I. For t 0, T find xt, yt H I and κ L I uc tat 3.4, 3.8 and 3.5 κ ν, η x ρ x, η x ρ = 0 η H I old. We remark tat in te Euclidean cae 3.8 collape to κ = y. ν, and o on eliminating κ from 3.4 and 3.5, and on noting 3.4b, we obtain tat te formulation P collape to 5,.4a,b for te Euclidean elatic flow. t t

ELASTIC FLOW IN RIEMANNIAN MANIFOLDS 7 3.. Baed on κ g. We recall tat P wa inpired by te formulation U, wic i baed on κ acting a a variable. In order to derive an alternative formulation, we now tart from W, were te curvature κ g i a variable. We begin by equivalently rewriting te ide contraint.0b a 3.6 g x κg ν, η x ρ g x, η x ρ g ln g x, η x ρ g = 0 η H I, were we ave noted.,.4 and ln g x = g x g x. Combining.5 and 3.6 lead to te Lagrangian L g x, κg, y g = κ g λ, x ρ g g x κ g ν, y g x ρ g x, y g x ρ g 3.7 ln g x, y g x ρ g. Taking variation η H I in y g, and etting y g L g η = 0 we obtain 3.8 g x κ g ν, η x ρ g x, η x ρ g ln g x, η x ρ g = 0 η H I. Combining 3.8 and 3.6 yield tat κg = κ g, and we are going to ue ti identity from now. Taking variation χ L I in κg and etting L g χ = 0 yield tat 3.9 wic implie tat κ g κ g g x yg. ν, χ x ρ g = 0 χ L I, 3.0 κ g = g x yg. ν. Taking variation χ H I in x, and ten etting V g, g χ. ν x ρ g = g x x t. ν, χ. ν x ρ g = x L g χ, were we ave noted.7, yield, on recalling. and.4, tat g x x t. ν, χ. ν x ρ g = κg λ, x x ρ g χ κ g y g, x g x ν xρ g χ y g ρ, x g x τ χ 3. y g, x ln g x x ρ g χ χ H I. Cooing χ = x t in 3., and noting 3., yield tat 3. g x xt. ν, x ρ g = κg λ, x ρ g t κ g y g, g x ν xρ g t y g ρ, g x τt y g, ln g x x ρ g t. On differentiating 3.6 wit repect to time, and ten cooing η = y g, we obtain, on recalling. and.4, tat κ g t y g, g x ν xρ g κ g y g, g x ν xρ g t

8 J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG 3.3 y g ρ, g x τt y g, ln g x x ρ g t = 0. Cooing χ = κ g t in 3.9, and combining wit 3. and 3.3, yield, on recalling 3.5, tat 3.4 g x xt. ν, x ρ g = d dt W g,λ x, wic once again reveal te gradient flow tructure, on noting from.7 tat te left and ide of 3.4 can be equivalently written a V g, x ρ g. In order to derive a uitable weak formulation, we now return to 3.. Subtituting 3.3 into 3. yield, on noting.4, tat g x x t. ν, χ. ν x ρ g = κg λ y g. ln g x, x x ρ g χ y g, ln g x χ x ρ g κ g y g. ν, x x g x χ x ρ g x κ g y g, x ν x ρ χ y g ρ. τ, x g x χ g x yg ρ, x τ χ = κ g λ y g. ln g x, τ. χ χ. ln g x x ρ g D ln g x y g, χ x ρ g g x κg y g. ν y g. τ, ln g x. χ x ρ g 3.5 g x κg y g, χ x ρ g y g. ν, χ. ν x ρ g χ H I. Ten, on recalling 3.4a, we obtain te following weak formulation. Q: Let x0 H I. For t 0, T find xt, y g t H I and κ g t L I uc tat g x x t. ν, χ. ν x ρ g = κ g λ y g. ln g x, χ. τ χ. ln g x x ρ g D ln g x y g, χ x ρ g g x κg y g. ν y g. τ, χ. ln g x x ρ g 3.6 g κg, χ. y g x ρ g y g. ν, χ. ν x ρ g χ H I, 3.9 and 3.6 old. We remark tat in te Euclidean cae 3.9 collape to κ g = y g. ν, and o on eliminating κ g from 3.6 and 3.6, and on noting 3.4b, we obtain tat te formulation Q collape to 5,.4a,b for te Euclidean elatic flow. 4. Semidicrete finite element approximation. Let 0, = J j= I j, J 3, be a decompoition of 0, into interval given by te node q j, I j = q j, q j. For implicity, and witout lo of generality, we aume tat te ubinterval form an equipartitioning of 0,, i.e. tat 4. q j = j, wit = J, j = 0,..., J.

ELASTIC FLOW IN RIEMANNIAN MANIFOLDS 9 Clearly, a I = R/Z we identify 0 = q 0 = q J =. Te neceary finite element pace are defined a follow: V = {χ CI : χ Ij i linear j = J} and V = V. Let {χ j } J j= denote te tandard bai of V, and let π : CI V be te tandard interpolation operator at te node {q j } J j=. We require alo te local interpolation operator πj π Ij, j =,..., J. We define te ma lumped L inner product u, v, for two piecewie continuou function, wit poible jump at te node {q j } J j=, via 4. u, v = J j= I j π j u v dρ = J j= j u vq j u vq j, were we define uq ± j = lim 0 uq j ±. Te interpolation operator π, π j and te definition 4. naturally extend to vector valued function. Let X t t 0,T, wit X t V, be an approximation to xt t 0,T. Ten, imilarly to., we et 4.3 τ = X = X ρ X ρ and ν = τ. For later ue, we let ω V be te ma-lumped L projection of ν onto V, i.e. 4.4 ω, ϕ X ρ = ν, ϕ X ρ = ν, ϕ X ρ ϕ V. On noting 3., 4.3 and.4, we ave te following dicrete analogue of 3.3 for all χ V and for j =,..., J X gβ X χ = β g β X χ. g X 4.5a 4.5b 4.5c 4.5d 4.5e 4.5f 4.5g = β g β X χ. ln g X on I j, β R, X ln g X χ = D ln g X χ on I j, X X X ρ. χ ρ ρ χ = X = τ. χ ρ = τ. χ X ρ ρ on I j, X X ρ g χ = τ. χ χ. ln g X X ρ g on I j, X τ X ρ χ = X X χ = χ ρ X ρ X ρ ρ X ρ. χ ρ X ρ X ρ = χ τ χ. τ = χ. ν ν on I j, X ν χ = X τ χ = χ. ν τ on I j, X ν X ρ χ = X X ρ χ = χ ρ = χ X ρ on I j.

0 J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG 4.. Baed on κ. In te following we will dicu te L gradient flow of te energy 4.6 W g,λ X, κ = g X ubject to te ide contraint 4.7 κ ω ω. ln g X λ g X, X ρ, κ ν, η X ρ X, η X ρ = 0 η V. On recalling 4.4, we ee tat 4.6 and 4.7 are dicrete analogue of 3.5 and.9b, repectively. We define te Lagrangian L X, κ, Y = 4.8 g X κ κ ν, Y X ρ ω ω. ln g X λ g X, X ρ X, Y X ρ, X π wic i te correponding dicrete analogue of 3.6. ω In addition to 4.5, we will require χ in order to compute variation of 4.8. We etabli ti along te line of 5, 3.a,b 3.7. To ti end, we introduce te following operator. On recalling 4. and 4.3, let D, D : V V be uc tat for any t 0, T D ηq j = X q j, t X q j, t η q j X q j, t X q j, t η q j X q j, t X q j, t X q j, t X q j, t 4.9a ηq j ηq j = X q j, t X q j, t X q j, t X q j, t, j =,..., J, 4.9b D ηq j = ω D ηq j D X tq j = ηq j ηq j X q j, t X q j, t, j =,..., J, were q J = q. Here, we make te following natural aumption C X q j, t X q j, t and X q j, t X q j, t, j =,..., J, for all t 0, T. Hence 4.9 i well-defined. A uual, D, D : V V are defined component-wie. It follow from 4.4, 4.3 and 4.9a tat, for all ϕ V, 4.0 ω, ϕ X ρ = τ, ϕ X ρ = X ρ, ϕ = D X, ϕ X ρ. Terefore, we ave from 4.0, C and 4.9b tat 4. ω = D X ω and π ω = D X.

ELASTIC FLOW IN RIEMANNIAN MANIFOLDS Ten it i a imple matter to compute, for any χ V, X D X χ = π Id D X D X D χ o tat 4. ω X π ω 4.3 χ = X = π ω D χ. ω ω, Similarly to 4.0, we ave for any η V tat D X χ = π ω D χ. ω ω. η, ϕ X ρ = D η, ϕ X ρ ϕ V, Hence, it follow from 4.3, 4.9b and 4. tat 4.4 ω η, ϕ X ρ = D η, ϕ X ρ η, ϕ V. Terefore, combining 4. and 4.4 yield for any ϕ, χ V tat ϕ, X 4.5 = ω ω χ X ρ = ω ϕ, D χ. ω ω X ρ ω 3 ϕ. ω ω, χ X ω ρ = ω ω ϕ. ω, ω. χ X ρ. Taking variation χ V in κ and etting L χ = 0 lead to κ 4.6 g X κ ω ω. ln g X Y. ν, χ X ρ = 0 χ V, wic, on recalling 4.4, implie te dicrete analogue of 3.9 π Y. ω = π g X κ ω ω. ln g X 4.7 κ = π g X Y. ω ω ω. ln g X Taking variation η V in Y, and etting Y L η = 0 we obtain 4.7. Setting g 3 X X t. ω, χ. ω X ρ = χ, for variation χ V in X yield, a a dicrete analogue to 3.0, g 3 X X t. ω, χ. ω X ρ = κ X L ω ω. ln g X, X g X X ρ χ.

J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG λ, X g g X X X ρ χ κ ω ω. ln g X, X 4.8 κ Y, X ν X ρ χ Y ρ, X τ χ. Cooing χ = X t 4.9 4.0 ω ω. ln g X χ X ρ in 4.8, were we oberve a dicrete variant of 3., yield tat g 3 X X t. ω, X ρ = κ λ, g X X ρ ω ω. ln g X, g X X ρ t t g X κ ω κ Y, ν X ρ Y ρ, τ t t ω. ln g X. ω, ω. ln g X X ρ t Differentiating 4.7 wit repect to time, and ten cooing η = Y yield tat κ t, Y. ν X ρ κ Y, ν X ρ t τ t, Y ρ = 0. Combining 4.9, 4.0 and 4.6 wit χ = κ t give, on noting 4.6, tat g 3 X X t. ω, X ρ = κ 4. g X κ κ t, g X κ = d dt W g,λ X, κ. ω ω. ln g X ω ω. ln g X ω ω. ln g X, g X X ρ ω, ω. ln g X X ρ t X ρ λ, g X X ρ In order to derive a uitable approximation of P, we now return to 4.8. Combining 4.8, 4.5 and 4.5, on noting 3.4a, yield g 3 X X t. ω, χ. ω X ρ = Y. ν, χ. ν X ρ g X κ ω ω. ln g X λ g X, χ. τ X ρ t t

4 g X ELASTIC FLOW IN RIEMANNIAN MANIFOLDS 3 κ g X κ g X κ ω ω. ln g X λ g X, χ. ln g X X ρ ω ω. ln g X ω ω. ln g X 4. κ Y, χ X ρ χ V, ω ω, D ln g X χ X ρ ln g X ω ω. ω, ω ω. χ X ρ wic i te dicrete analogue of 3.4, on noting tat ν = τ. Hence we obtain te following approximation of P. P : Let X 0 V. For t 0, T find X t, κ t, Y t V V V uc tat 4., 4.6 and 4.7 old. We note tat in te Euclidean cae it follow from 4.7 tat κ = π Y. ω, and o on eliminating κ, and on noting 4.4, te approximation P collape to te iotropic cloed curve verion of 3.36a,b, wit β = 0, in 5. Teorem 4.. Let te aumption C be atified and let X t, Y t V V, for t 0, T, be a olution to P. Ten te olution atifie te tability bound 4.. Proof. Te proof i given in 4.9, 4.0 and 4.. Remark 4.. We note wy we cooe ω ω in 4.6 a oppoed to ν or ω. In te cae of ν, 4.7 and 4.8 till old wit ω replaced by ω and ν, repectively. ω However, ten te elimination of κ from te modified 4.8 via te modified 4.7 now lead to a far more complicated verion of 4.. In te cae of ω, one need to compute X ω ω a oppoed to X ω ω it i eaier to compute te latter. Hence, te coice of in 4.6. ω. However, on noting 4. and 4.9, Remark 4.3. Due to 4.7, te approximation P atifie te equiditribution property, i.e. any two neigbouring element are eiter parallel or of te ame lengt, at every t > 0. For ti property to old, it i crucial to employ ma lumping in 4.7. We refer to 3, Rem..4 for more detail. 4.. Baed on κ g. Let, denote a dicrete L inner product baed on ome numerical quadrature rule. In particular, for two piecewie continuou function, wit poible jump at te node {q j } J j=, we let u, v = I u v, were 4.3 J K I f = w k fα k q j α k q j, w k > 0, α k 0,, k =,..., K, j= j k= wit K, K k= w k =, and wit ditinct α k, k =,..., K. A pecial cae i, =,, recall 4., but we alo allow for more accurate quadrature rule. We define te Lagrangian L g X, κ g, Y g = κ g λ, X ρ g g X κ g ν, Y g X ρ g

4 J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG 4.4 X, Y g X ρ g ln g X, Y g X ρ g, wic i te correponding dicrete analogue of 3.7. Taking variation χ V in κ g and etting χ = 0 yield tat 4.5 κ g L g κ g g X Y Taking variation η V in Y g, and etting 4.6 g. ν, χ X ρ g = 0 χ V. Y g L g η = 0 we obtain g X κ g ν, η X ρ g X, η X ρ g ln g X, η X ρ g = 0, for all η V, a a dicrete analogue of 3.6. Taking variation χ V in X, and ten etting g X X t. ω, χ. ω X ρ g = χ, we obtain g X X t. ω, χ. ω X ρ g = 4.7 X L g κ g λ, X X ρ g χ κ g Yg, X g X ν X ρ χ Y g ρ, X g X τ χ Y g, X ln g X X ρ g χ, for all χ V. Cooing χ = X t in 4.7, and noting a dicrete variant of 3., a well a.4, yield tat g X X t. ω, X ρ g 4.8 = κ g λ, X ρ g t κ g Y g, g X ν X ρ g t Y g ρ, g X τ t Y g, ln g X X ρ g t. On differentiating 4.6 wit repect to time, and ten cooing η = Y g, we obtain, on recalling 4.3 and.4, tat κ g t Y g, g X ν X ρ g κ g Y 4.9 Y g ρ, g X τ t g, g X ν X ρ g t Y g, ln g X X ρ g t = 0. Cooing χ = κ g t in 4.5, and combining wit 4.8 and 4.9, yield tat 4.30 g X X t. ω, X ρ g d κ g λ, X dt ρ g = 0, wic reveal te dicrete gradient flow tructure. Alo note tat 4.8 4.30 are te dicrete analogue of 3. 3.4. In order to derive a uitable finite element approximation, we now return to 4.7. Subtituting 4.5 into 4.7 yield, on noting 4.3 and.4, tat g X X t. ω, χ. ω X ρ g = Y g, X ln g X χ X ρ g

ELASTIC FLOW IN RIEMANNIAN MANIFOLDS 5 κ g λ Y g. ln g X, κ g Yg. ν X g X χ X ρ Y g ρ. τ, X g X = κ g λ Y g. ln g X, 4.3 D ln g X Y g, χ X ρ g χ X X ρ g g X κ g Yg, X ν X ρ g ρ, X τ χ τ. χ χ. ln g X X ρ g χ g X Y g X κ g Y g. ν Y g. τ, ln g X. χ X ρ g g X κ g Y g, χ X ρ g Y g. ν, χ. ν X ρ g χ V. χ Ten 4.3, 4.5 and 4.6, on recalling 3.4a, give rie to te following approximation of Q. Q : Let X 0 V. For t 0, T find X t, κ g t, Y g t V V V uc tat 4.3 g X X t. ω, χ. ω X ρ g Y g. ν, χ. ν X ρ g = κ g λ Y g. ln g X, χ. τ χ. ln g X D ln g X Y g, χ X ρ g g X κ g, χ. Y g X ρ g X ρ g g X κ g Yg. ν Yg. τ, χ. ln g X X ρ g χ V, 4.5 and 4.6 old. Teorem 4.4. Let X ρ > 0 almot everywere in I 0, T. Let X t, κ g t, Y g t V V V, for t 0, T, be a olution to Q. Ten te olution atifie te tability bound 4.30. Proof. We ave already own tat a olution to Q atifie 4.8 and 4.9. Hence cooing χ = κ g t in 4.5, and combining wit 4.8 and 4.9, yield 4.30 a before. Remark 4.5. We tre tat unlike for P, recall Remark 4.3, it i not poible to prove an equiditribution property for Q, even if we employ ma lumping in 4.6. It i for ti reaon tat we alo conider iger order quadrature rule. Te motivation beind conidering Q a an alternative to P i twofold. Firtly, from a variational point of view, it i more natural to work wit κ g a a variable, ince.5 i naturally defined in term of κ g. Secondly, te tecnique introduced for Q will be exploited in 7 for table approximation of Willmore flow for axiymmetric yperurface in R 3. 5. Fully dicrete finite element approximation. Let 0 = t 0 < t <... < t M < t M = T be a partitioning of 0, T into poibly variable time tep t m = t m t m, m = 0 M. We et t = max m=0 M t m. For a given X m V

6 J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG Table Expreion for term tat are relevant for te implementation of te preented finite element approximation. g ln g x D ln g x.a µ x. e e µ x. e e e.b 4 α α x x 4 α 8 α α x Id α x x x.c tan x. e e co x. e e e.d tan x. e e co x. e e e.e co x. e in x. e e e co x. e e co x. e we et ν m = X m ρ X m ρ, a te dicrete analogue to.. We alo let ωm V be te natural fully dicrete analogue of ω V, recall 4.4. Given X m V, te fully dicrete approximation we propoe in ti ection will alway eek a parameterization X m V at te new time level, togeter wit a uitable approximation of curvature. For te metric we conider in ti paper, we ummarize in Table te quantitie tat are neceary in order to implement te numerical ceme preented below. 5.. Baed on κ m. We propoe te following fully dicrete approximation of P. P m : Let X 0, κ 0, Y 0 V V V. For m = 0,..., M, we define κ m g = π g X m κ m ω m ω m. ln g X m, and ten find X m, κ m, Y m V V V uc tat g 3 X m X m X m. ω m, χ. ω m X t ρ m Y m, χ Xρ m m Y m. τ m, χ. τ m X ρ m = g X m κ m g λ, χ. τ m X ρ m 4 g X m κ m g λ, χ. ln g X m X ρ m κ m ω m g ω m, D ln g X m χ X ρ m κ m Y m, χ X ρ m 5.a 5.b κ m g ω m ln g X m. ω m ω m, χ. ω m g X m Y m. ω m, η. ω m X m ρ ω m ω m X ρ m χ V, ω m. ln g X m, η. ω m X ρ m = 0 η V X m, η X ρ m and 5. κ m = π g X m Y m. ω m ω m ω m. ln g X m.

ELASTIC FLOW IN RIEMANNIAN MANIFOLDS 7 Notice tat 5.b wa obtained on combining 5. wit a fully dicrete variant of 4.7, and noting 4.4, in order to obtain a lower dimenional linear ytem to olve for te unknown X m and Y m tat i decoupled from 5.. Moreover, 5.a i a fully dicrete approximation of 4., on noting te definition of κ m g. We make te following mild aumption. A Let X m ρ > 0 for almot all ρ I, let dim pan{ ω m q j : j =,..., J} =, and let ω m q j 0, j =,..., J. Lemma 5.. Let te aumption A old. Ten tere exit a unique olution X m, κ m, Y m V V V to P m. Proof. A 5. i linear, exitence follow from uniquene. To invetigate te latter, we conider te ytem: Find X, Y V V uc tat g 3 X m X m. ω m, χ. ω m X ρ m tm Y, χ X 5.3a ρ m = 0 χ V, g X m Y. ω m, η. ω m X ρ m X, η X 5.3b ρ m = 0 η V. Cooing χ = X in 5.3a and η = Y in 5.3b, and combining, yield tat 5.4 π X. ω m = π Y. ω m = 0 V. A a conequence, it follow from cooing χ = Y in 5.3a and η = X in 5.3b tat X and Y are contant vector. Combining 5.4 and te aumption A ten yield tat X = Y = 0 V. Hence we ave own te exitence of a unique X m, Y m V V olving 5., wic via 5. yield exitence and uniquene of κ m V. 5.. Baed on κ m g. We propoe te following fully dicrete approximation of Q. Q m : Let X 0, κ 0 g, Y g 0 V V V. For m = 0,..., M, find X m, κ m g, V V V uc tat Y m g g X m X m X m. ω m, χ. ω m X t ρ m g m Y g m. τ m, χ. τ m X ρ m g = 5.5a 5.5b κ m g λ Y g m. ln g X m, D ln g X m Y g m, χ X ρ m g g X m κ m g Y m g Y m g, χ X m ρ g χ. τ m χ. ln g X m X ρ m g. ν m Yg m. τ m, χ. ln g X m X ρ m g g X m κ m g, χ. Y g m X ρ m g χ V, κ m g g X m Y m g. ν m, χ X ρ m g = 0 χ V, ln g X m, η X ρ m g g X m κ m g ν m, η X m ρ g X m, η X m ρ g

8 J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG 5.5c = 0 η V. Of coure, in te cae, =,, 5.5b give rie to κ m g = π g X m Y g m. ω m, on noting 4.4, and o κ m g can be eliminated from 5.5a to give rie to a coupled linear ytem involving only X m and Y g m, imilarly to 5.. We make te following mild aumption. B Let X ρ m > 0 for almot all ρ I, and let dim pan Z =, were { Z = g X m ν m, χ X } ρ m g : χ V R. Lemma 5.. Let te aumption A and B old. Ten tere exit a unique olution X m, κ m g, Y g m V V V to Q m. Proof. A 5.5 i linear, exitence follow from uniquene. To invetigate te latter, we conider te ytem: Find X, κ g, Y g V V V uc tat 5.6a g X m X. ω m, χ. ω m X ρ m g tm Y g, χ X ρ m g = 0 χ V, 5.6b κ g g X m Y g. ν m, χ X ρ m g = 0 χ V, 5.6c g X m κ g ν m, η X ρ m g X, η X ρ m g = 0 η V. Cooing χ = X in 5.6a, χ = κ g in 5.6b and η = Y g in 5.6c yield tat g X m X. ω m, X m ρ g tm κ g, X m ρ g = 0, and o it follow from 4.3, recall K, and te poitivitie of g X m and X ρ m, tat 5.7 κ g = 0 V and g X m X. ω m, η X ρ m g = 0 η CI. A a conequence, it follow from cooing χ = Y g in 5.6a and η = X in 5.6c tat X and Y g are contant vector. Combining 5.6b, κ g = 0 and te aumption B ten yield tat Y g = 0 V. Moreover, it follow from 5.7, 4.3, recall K, and X being a contant tat X. ω m = 0 V. Combining ti wit te aumption A yield tat X = 0 V. Hence tere exit a unique olution X m, κ m g, Y g m V V V to Q m. 6. Numerical reult. Unle oterwie tated, in all our computation we et λ = 0. For te ceme Q m we eiter conider Q m, recall 4., or Q m, were, denote a quadrature tat i exact for polynomial of degree up to five. On recalling 4., for olution of te ceme P m we define W m g,λ = Y m. ω m λ, g X m X ρ m a te natural dicrete analogue of 3.5. Similarly, on recalling 4.4, we define te dicrete energy X m ρ g for olution of te ceme Q m. We alo conider te ratio W m g,λ 6. r m = max j= J X m q j X m q j min j= J X m q j X m q j = κm g λ,

ELASTIC FLOW IN RIEMANNIAN MANIFOLDS 9 Table Error for te convergence tet for 6. wit 6.3 for α =, wit r0 =.5, over te time interval 0,. P m Q m Q m Γ 0 Γ Γ L EOC Γ Γ L EOC Γ Γ L EOC.544e-0 7.380e-03.450e-0.58e-0.079e-0.7446e-03.04 3.535e-03.04 3.0547e-03.05 5.3988e-0 4.3377e-04.0 8.7838e-04.0 7.5835e-04.0.6997e-0.089e-04.00.96e-04.00.896e-04.00.3499e-0.7064e-05.00 5.4795e-05.00 4.795e-05.00 between te longet and ortet element of Γ m, and are often intereted in te evolution of ti ratio over time. In order to define te initial data for te ceme P m and Q m we define, given Γ 0 = X 0 I, te dicrete curvature vector κ 0 V uc tat recall.. Ten we et κ 0 = π κ 0 κ 0 g = π g X 0 κ 0, η X ρ 0 X 0, η X ρ 0 = 0 η V, κ 0. ω 0 ω 0 ω 0 ω 0. ln g X 0 and, a a dicrete analogue to.6, we let. Finally, on recalling 4.7 and 4.5, we et Y 0 = π ω 0 κ 0 g ω 0 and Y 0 g = π g X 0 ω 0 κ 0 g ω 0. 6.. Elliptic plane:.b wit α =. For te elliptic plane, we recall te true olution 6. xρ, t = at e rt co π ρ e in π ρ e ρ I, wit 6.3 at = 0 and d dt r4 t = 8 α r 4 t 6 α r t α r 4 t, for α =, from Appendix A. in 6. We ue ti true olution for a convergence tet. To ti end, we tart wit te initial data 6.4 X 0 co π qj 0. in π q q j = a0 e r0 j, j =,..., J, in π q j 0. in π q j recall 4., wit r0 =.5 and a0 = 0, for J {3, 64, 8, 56, 5}. We compute te error Γ Γ L = max m=,...,m max j=,...,j X m q j at m e rt m over te time interval 0, between te true olution 6. and te dicrete olution for te ceme P m, Q m and Q m. We note tat te circle i rinking, and reace a radiu rt =.48 at time T =. Here, and in te convergence experiment tat follow, we ue te time tep ize t = 0. Γ, were 0 Γ 0 i te maximal edge lengt of Γ 0. Te computed error are reported in Table. 6.. Hyperbolic dik:.b wit α =. For te yperbolic dik, we recall te true olution 6., 6.3 for α =, from Appendix A. in 6. Similarly to Table we tart wit te initial data 6.4 wit r0 = 0. and a0 = 0. We compute te error Γ Γ L over te time interval 0, between te true olution 6. and te

0 J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG Table 3 Error for te convergence tet for 6. wit 6.3 for α =, wit r0 = 0., over te time interval 0,. P m Q m Q m Γ 0 Γ Γ L EOC Γ Γ L EOC Γ Γ L EOC.544e-0.8356e-03.8655e-03.360e-03.079e-0 4.533e-04.03 4.5938e-04.03 5.8378e-04.0 5.3988e-0.70e-04.0.444e-04.0.4583e-04.00.6997e-0.85e-05.00.8590e-05.00 3.6450e-05.00.3499e-0 7.0364e-06.00 7.460e-06.00 9.e-06.00 Table 4 Error for te convergence tet for 6. wit 6.5, wit r0 =, a0 =, over te time interval 0,. P m Q m Q m Γ 0 Γ Γ L EOC Γ Γ L EOC Γ Γ L EOC.544e-0.690e-0 7.544e-0 4.365e-0.079e-0 3.93e-0.00.9548e-0.95.079e-0.0 5.3988e-0 7.99e-03.00 4.9076e-03.00.6764e-03.00.6997e-0.9984e-03.00.9e-03.00 6.6898e-04.00.3499e-0 4.9966e-04.00 3.074e-04.00.673e-04.00 dicrete olution for te ceme P m, Q m and Q m. We note tat te circle i expanding, and reace a radiu rt = 0.404 at time T =. Te computed error are reported in Table 3. 6.3. Hyperbolic plane:.a wit µ =. For te yperbolic plane, we recall te true olution 6. wit 6.5 at = a0 exp t t 0 σ u du and rt = at σt, were σ atifie te ODE σ t = σt σ t σ t, from Appendix A. in 6. A initial data we ue 6.4 wit r0 = and a0 =. We recall from Appendix A. in 6 tat te circle will raie and expand. In fact, at time T = it old tat rt =.677 and at =.4. Te computed error are reported in Table 4, and tey ould be compared wit te correponding number in 6, Tab. 5. We repeat te convergence tet wit te initial data r0 = and a0 =., o tat te circle will now ink and rink. In fact, at time T = it old tat rt = 0.645 and at = 0.79. Te computed error are reported in Table 5, and tey ould be compared wit te correponding number in 6, Tab. 4. We oberve tat te approximation Q m exibit non-optimal convergence rate for ti experiment. We conjecture tat ti i caued by te cloene to te e axi, and te aociated ingularity of g, compared to te experiment in Table 4. All te oter experiment, and all te oter ceme, alway ow te expected quadratic convergence rate. We recall tat in Figure 0, and 3 of 6, te autor ow ome curve evolution for elatic flow in te yperbolic plane. Repeating tee imulation, for te ame dicretization parameter, for te newly introduced ceme P m, Q m and Q m yield very imilar curve evolution. A expected, te main difference i

ELASTIC FLOW IN RIEMANNIAN MANIFOLDS Table 5 Error for te convergence tet for 6. wit 6.5, wit r0 =, a0 =., over te time interval 0,. P m Q m Q m Γ 0 Γ Γ L EOC Γ Γ L EOC Γ Γ L EOC.544e-0.9884e-03 5.3699e-0.530e-0.079e-0 9.735e-04.6.6346e-0.7.9345e-03.98 5.3988e-0.653e-04.88 5.3475e-03.6 7.3673e-04.00.6997e-0 6.7844e-05.97.5787e-03.05.8436e-04.00.3499e-0.7057e-05.99 5.895e-04.3 4.60e-05.00 Fig.. A plot of te ratio 6. for te ceme P m, Q m and Q m. in te evolution of te ratio 6.. A an example, we ow te evolution of 6. for te experiment in 6, Fig. 0 in Figure. 6.4. Geodeic elatic flow. We preent two computation for geodeic elatic flow on a Clifford toru. To ti end, we employ te metric induced by.e wit =, o tat te toru a radii r = and R =. A initial data we cooe a circle in H wit radiu 3 and centre 0, T. For te imulation in Figure we ue te ceme P m wit te dicretization parameter J = 56 and t = 0 3. Te ceme Q m wa not able to compute ti evolution, due to a blow-up in te tangential part of Y m. Hence we only preent a comparion wit Q m, wic give nearly identical reult to P m. However, te ratio 6. at time t = 50 i. for Q m, wile it i only. for P m. Repeating te experiment wit λ = give te evolution own in Figure 3. In te cae λ = 0, te flow reduce te elatic energy and te abolute minimizer i given by geodeic wic ave geodeic curvature zero. However, in Figure te elatic energy doe not ettle down to zero, and te curve intead eem to converge to a non-trivial critical point of te elatic energy. Ti i in accordance wit te analyi in 6, wic owed tat in cae of yperurface for wic te Gauian curvature i not non-negative at all point, te et of free elaticae, i.e., te et of critical point, i muc ricer. Appendix A. Conitency of weak formulation. In ti appendix we prove tat olution to P and Q indeed atify te trong form.7. Trougout ti appendix we uppre te dependence of g on x. For later ue we note, on recalling.,. and.8, tat A.a A.b A.c A.d ν = κ τ, g g = g g = ln g, ln g = τ. ln g, ln g = τ. ln g τ. ln g = τ. D ln g τ κ ν. ln g,

J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG Fig.. P m Geodeic elatic flow on a Clifford toru. Te olution X m at time t = 0,, 0, 50. On te rigt we viualize Φ X m at time t = 0, 50, for.e wit =. Below a plot of te dicrete energy W m g,λ, a well a of te ratio 6. for Pm and Q m. A.e A.f A.g ν. ln g = ν. ln g ν. ln g = ν. D ln g τ κ ln g, g κg = g g κg g = g κg g g g g κ g g = g κg g g ln g κ g g, g S 0 x = ln g = ν. D ln g ν τ. D ln g τ. A.. P. We note from 3.9,.6 and A.a tat A. y. ν = κ g = g x κ ν. ln g x and y. ν = κ g κ y. τ, and o it follow from 3.4,.7,.4,. and 3.4b tat g Vg, χ. ν x ρ g = g κ g λ, τ. χ ρ 4 g κ g λ, ln g. χ x ρ κg D ln g ν, χ x ρ κ g ln g, ν. χ ρ κ g κ y. τ ν, χ ρ g κg ν. ln g y, χ ρ κ g λ κ g ν. ln g τ, χ ρ A.3 = = g κ g κ y. τ κ g ln g y. τ g κg ν. ln g ν, χ ρ 4 g κ g λ, ln g. χ x ρ κg D ln g ν, χ x ρ 4 S i χ χ H I. i=

ELASTIC FLOW IN RIEMANNIAN MANIFOLDS 3 Fig. 3. P m Generalized geodeic elatic flow, wit λ =, on a Clifford toru. Te olution X m at time t = 0,, 0, 30, 50. On te rigt we viualize Φ X m at time t = 0, 0, 50, for.e wit =. Below a plot of te dicrete energy W m g,λ, a well a of te ratio 6. for Pm and Q m. Combining A.3,. and.4 yield tat S χ = g κ g λ g κ κg τ, χ ρ = κ κ g λ g κ κg ν, χ x ρ g A.4 g g κ g λ g κ κg τ, χ x ρ g. Combining A.3 and A., on noting.6, A.a, A.f and.4, yield tat S χ = κ g κ g ln g ν, χρ = g κg ln g κ g ν, χ xρ g g κ κg ln g κ g τ, χ xρ g = g κg g g g ln g κ g, χ. ν x ρ g A.5 κ κ g g g ln g κ g, χ. τ x ρ g. Combining A.3 and.6, on noting.4 and A.c, yield tat S 3 χ = 4 κ g λ, ln g. χ x ρ g A.6 κg λ, κ g κg χ. ν ln g χ. τ x ρ g. = 4 It follow from A.3 and.4 tat A.7 S 4 χ = g κg D ln g ν, χ. ν ν χ. τ τ x ρ g.

4 J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG Cooing χ = χ τ, for χ H I, in A.3, and noting A.4, A.5, A.6 and A.7, we obtain for te rigt and ide of A.3 te value 4 S i χ τ = g g κ g λ g κ κg, χ x ρ g i= κ κ g g g ln g κ g, χ x ρ g 4 κ g λ, ln g χ x ρ g g κg τ. D ln g ν, χ x ρ g = = = A.8 = 0, g g κg λ g κ κg κ g g κ κg, χ x ρ g κ κ g g g ln g κ g 4 κ g λ ln g, χ x ρ g g κg ν. ln g κ ln g, χ x ρ g ln g κ g g κ κg κ g g κ κg g κ κg, χ x ρ g g κg κ g κg, χ x ρ g ln g κg g κ κg g κ κg κg, χ x ρ g κ g κ g g κ κg κ κ g κ g κ κ g κ g, χ x ρ g a required, were we ave recalled A.b and.6. Cooing χ = χ ν, for χ H I, in A.3, and noting A.4, A.5, A.6 and A.7, we obtain 4 g Vg, χ x ρ g = S i χ ν = κ κ g λ g κ κg, χ x ρ g i= g κg g g g ln g κ g, χ x ρ g κ g λ, κ g κg χ x ρ g g κg ν. D ln g ν, χ x ρ g = g κg g g g λ κg g τ. D ln g τ ν. D ln g ν κ g, χ x ρ g κ κg g κ κ g g κg κ ν. ln g κg κ g κg, χ x ρ g = g A.9 = κg g g κ3 g S 0 x λ κ g, χ xρ g g κ κg g κg κ ν. ln g, χ x ρ g g κg g g κ3 g S 0 x λ κ g, χ xρ g χ H I, were we ave recalled A.d, A.g and.6. Clearly, it follow from A.9 tat.7 old. A.. Q. It follow from 3.6,.7, 3.0,.,.4 and 3.4b tat g Vg, χ. ν x ρ g = κ g λ y g. ln g, τ. χ χ. ln g x ρ g

ELASTIC FLOW IN RIEMANNIAN MANIFOLDS 5 D ln g y g, χ x ρ g κ g y g. τ, ln g. χ x ρ g g κg y g, χ ρ g yg. ν, χ ρ. ν = g κ g λ y g. ln g τ, χ ρ D ln g y g, χ x ρ g 4 3 κ g λ y g. ln g y g. τ, ln g. χ x ρ g g κ g y g, χ ρ g yg. ν, χ ρ. ν = g κ g λ y g. ln g τ, χ ρ g yg. ν ν g κ g y g. τ ν, χ ρ 4 3 κ g λ y g. ln g y g. τ, ln g. χ x ρ g A.0 D 4 ln g y g, χ x ρ g = T i χ χ H I. i= It follow from.6, 3.0 and A.c tat y g. ln g = y g. ν ν. ln g y g. τ τ. ln g A. = g κg κ g κg y g. τ ln g = g κ κg κ g y g. τ ln g. Combining A.0, A., A.4,. and.4 yield tat T χ = g κ g λ g κ κg y g. τ ln g τ, χ ρ = S χ g yg. τ ln g τ, χ ρ A. = S χ κ y g. τ ln g ν, χ x ρ g g g yg. τ ln g τ, χ x ρ g. It follow from 3.0, A.a and A.c tat g yg. ν = g yg. ν y g. g ν = κ g y g. ν g g κ yg. τ A.3 = κ g κ g g g g κ yg. τ = κ g ln g κ g g κ yg. τ. Combining A.0 and A.3, on noting A.a, A.f and.4, yield tat T χ = g g yg. ν ν g κ g y g. τ ν, χ x ρ g κ y g. ν ν g κg y g. τ τ, χ x ρ g = g κ g ln g κ g y g. τ g κ g κg ν, χ x ρ g κ y g. ν ν g κg y g. τ τ, χ x ρ g = g κg g g g ln g κ g g y g. τ g κ g κg, χ. ν x ρ g κ κ g g g ln g κ g y g. τ κ g κg, χ. τ x ρ g = S χ g y g. τ g κ g κg, χ. ν x ρ g

6 J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG A.4 κ y g. τ κ g κg, χ. τ x ρ g. It follow from. and 3.0 tat A.5 y g. τ = y g. τ y g. τ = y g. τ κ y g. ν = y g. τ g κ κg. Combining A.0, A., A.5 and.6 yield tat T 3 χ = 4 3 κ g λ y g. ln g y g. τ, ln g. χ x ρ g κ g λ y g. τ ln g y g. τ, ln g. χ x ρ g = 4 = 4 = 4 A.6 κ g λ y g. τ ln g y g. τ, ν. ln g χ. ν τ. ln g χ. τ x ρ g κg λ y g. τ ln g y g. τ, κ g κg χ. ν ln g χ. τ x ρ g = S 3 χ 4 It follow from 3.0 tat y g. τ ln g y g. τ, κ g κg χ. ν ln g χ. τ x ρ g. A.7 D ln g y g = y g. ν D ln g ν y g. τ D ln g τ = g κg D ln g ν y g. τ D ln g τ. Combining A.0 and A.7 yield tat T 4 χ = g κg D ln g ν y g. τ D ln g τ, χ x ρ g g κg D ln g ν y g. τ D ln g τ, χ. ν ν χ. τ τ x ρ g = A.8 = S 4 χ yg. τ D ln g τ, χ. ν ν χ. τ τ x ρ g. Cooing χ = χ τ, for χ H I, in A.0, and noting A., A.4, A.6, A.8 and A.8, we obtain for te rigt and ide of A.0 te value 4 4 T i χ τ = S i χ τ g g ln g ln g, y g. τ χ x ρ g i= κ κ g κg ln g τ. D ln g τ, y g. τ χ x ρ g i= = κ κ g κg ν. ln g, y g. τ χ x ρ g = 0, a required, were we ave recalled A.b, A.d and.6. Cooing χ = χ ν, for χ H I, in A.0, and noting A., A.4, A.6, A.8 and A.9, we obtain g Vg, χ x ρ g = = 4 S i χ ν i= 4 T i χ ν i= κ ln g g g κ g κg, y g. τ χ x ρ g

A.9 = g ELASTIC FLOW IN RIEMANNIAN MANIFOLDS 7 ln g κ g κg ν. ln g κ ln g, y g. τ χ x ρ g κg g g κ3 g S 0 x λ κ g, χ xρ g χ H I, were we ave recalled A.b and.6. Clearly, it follow from A.9 tat.7 old. Acknowledgement. Te autor gratefully acknowledge te upport of te Regenburger Univeritättiftung Han Vielbert. REFERENCES B. Andrew and X. Cen, Curvature flow in yperbolic pace, J. Reine Angew. Mat., 79 07, pp. 9 49. J. Arroyo, O. J. Garay, and J. Mencía, Elatic circle in -pere, J. Py. A, 39 006, pp. 307 34. 3 J. W. Barrett, H. Garcke, and R. Nürnberg, A parametric finite element metod for fourt order geometric evolution equation, J. Comput. Py., 007, pp. 44 46. 4, Numerical approximation of gradient flow for cloed curve in R d, IMA J. Numer. Anal., 30 00, pp. 4 60. 5, Parametric approximation of iotropic and aniotropic elatic flow for cloed and open curve, Numer. Mat., 0 0, pp. 489 54. 6, Numerical approximation of curve evolution in Riemannian manifold, 08. ttp: //arxiv.org/ab/809.0973. 7, Stable approximation for axiymmetric Willmore flow for cloed and open urface, 08. in preparation. 8 S. Bartel, A imple ceme for te approximation of te elatic flow of inextenible curve, IMA J. Numer. Anal., 33 03. 9 G. Brunnett and P. E. Crouc, Elatic curve on te pere, Adv. Comput. Mat., 994, pp. 3 40. 0 E. Cabeza-Riva and V. Miquel, Volume preerving mean curvature flow in te yperbolic pace, Indiana Univ. Mat. J., 56 007, pp. 06 086. A. Dall Acqua and A. Spener, Te elatic flow of curve in te yperbolic plane, 07. ttp://arxiv.org/ab/70.09600., Circular olution to te elatic flow in yperbolic pace, 08. preprint. 3 K. Deckelnick and G. Dziuk, Error analyi for te elatic flow of parametrized curve, Mat. Comp., 78 009, pp. 645 67. 4 G. Dziuk, E. Kuwert, and R. Scätzle, Evolution of elatic curve in R n : exitence and computation, SIAM J. Mat. Anal., 33 00, pp. 8 45. 5 D. Krau and O. Rot, Conformal metric, in Topic in Modern Function Teory, vol. 9 of Ramanujan Mat. Soc. Lect. Note Ser., Ramanujan Mat. Soc., Myore, 03, pp. 4 83. ee alo ttp://arxiv.org/ab/0805.35. 6 J. Langer and D. A. Singer, Te total quared curvature of cloed curve, J. Differential Geom., 0 984, pp.. 7 A. Linnér, Periodic geodeic generator, Experiment. Mat., 3 004, pp. 99 06. 8 A. Linnér and R. Renka, Dicrete periodic geodeic in a urface, Experiment. Mat., 4 005, pp. 45 5. 9 E. Scipper, Te calculu of conformal metric, Ann. Acad. Sci. Fenn. Mat., 3 007, pp. 497 5. 0 J. M. Sullivan, Conformal tiling on a toru, in Bridge Proceeding, Coimbra, Portugal, 0, pp. 593 596.