The Nature of Mathematical Modeling. Neil Gershenfeld

Σχετικά έγγραφα
Contents. Preface. 4 Support Vector Machines Linearclassification SVMs separablecase... 64

Cambridge University Press, 2003

I. Μητρώο Εξωτερικών Μελών της ημεδαπής για το γνωστικό αντικείμενο «Μη Γραμμικές Ελλειπτικές Διαφορικές Εξισώσεις»

Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author.

Ελίζ Πάρσλι. For Magnolia s aunties. Για τις θείες της Μερσίνας. Hachette Book Group, 2017 / Εκδοσεισ Ψυχογιοσ, 2018

HMY 795: Αναγνώριση Προτύπων

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Ηλεκτρονικοί Υπολογιστές IV

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ

Κβαντικη Θεωρια και Υπολογιστες

Athex Composite Share Price Index

High order interpolation function for surface contact problem

ΕΚ ΟΣΕΙΣ ΠΑΠΑ ΟΠΟΥΛΟΣ

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

ADVANCED STRUCTURAL MECHANICS

Research on model of early2warning of enterprise crisis based on entropy

UMI Number: All rights reserved

Yahoo 2. SNS Social Networking Service [3,5,12] Copyright c by ORSJ. Unauthorized reproduction of this article is prohibited.

KEPKYPA Â Î Û Â È KEPKYPA

ΑΠΟΣΠΑΣΜΑ Π Ρ Α Κ Τ Ι Κ ΟΥ 3 ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ ΣΧΟΛΗΣ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ

Πνεσμαηικά Γικαιώμαηα 2006 Ίδρσμα ECDL (ECDL Foundation -

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

chatzipa

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

The Grenoble Cluster of Minalogic: France's most competitive pole?

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

ο αεροσολσ σλοω χλιµατιχ ωαρµινγ? Ηαλτινγ τηε σπρεαδ οφ ΑΙ Σ. Χαν παρτιχλε πηψσιχσ χοµε βαχκ?

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Working Paper Series 06/2007. Regulating financial conglomerates. Freixas, X., Loranth, G. and Morrison, A.D.

Thermodynamic Tables to accompany Modern Engineering Thermodynamics

Second Order Partial Differential Equations

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Lecture 26: Circular domains

Numerical Methods for Civil Engineers. Lecture 10 Ordinary Differential Equations. Ordinary Differential Equations. d x dx.

Summary of the model specified

DIAMO VELOCITY 50cc ENGINE PARTS CATALOG

Jordan Form of a Square Matrix

EE512: Error Control Coding

Buried Markov Model Pairwise

Digital Signal Octave Codes (0B)

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

Stabilization of stock price prediction by cross entropy optimization

Srednicki Chapter 55

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u

FORMULAS FOR STATISTICS 1

Introduction to Risk Parity and Budgeting

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. «Προστασία ηλεκτροδίων γείωσης από τη διάβρωση»

Sampling Basics (1B) Young Won Lim 9/21/13

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Contents QR Decomposition: An Annotated Bibliography Introduction to Adaptive Filters

Spectrum Representation (5A) Young Won Lim 11/3/16

ΑΓΩΓΕΣ ΓΕΝΙΚΩΝ ΑΡΧΩΝ ΑΣΤΙΚΟΥ ΔΙΚΑΙΟΥ. Ερμηνεία - Υποδείγματα

Section 8.3 Trigonometric Equations

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Ψηφιακή ανάπτυξη. Course Unit #1 : Κατανοώντας τις βασικές σύγχρονες ψηφιακές αρχές Thematic Unit #1 : Τεχνολογίες Web και CMS

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Τεχνική Έκθεση Συνοπτική παρουσίαση... 3

Project: 296 File: Title: CMC-E-600 ICD Doc No: Rev 2. Revision Date: 15 September 2010

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Προστασία των Υπόγειων Υδάτων στην Ευρώπη Η ΝΕΑ ΕΥΡΩΠΑΪΚΗ ΟΔΗΓΙΑ ΓΙΑ ΤΑ ΥΠΟΓΕΙΑ ΥΔΑΤΑ ΕΝΟΠΟΙΗΣΗ ΤΟΥ ΚΟΙΝΟΤΙΚΟΥ ΡΥΘΜΙΣΤΙΚΟΥ ΠΛΑΙΣΙΟΥ

Ανοικτά Ακαδημαϊκά Μαθήματα

Trading. Club

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Congruence Classes of Invertible Matrices of Order 3 over F 2

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Πολιτιστικό Προφίλ Δήμου Κορυδαλλού

A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Exercises to Statistics of Material Fatigue No. 5

Supporting Information

* * GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2009

Liner Shipping Hub Network Design in a Competitive Environment

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

Πέµπτη 11 Οκτωβρίου 2007 / Thursday, October 11, 2007

Homomorphism in Intuitionistic Fuzzy Automata

Η Χρήση της Τεχνολογίας στη Φυσική Αγωγή

PLANNING SERVICES WEEKLY REPORT. No Week ending 30th April The attached Weekly Report incorporates the following sections:

A Hierarchy of Theta Bodies for Polynomial Systems

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and

Ειδικό πρόγραμμα ελέγχου για τον ιό του Δυτικού Νείλου και την ελονοσία, ενίσχυση της επιτήρησης στην ελληνική επικράτεια (MIS )

Higher Derivative Gravity Theories

This is a repository copy of Persistent poverty and children's cognitive development: Evidence from the UK Millennium Cohort Study.

ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ. Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο. την απόκτηση του διπλώματος

Scrum framework: Ρόλοι

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

2007 Classical Greek. Intermediate 2 Translation. Finalised Marking Instructions

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Test Data Management in Practice

Statistical Inference I Locally most powerful tests

Παρασκευή 11 Μαϊου 2007 / Friday, May 11, 2007 ΗΜΗΤΡΗΣ ΜΕΣΣΙΝΗΣ/ΑΣΟΣΙΕΪΤΕΝΤ ΠΡΕΣ

Transcript:

The Nature of Mathematical Modeling Neil Gershenfeld

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge CB2 1RP, United Kingdom CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK http://www.cup.cam.ac.uk 40 West 20th Street, New York, NY 10011-4211, USA http://www.cup.org 10 Stamford Road, Oakleigh, Melbourne 3166, Australia c Cambridge University Press 1999 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 1999 Printed in the United Kingdom at the University Press, Cambridge TypesetinMonotypeEhrhardt10 1 2 /13pt,inL ATEX2ε[EPC] A catalogue record of this book is available from the British Library Library of Congress Cataloguing in Publication data Gershenfeld, Neil A. The nature of mathematical modeling/ Neil Gershenfeld. p. cm. Includes bibliographical references and index. ISBN 0-521-57095-6 1. Mathematical models. I. Title. QA401.G47 1998 511.8 dc21 98-22029 CIP ISBN0521570956hardback

Contents Preface to the second edition Preface to the first edition page xiii xv 1 Introduction 1 1.1 SelectedReferences.......................... 3 Part One: Analytical Models 5 2 Linear Algebra 9 2.1 Numbers,Vectors,andMatrices.................... 9 2.2 SystemsofEquations.......................... 13 2.3 SingularValues............................. 16 2.4 FunctionsofMatrices......................... 18 2.5 SelectedReferences.......................... 20 2.6 Problems................................ 20 3 Ordinary Differential and Difference Equations 21 3.1 LinearDifferentialEquations..................... 21 3.2 SystemsofDifferentialEquationsandNormalModes......... 24 3.3 LaplaceTransforms.......................... 26 3.4 PerturbationExpansions........................ 30 3.5 DiscreteTimeEquations........................ 31 3.6 z-transforms.............................. 31 3.7 SelectedReferences.......................... 33 3.8 Problems................................ 34 4 Partial Differential Equations 36 4.1 TheOriginofPartialDifferentialEquations.............. 36 4.2 LinearPartialDifferentialEquations.................. 38 4.3 SeparationofVariables......................... 39 4.3.1 RectangularCoordinates.................... 40 4.3.2 CylindricalCoordinates.................... 41 4.3.3 SphericalCoordinates..................... 43 4.4 TransformTechniques......................... 44

DRAFT Contents vii 4.5 SelectedReferences.......................... 45 4.6 Problems................................ 45 5 Variational Principles 46 5.1 VariationalCalculus.......................... 46 5.1.1 Euler sequation........................ 46 5.1.2 IntegralsandMissingVariables................ 48 5.1.3 ConstraintsandLagrangeMultipliers............. 49 5.2 VariationalProblems.......................... 50 5.2.1 Optics:Fermat sprinciple................... 50 5.2.2 AnalyticalMechanics:Hamilton sprinciple.......... 50 5.2.3 Symmetry:Noether stheorem................ 51 5.3 RigidBodyMotion........................... 52 5.4 SelectedReferences.......................... 55 5.5 Problems................................ 55 6 Random Systems 56 6.1 RandomVariables........................... 56 6.1.1 JointDistributions....................... 58 6.1.2 CharacteristicFunctions.................... 60 6.1.3 Entropy............................ 62 6.2 StochasticProcesses.......................... 64 6.2.1 DistributionEvolutionEquations............... 65 6.2.2 StochasticDifferentialEquations............... 69 6.3 RandomNumberGenerators...................... 70 6.3.1 LinearCongruential...................... 70 6.3.2 LinearFeedback........................ 72 6.4 RandomAlgorithms.......................... 74 6.5 SelectedReferences.......................... 74 6.6 Problems................................ 74 Part Two: Numerical Models 77 7 Finite Differences: Ordinary Differential Equations 81 7.1 NumericalApproximations....................... 81 7.2 Runge KuttaMethods......................... 84 7.3 BeyondRunge Kutta......................... 86 7.4 SelectedReferences.......................... 90 7.5 Problems................................ 90 8 Finite Differences: Partial Differential Equations 92 8.1 HyperbolicEquations:Waves..................... 93 8.2 ParabolicEquations:Diffusion..................... 95 8.3 EllipticEquations:BoundaryValues.................. 98 8.4 SelectedReferences.......................... 105

viii Contents DRAFT 8.5 Problems................................ 105 9 Finite Elements 107 9.1 WeightedResiduals.......................... 107 9.2 Rayleigh RitzVariationalMethods................... 113 9.3 BoundaryConditions.......................... 114 9.4 SolidMechanics............................ 115 9.5 SelectedReferences.......................... 117 9.6 Problems................................ 117 10 Cellular Automata and Lattice Gases 119 10.1 LatticeGasesandFluids........................ 120 10.2 CellularAutomataandComputing................... 124 10.3 SelectedReferences.......................... 126 10.4 Problems................................ 127 11 Computational Geometry 128 11.1 Meshes................................. 128 11.2 Distances................................ 128 11.3 Shapes................................. 129 11.4 Graphs................................. 129 11.5 Folding................................. 130 11.6?.................................... 130 11.7 SelectedReferences.......................... 130 11.8 Problems................................ 130 Part Three: Data-Driven Models 131 12 Function Fitting 135 12.1 ModelEstimation........................... 136 12.2 LeastSquares............................. 137 12.3 LinearLeastSquares.......................... 138 12.3.1 SingularValueDecomposition................. 139 12.4 NonlinearLeastSquares........................ 142 12.4.1 Levenberg MarquardtMethod................ 143 12.5 Errors................................. 144 12.6 Estimation, Fisher Information, and the Cramér Rao Inequality.... 146 12.7 SelectedReferences.......................... 148 12.8 Problems................................ 148 13 Transforms 149 13.1 OrthogonalTransforms........................ 149 13.2 FourierTransforms.......................... 150 13.3 Wavelets................................ 152 13.4 PrincipalComponents......................... 157 13.5 IndependentComponents....................... 158

DRAFT Contents ix 13.6 SelectedReferences.......................... 160 13.7 Problems................................ 160 14 Architectures 161 14.1 Polynomials.............................. 161 14.1.1 PadéApproximants...................... 161 14.1.2 Splines............................. 163 14.2 OrthogonalFunctions......................... 164 14.3 RadialBasisFunctions......................... 168 14.4 Overfitting............................... 169 14.5 CurseofDimensionality........................ 170 14.6 NeuralNetworks............................ 172 14.6.1 BackPropagation........................ 174 14.7 Regularization............................. 175 14.8 SelectedReferences.......................... 177 14.9 Problems................................ 177 15 Optimization 178 15.1 MultidimensionalSearch........................ 179 15.1.1 DownhillSimplex....................... 179 15.1.2 LineMinimization....................... 181 15.1.3 DirectionSet.......................... 182 15.1.4 ConjugateGradient...................... 183 15.1.5 StochasticSearch....................... 185 15.2 LocalMinima............................. 185 15.3 SimulatedAnnealing.......................... 187 15.4 GeneticAlgorithms........................... 188 15.5 TheBlessingofDimensionality.................... 190 15.6 SelectedReferences.......................... 192 15.7 Problems................................ 192 16 Density Estimation 194 16.1 Histogramming,Sorting,andTrees.................. 194 16.2 FittingDensities............................ 197 16.3 Mixture Density Estimation and Expectation-Maximization...... 199 16.4 Cluster-WeightedModeling...................... 203 16.5 ProbabilisticNetworks......................... 210 16.6 SelectedReferences.......................... 210 16.7 Problems................................ 210 17 Constrained Optimization 211 17.1 LagrangeMultipliers.......................... 211 17.2 Optimality............................... 213 17.3 Solvers................................. 213 17.3.1 Penalty............................. 213 17.3.2 AugmentedLagrangian.................... 214

x Contents DRAFT 17.3.3 InteriorPoint......................... 214 17.4 SelectedReferences.......................... 215 17.5 Problems................................ 215 18 Convex Optimization 218 18.1 Kernels................................. 218 18.2 SupportVectorMachines....................... 220 18.2.1 Classification.......................... 220 18.2.2 Regression........................... 224 18.2.3 Clustering........................... 225 18.3 Relaxations............................... 226 18.4 SelectedReferences.......................... 226 18.5 Problems................................ 227 Part Four: Dynamical Models 229 19 Filtering and State Estimation 231 19.1 MatchedFilters............................ 231 19.2 WienerFilters............................. 232 19.3 KalmanFilters............................. 234 19.4 NonlinearityandEntrainment..................... 239 19.5 HiddenMarkovModels........................ 242 19.6 GraphicalNetworks.......................... 247 19.7 SelectedReferences.......................... 247 19.8 Problems................................ 248 20 Linear and Nonlinear Time Series 249 20.1 LinearTimeSeries........................... 250 20.2 TheBreakdownofLinearSystemsTheory.............. 252 20.3 State-SpaceReconstruction...................... 253 20.4 Characterization............................ 258 20.4.1 Dimensions.......................... 259 20.4.2 LyapunovExponents...................... 261 20.4.3 Entropies............................ 262 20.5 Forecasting............................... 265 20.6 SelectedReferences.......................... 269 20.7 Problems................................ 269 21 Control Theory 270 21.1 Problems................................ 276 Appendix 1 Graphical and Mathematical Software 278 A1.1 MathPackages............................. 279 A1.1.1 ProgrammingEnvironments.................. 279 A1.1.2 InteractiveEnvironments................... 281 A1.2 GraphicsTools............................. 285

DRAFT Contents xi A1.2.1 Postscript........................... 285 A1.2.2 XWindows.......................... 290 A1.2.3 OpenGL............................ 294 A1.2.4 Java.............................. 300 A1.2.5 *ification............................ 304 A1.3 Problems................................ 306 Appendix 2 Network Programming 307 A2.1 OSI,TCP/IP,andAllThat...................... 307 A2.2 SocketI/O............................... 308 A2.3 ParallelProgramming......................... 311 Appendix 3 Benchmarking 314 Appendix 4 Problem Solutions 316 A4.1 Introduction.............................. 316 A4.2 LinearAlgebra............................. 316 A4.3 OrdinaryDifferentialandDifferenceEquations............ 316 A4.4 PartialDifferentialEquations...................... 323 A4.5 VariationalPrinciples.......................... 326 A4.6 GeometryandSymmetry........................ 329 A4.7 RandomSystems............................ 329 A4.8 FiniteDifferences:OrdinaryDifferentialEquations.......... 335 A4.9 FiniteDifferences:PartialDifferentialEquations........... 343 A4.10FiniteElements............................ 353 A4.11CellularAutomataandLatticeGases.................. 359 A4.12FunctionFitting............................ 369 A4.13Transforms............................... 374 A4.14Architectures.............................. 380 A4.15Search................................. 387 A4.16DensityEstimation........................... 391 A4.17ConstrainedOptimization....................... 395 A4.18ConvexOptimization.......................... 397 A4.19FilteringandStateEstimation..................... 397 A4.20LinearandNonlinearTimeSeries................... 400 A4.21ControlTheory............................. 404 Bibliography 405 Index 417