P R O D U C T G U I D E SOFT FERRITE CORES
CONTENTS Material Grades Material Characterestics Graphs Cross Reference Table EE Cores EER, EEC, ETD Cores EI Cores EFD Cores EP Cores EPC and FQKT Cores PQ Cores RM Cores ESQ and USQ Cores Planar Cores UU and UI Cores Colur FBT Core Ferrite Bars Torroids Drum Cores Small rods
MATERIAL GRADES Ferrites are magnetic ceramic materials composed of metal oxides with Iron oxide as their main constituent. Ferrites have now been firmly established as one of the most important class of magnetic materials and are indispensable in Electrical, Electronics and Communication Engineering. Ferrites which exhibit temporary magnetic properties under the influence of an electrical field are called Soft Ferrites. Soft Ferrites allow easy magnetisation and also rapid reversal of the magnetisation in response to rapid alteration of energising field. MnZn Ferrite Material Characteristics Property Symbol Unit Test condition MSB-7C HP4 HP-38 HP-3 HPT-45 HPT-4 HB-4 HM-3 HM-4 HM-45 GQ5C HM-6 HM-7 HM- ** HT-8 HT-2 HT-35 HR-4 HR-4B HQ-23 Initial permeability (±25%) μi ----.mt, 25 o C 24 22 22 22 24 3 38 3 4 45 5 6 7 8 2 34 2 2 23 2A/m, 25 o C 5 5 49 5 5 5 55 48 47 47 45 4 4 43 43 47 5 44 5 42 2A/m, o C 38 4 39 42 4 39 435 33 33 33 3 24 24 24 32 33 39 35 4 29 Relative loss factor (max) Relative loss factor (max) t anδ/ μi -6.25mT, khz, 25 o C 2 8 2 3 2 3 3 3 3 5 5 3 6 3 4 3 4.25mT, khz, o 5 3 3 4 3 6 5 4 6 2 4 5 6 4 25 C Coercive Field (max) Hc A/m KHz, 25 o C 4 8 5 5 3 3 3 5 4 4 2 4 25 Hysteris material Coefficient (max) ηb -6 /mt 25 o C.2.2..2.3.3.8.8.6.5.2 2 -.34 Curie Temperature (min) Tc o C ---- 22 2 2 2 2 22 25 8 7 7 4 3 2 2 9 7 2 24 2 7 Density (min) d kg/ 3 m 25 o C 48 485 485 485 485 48 49 49 49 49 49 49 49 49 485 485 48 48 48 47 Temperature Coeff. of permeability (max) αf -6 /K -4 to 8 o C 4 4 4 4 2.5.5.2.2 3 2.5 3 2 2 2 ±3 ±.4 2 8 3 3 Resistivity (min) ρ Ωm 25 o C 5 5 5 8 3 7 2.6.5.5 4 4 6kHz, 5mT, o C 4 khz, 2mT, 25 o C 5 4 Power loss (max) Pc mw /cc khz, 2mT, o C 6 4 38 3 45 4 4kHz, 2mT, 25 o C 8 4kHz, 2mT, o C 7 6 Application Power transformers grades Communication (Broad band filters) RFID Antenna Impeder cores Inductors Properties are measured on Toroid T 3 X 2 X mm. Properties on actual product may var y depends on its size and shape. **Properties are measured on T oroid T X 4 X6 mm. Properties on actual product may vary depends on its size and shape.
Flux density (mt) Relative core loss( mw/cc) Complex permeability Initial permeability MATERIAL GRADE: MSB - 7C MSB-7C : POWER TRANSFORMER GRADE Properties Symbol Unit Test condition Values Initial permeability (±25%) μi.mt, 25 o C 24 o 2A/m, 25 C 5 2A/m, o C 38 Coercive Field (max) Hc A/m KHz, 25 o C Hysteris material Coefficient (max) η B -6 /mt 25 o C.2 Curie Temperature (min) Tc o C 22 Density (min) d kg/m 3 25 o C 48 Temperature Coeff. of permeability (max) α F -6 /K -4 to 8 o C 4 Resisitivity (min) ρ Ωm 25 o C 5 Powerloss (max) Pc mw /cc khz, 2mT, o C 6 Complex permeability vs. Frequency Initial permeability vs Temperature 5 4 3 μ' ------μ" 2 μ' ------------μ" -4 4 8 2 6 2 24 Flux density vs Temperature Relative core losses vs temperature 6 9 5 4 2 H = 2 A/m 2 4 6 8 2 4 7 6 5 4 khz/2mt 3 2 2 4 6 8 2 4 6 All measurements made on Toroid OD = 3mm, ID=2mm Ht=mm.
Flux density (mt) Complex permeability MATERIAL GRADE: HP - 4 HP-4 : POWER TRANSFORMER GRADE Properties Symbol Unit Test condition Values Initial permeability (±25%) i.mt, 25 o C 22 o 2A/m, 25 C 5 2A/m, o C 4 Coercive Field (max) Hc A/m khz, 25 o C Hysteris material Coefficient (max) B -6 /mt 25 o C.2 Curie Temperature (min) Tc o C 2 Density (min) d kg/m 3 25 o C 485 Temperature Coeff. of permeability (max) F -6 /K -4 to 8 o C 4 Resisitivity (min) m 25 o C 5 Powerloss (max) Pc mw /cc khz, 2mT, o C 4 Complex permeability vs frequency Initial permeability vs temperature μ' ------- μ" 6 5 4 3 2 Flux density vs. temperature H=2A/m 2 4 6 8 2 4 Rekative core loss ( mw/cc) Intial permeability 5 4 3 2 7 6 5 4 3 2 μ' ----- ---_--_-- μμ' " ------------μ" -4 4 8 2 6 2 24 Temperature (ºC) Relative core losses vs temperature khz/2mt 2 4 6 8 2 4 All measurements madeon Toroid OD= 3mm, ID=2mm Ht=mm.
Relative core loss( mw/cc) Amplitude permeability Complex permeability MATERIAL GRADE: HP - 38 HP-38 : Power Transformer Grade Properties Symbol Unit Test condition Values Initial permeability (±25%) μi.mt, 25 o C 22 o 2A/m, 25 C 49 2A/m, o C 39 Coercive Field (max) Hc A/m khz, 25 o C Hysteris material Coefficient (max) ηb -6 /mt 25 o C Curie Temperature (min) Tc o C 2 Density (min) d kg/m 3 25 o C 485 Temperature Coeff. of permeability (max) αf -6 /K -4 to 8 o C 4 Resisitivity (min) ρ Ωm 25 o C 5 Powerloss (max) Pc mw /cc khz, 2mT, o C 38 HP-38: Complex permeability vs frequency HP-38: Initial permeability vs temperature μ' ------- μ" 5 4 3 HP-38: Amplitude permeability vs. AC field flux density 2 f = khz 2ºC ---- ºC 5 5 2 25 3 35 4 45 5 Flux density (mt) HP38: Relative core losses vs AC field flux density 2ºC ----- ºC Rekative core loss ( mw/cc) Flux density (mt) Intial permeability 5 4 3 2 6 5 4 3 2 7 6 5 4 2 μ' _--_--_-_--_-_--_--μμ'" ------------μ" -4 4 8 2 6 2 24 Temperature (ºC) HP-38: Flux density vs. temperature f = khz H=2A/m 2 m T m T 5 m T 25 m T 2 4 6 8 2 4 Relative core losses vs temperature khz/2mt B (mt) 2 4 6 8 2 4 All measurements made on Toroid OD= 3mm, ID=2mm Ht=mm.
Relative Coreloss (mw/cc) μi MATERIAL GRADE: HP - 3 HP-3 : Power Transformer Grade Properties Symbol Unit Test condition Values Initial permeability (±25%) i.mt, 25 o C 22 o 2A/m, 25 C 5 2A/m, o C 42 Coercive Field (max) Hc A/m khz, 25 o C Hysteris material Coefficient (max) B -6 /mt 25 o C Curie Temperature (min) Tc o C 2 Density (min) d kg/m 3 25 o C 485 Temperature Coeff. of permeability (max) F -6 /K -4 to 8 o C 4 Resisitivity (min) m 25 o C 8 Powerloss (max) Pc mw /cc khz, 2mT, o C 3 Complex permeability vs Frequency Initial permeability vs Temperature Flux density (mt) Complex permeability 6 5 4 3 μ' ------- μ" μ' ------μ" Flux density vs temperature H = 2 A/m 2 4 6 8 2 4-6 -2 2 6 4 8 22 26 Relative core losses vs temperature 8 7 6 5 4 3 khz/2mt 2 2 4 6 8 2 4 All measurements made on Toroid OD= 3mm, ID=2mm Ht=mm.
Relative core loss ( mw/cc) Initial permeability MATERIAL GRADE: HPT - 45 HPT - 45 : Power Transformer Grade Properties Symbol Unit Test condition Values Initial permeability (±25%) i.mt, 25 o C 24 o 2A/m, 25 C 5 2A/m, o C 4 Coercive Field (max) Hc A/m khz, 25 o C 8 Hysteris material Coefficient (max) B -6 /mt 25 o C. Curie Temperature (min) Tc o C 2 Density (min) d kg/m 3 25 o C 48 Temperature Coeff. of permeability (max) F -6 /K -4 to 8 o C 2.5 Resisitivity (min) m 25 o C 3 Powerloss (max) Pc mw/cc khz, 2mT, o C 45 Complex permeability vs frequency Initial permeability vs temperature 4 Flux density (mt) Complex permeability 6 5 4 3 2 3 2 μ' ------- μ" Flux density vs temperature 7 6 5 4 3 2-4 4 8 2 6 2 24 Relative core losses vs temperature khz/2mt 2 4 6 8 2 4 2 4 6 8 2 4 6 All measurements made on Toroid OD= 3mm, ID=2mm Ht=mm.
F lux dens ity (mt ) C om plex per me a bi li ty Initia l per mea bility MATERIAL GRADE: MSB - 5S MSB-5S : Wideband Transformer Grade Prope rties Sym bol Unit T est condi tion Va lues Initial permeability (±25%) μi.mt, 25 o C 3 o 2A/m, 25 C 48 2A/m, o C 33 Relative loss factor tan /μi (max) tan /μi -6.25mT, khz & 25 o C 6 Coercive Field (max) Hc A/m khz, 25 o C 5 Hysteris material Coefficient (max) B -6 /mt 25 o C.3 Curie Temperature (min) Tc o C 7 Density (min) d kg/m 3 25 o C 49 Temperature Coeff. of permeability (max) F -6 /K -4 to 8 o C.2 Resisitivity (min) m 25 o C Co m plex perm eabili ty vs fr equ ency Ini tial perm eabili ty vs tem perature 6 5 4 3 μ' -------μ" f(khz) 2-6 -2 2 6 4 8 Tempe rature (ºC) Flux density vs tem perature Re lat ive loss f actor vs fr equ ency 6 5 4 3 2 H = 2 A/m 2 4 6 8 2 4 Tem perature(ºc) Frequ ency (khz ) All measurements made on Toroid OD= 3mm, ID=2mm Ht=mm.
Pc (mw/cc) Flux Density (mt) MATERIAL GRADE: HPT - 4 HPT - 4 : Power Transformer Grade Properties Symbol Unit Test condition Values Initial permeability (±25%) i.mt, 25 o C 3 Relative loss factor tan /μi x -6 khz, 25 o C 2 2A/m, 25 o C 5 2A/m, o C 39 Coercive Field (max) Hc A/m khz, 25 o C Curie Temperature (min) Tc o C 22 Density (min) d kg/m 3 25 o C 48 Temperature Coeff. of permeability (max) F -6 /K -4 to 8 o C.5 Resisitivity (min) m 25 o C 7 Powerloss (max) Pc mw/cc khz, 2mT, 25 o C 4 khz, 2mT, o C 4 HPT-4 : Initial Permeability Vs Temperature HPT-4 : Flux Density Vs Temperature Permeability Initial Permeability 6 5 4 3 2 2-6 6 2 8 24 Temperature ( C) HPT-4 : Complex Permeability Vs Frequency Frequency (KHz) 6 5 4 3 9 8 7 6 5 4 3 2 2 4 6 8 2 4 Temperature ( C) HPT-4 : Power Loss Vs Temperature 2 4 6 8 2 4 6 Temperature ( C) All measurements made on Toroid OD=3mm, ID=2mm Ht=mm.
Flux density (mt) Complex permeability Initial permeability MATERIAL GRADE: HB - 4 HB - 4 : Wideband Transformer Grade Properties Symbol Unit Test condition Values Initial permeability (±25%) i.mt, 25 o C 38 2A/m, 25 o C 55 2A/m, o C 435 Relative loss factor tan / i (max) tan / i -6.25mT, khz & 25 o C 4 Coercive Field (max) Hc A/m khz, 25 o C 5 Hysteris material Coefficient (max) B -6 /mt 25 o C.3 Curie Temperature (min) Tc o C 25 Density (min) d kg/m 3 25 o C 49 Temperature Coeff. of permeability (max) F -6 /K -4 to 8 o C.2 Resisitivity (min) m 25 o C 2 HB-4: Complex permeability vs frequency HB-4: Initial permeability vs temperature 5 μ' ----- μ" 4 3 2-4 -2 2 4 6 8 2 4 6 8 2 22 24 26 Temperature (ºC) Flux density vs temperature Relative loss factor vs frequency 6 5 4 3 H= 2 A/m 2 2 4 6 8 2 4 Frequency (khz) All measurements made on Toroid OD= 3mm, ID=2mm Ht=mm.
MATERIAL GRADE: HM - 3 μi HM 3 : Wideband Transformer Grade Properties Symbol Unit Test condition Values Initial permeability (±25%) i.mt, 25 o C 3 o 2A/m, 25 C 48 2A/m, o C 33 Relative loss factor tan / i (max) tan / i -6.25mT, khz & 25 o C 6 Coercive Field (max) Hc A/m khz, 25 o C 5 Hysteris material Coefficient (max) B -6 /mt 25 o C.3 Curie Temperature (min) Tc o C 8 Density (min) d kg/m 3 25 o C 49 Temperature Coeff. of permeability (max) F -6 /K -4 to 8 o C.2 Resisitivity (min) m 25 o C Complex permeability vs frequency Initial permeability vs temperature 7 6 Flux density (mt) Complex permeability μ' -------μ" f(khz) Flux density vs temperature 6 5 4 3 2 H = 2 A/m 5 4 3 2-6 -4-2 2 4 6 8 2 4 6 8 2 Temperature (ºC) Relative loss factor vs frequency 2 4 6 8 2 4 All measurements made on Toroid OD= 3mm, ID=2mm Ht=mm.
MATERIAL GRADE: HM - 4 Initail permeability HM - 4 : Wideband Transformer Grade Properties Symbol Unit Test condition Values Initial permeability (±25%) i.mt, 25 o C 4 o 2A/m, 25 C 47 2A/m, o C 33 Relative loss factor tan / i (max) tan / i -6.25mT, khz & 25 o C 3.25mT, khz & 25 o C Coercive Field (max) Hc A/m khz, 25 o C 3 Hysteris material Coefficient (max) B -6 /mt 25 o C.8 Curie Temperature (min) Tc o C 7 Density (min) d kg/m 3 25 o C 49 Temperature Coeff. of permeability (max) F -6 /K -4 to 8 o C 3 Resisitivity (min) m 25 o C HM-4: Complex permeability vs Frequency HM-4: Initial permeability vs Temperature Flux density (mt) Complex permeability μ' ----- μ" HM-4: Flux density vs Temperature 6 5 4 3 2 H= 2 A/m 9 8 7 6 5 4 3 2-4 -2 2 4 6 8 2 4 6 8 2 Temperature (ºC) HM4:Relative loss factor vs frequency 2 4 6 8 2 4 All measurements made on Toroid OD= 3mm, ID=2mm Ht=mm.
Initial Permeability MATERIAL GRADE : HM - 45 HM - 45 : CFL Transformer Properties Symbol Unit Test condition Values Initial permeability (±25%) i.mt, 25 o C 45 2A/m, 25 o C 47 2A/m, o C 33.25mT, khz & 25 o C 3 Relative loss factor tan / i (max) tan / i -6.25mT, khz & 25 o C Coercive Field (max) Hc A/m khz, 25 o C 3 Curie Temperature (min) Tc o C 7 Density (min) d kg/m 3 25 o C 49 Temperature Coeff. of permeability (max) F -6 /K -4 to 8 o C 2.5 HM45: Complex permeability vs frequency HM45: Initial permeability vs temperature 4 Flux density (mt) Complex Permeability μ' -----μ" Frequency (khz) HM45: Flux density vs temperature 6 5 4 3 2 2 8 6 4 2-4 -2 2 4 6 8 2 4 6 8 2 Temperature (ºC) HM45:Relative loss factor vs frequency 2 4 6 8 2 4 All measurements made on Toroid OD= 22mm, ID=4mm Ht=6mm.
Flux density(mt) Complex permeability Initial permeability MATERIAL GRADE: GQ - 5C GQ - 5C : Wideband Transformer Grade Properties Symbol Unit Test condition Values Initial permeability (±25%) i.mt, 25 o C 5 o 2A/m, 25 C 45 2A/m, o C 3 Relative loss factor tan / i (max) tan / i -6.25mT, khz & 25 o C 3.25mT, khz & 25 o C 5 Coercive Field (max) Hc A/m khz, 25 o C 3 Hysteris material Coefficient (max) B -6 /mt 25 o C.8 Curie Temperature (min) Tc o C 4 Density (min) d kg/m 3 25 o C 49 Temperature Coeff. of permeability (max) F -6 /K -4 to 8 o C 3 Resisitivity (min) m 25 o C Complex permeability vs Frequency Initial permeability vs Temperature μ' μ" 9 8 7 6 5 4 3 2-6 -4-2 2 4 6 8 2 4 6 8 Temperature (ºC) Flux density vs Temperature Relative loss factor vs frequency 5 4 3 H = 2 A/m 2 2 4 6 8 2 4 Temperature(degC) f(khz) All measurements made on Toroid OD= 3mm, ID=2mm Ht=mm.
Initial permeability MATERIAL GRADE: HM - 6 HM - 6 : Wideband Transformer Grade Properties Symbol Unit Test condition Values Initial permeability (±25%) i.mt, 25 o C 6 o 2A/m, 25 C 4 2A/m, o C 24 Relative loss factor tan / i (max) tan / i -6.25mT, khz & 25 o C 5.25mT, khz & 25 o C 4 Coercive Field (max) Hc A/m khz, 25 o C 5 Hysteris material Coefficient (max) B -6 /mt 25 o C.6 Curie Temperature (min) Tc o C 3 Density (min) d kg/m 3 25 o C 49 Temperature Coeff. of permeability (max) F -6 /K -4 to 8 o C 2 Resisitivity (min) m 25 o C.6 HM6: Complex permeability vs Frequency HM6: Initial permeability vs Temperature 2 Flux density (mt) Complex permeability 45 4 35 3 25 2 5 5 μ' ----- μ" HM6: Saturation flux density vs Temperature H= 2 A/m 2 4 6 8 2 4 8 6 4 2-6 -4-2 2 4 6 8 2 4 6 8 Temperature (ºC) HM-6: Relative loss factor vs frequency All measurements made on Toroid OD= 3mm, ID=2mm Ht=mm.
Flux density (mt) Complex permeability Initial permeability MATERIAL GRADE: HM - 7 HM - 7 : Wideband Transformer Grade Properties Symbol Unit Test condition Values Initial permeability (±25%) i.mt, 25 o C 7 o 2A/m, 25 C 4 2A/m, o C 24 Relative loss factor tan / i (max) tan / i -6.25mT, khz & 25 o C 5.25mT, khz & 25 o C 6 Coercive Field (max) Hc A/m khz, 25 o C 4 Hysteris material Coefficient (max) B -6 /mt 25 o C.5 Curie Temperature (min) Tc o C 2 Density (min) d kg/m 3 25 o C 49 Temperature Coeff. of permeability (max) F -6 /K -4 to 8 o C 2 Resisitivity (min) m 25 o C.5 HM7: Complex permeability vs Frequency HM7: Initial permeability vs Temperature 2 8 6 4 μ' ----- μ" 2-6 -4-2 2 4 6 8 2 4 6 Temperature (ºC) HM7: Flux density vs Temperature HM-7: Relative loss factor vs frequency 45 4 35 3 25 2 5 5 H=2A/m 2 4 6 8 2 4 All measurements made on Toroid OD= 3mm, ID=2mm Ht=mm.
Flux density (mt) Complex permeability Initial permeability MATERIAL GRADE: HM - HM - : For Wideband Transformer Application Properties Symbol Unit Test condition Values Initial permeability (±25%) i.mt, 25 o C 2A/m, 25 o C 43 2A/m, o C 24.25mT, khz & 25 o C 3 Relative loss factor tan / i (max) tan / i -6.25mT, khz & 25 o C 2 Curie Temperature (min) Tc o C 2 Density (min) d kg/m 3 25 o C 49 Temperature Coeff. of permeability (max) F -6 /K -4 to 8 o C 2 Resisitivity (min) m 25 o C.5 Complex permeability vs frequency Initial permeability vs temperature 25 2 5 μ' μ" 5-2 2 4 6 8 2 4 Temperature (ºC) Saturation flux density vs temperature Relative loss factor vs frequency 5 45 4 35 3 25 2 5 5 2 4 6 8 2 4 All measurements made on Toroid OD= mm, ID=6mm Ht=4mm 6mm Typical Dimension OD = +/-.6mm ID = 6+/-.4mm Ht = 4+/-.2mm 4mm Typical Inductance factor (AL) = 4 +/- % nh mm
Flux density (mt) Complex Permeability Initial Permeability MATERIAL GRADE: HT - 8 HT - 8 : Properties Symbol Unit Test condition Values Initial permeability (±25%) i.mt, 25 o C 8 o 2A/m, 25 C 43 2A/m, o C 32 Relative loss factor tan / i (max) tan / i -6.25mT, khz & 25 o C.25mT, khz & 25 o C Coercive Field (max) Hc A/m khz, 25 o C 2 Curie Temperature (min) Tc o C 9 Density (min) d kg/m 3 25 o C 485 Temperature Coeff. of permeability (max) F -6 /K -4 to 8 o C ±3 Resisitivity (min) m 25 o C HT-8: Complex permeability vs frequency HT-8: Initial permeability vs temperature μ' -----μ" 8 6 4 2 8 6 4 2-4 -2 2 4 6 8 2 4 6 8 2 Temperature (ºC) HT-8: Flux density vs temperature HT-8: Relative loss factor vs frequency 6 5 4 3 2 H = 2 A/m 2 4 6 8 2 4 All measurements made on Toroid OD= 3mm, ID=2mm Ht=mm.
Initial permeability MATERIAL GRADE: HT - 2 HT - 2 : RFID antenna grade Properties Symbol Unit Test condition Values Initial permeability (±25%) i.mt, 25 o C 2 o 2A/m, 25 C 47 2A/m, o C 33 Relative loss factor tan / i (max) tan / i -6.25mT, khz & 25 o C 6.25mT, khz & 25 o C Coercive Field (max) Hc A/m khz, 25 o C 4 Hysteris material Coefficient (max) B -6 /mt 25 o C 2 Curie Temperature (min) Tc o C 7 Density (min) d kg/m 3 25 o C 485 Temperature Coeff. of permeability (max) F -6 /K -4 to 8 o C ±.4 Resisitivity (min) m 25 o C HT-2: Complex permeability vs frequency HT-2: Initial permeability vs temperature 4 Flux density (Bs) Complex permeability 3 2 μ' ----- μ" HT-2: Flux density vs temperature 6 5 4 3 2 H= 2 A/m -6-2 2 6 4 8 22 Temperature (ºC) HT-2: Relative loss factor vs frequency -4-2 2 4 6 8 2 Temperature (ºC) Frequency (khz) All measurements made on Toroid OD= 3mm, ID=2mm Ht=mm.
Permeability Initial Permeability Flux Density (mt) MATERIAL GRADE: HT - 35 HT - 35 : RFID antenna grade Properties Symbol Unit Test condition Values Initial permeability (±25%) i.mt, 25 o C 34 o 2A/m, 25 C 5 2A/m, o C 39 Relative loss factor tan / i (max) tan / i -6.25mT, khz & 25 o C 3 Permanent flux density Br mt 25 o C 9 Coercive force Hc A/m 25 o C Curie Temperature (min) Tc o C 5 Density (min) d kg/m 3 25 o C 48 Temperature Coeff. of permeability (max) F -6 /K -4 to 8 o C 2 Resisitivity (min) m 25 o C HT-35 : Initial Permeability Vs Temperature HT-35 : Flux Density Vs Temperature 6 5 6 5 4 4 3 3 2 2-6 6 2 8 24 Temperature ( C) 2 4 6 8 2 4 Temperature ( C) HT-35: Complex Permeability Vs Frequency Frequency (KHz) All measurements made on Toroid OD= 3mm, ID=2mm Ht=mm.
Flux density (mt) m',m" MATERIAL GRADE: HR - 4 HR - 4 : Ferrite Impeder Grade Properties Symbol Unit Test condition Values Initial permeability (±25%) i.mt, 25 o C 2 2A/m, 25 o C 44 2A/m, o C 35 Coercive Field (max) Hc A/m khz, 25 o C Curie Temperature (min) Tc o C 24 Density (min) d kg/m 3 25 o C 48 Resisitivity (min) m 25 o C 4 Powerloss (max) Pc mw /cc 4kHz/2mT/25 C 4kHz/2mT/ C 7 HR4: Complex permeability vs Frequency Initial permeabiltiy vs temperature 3 μ' μ" Saturation flux density vs temperature 5 4 3 H= 2 A/m 2 2 4 6 8 2 4 Relative core loss ( mw/cc) μi 2-6 6 2 8 24 Temperature (ºC) Relative core losses vs temperature 8 75 7 65 55 4kHz / 2mT 5 45 4 2 3 4 5 6 7 8 9 2 3 All measurements made on Toroid OD= 3mm, ID=2mm Ht=mm.
Flux density (mt) Complex permeability Relative core loss (mw/cc) Initial permeability MATERIAL GRADE: HR - 4B HR - 4B : Ferrite Impeder Grade Properties Symbol Unit Test condition Values Initial permeability (±25%) i.mt, 25 o C 2 2A/m, 25 o C 5 2A/m, o C 4 Coercive Field (max) Hc A/m khz, 25 o C Curie Temperature (min) Tc o C 2 Density (min) d kg/m 3 25 o C 48 Resisitivity (min) m 25 o C 4 Powerloss (max) Pc mw /cc 4kHz/2mT/25 C 8 4kHz/2mT/ C 6 HR4B: Complex permeability vs frequency HR-4B: Initial permeability vs temperature 5 4 μ' ----- μ" f(khz) 3 2-4 -2 2 4 6 8 2 4 6 8 2 22 24 Temperature (ºC) HR4B: Saturation flux density vs temperature HR4B: Relative core losses vs Temperature 6 65 5 6 4 3 2 H= 2 A/m 55 5 2 4 6 8 2 4 45 4 4kHz / 2mT 2 4 6 8 2 4 All measurements made on Toroid OD= 3mm, ID=2mm Ht=mm.
Initial Permeability MATERIALGRADE: HQ - 23 HQ - 23 : High Q Inductors Properties Symbol Unit Test condition Values Initial permeability (±25%) i.mt, 25 o C 23 o 2A/m, 25 C 42 2A/m, o C 29 Relative loss factor tan / i (max) tan / i -6.25mT, khz & 25 o C 4.25mT, khz & 25 o C 6 Coercive Field (max) Hc A/m khz, 25 o C 25 Curie Temperature (min) Tc o C 7 Density (min) d kg/m 3 25 o C 47 Temperature Coeff. of permeability (max) F -6 /K -4 to 8 o C 3 HQ-23: Complex permeability vs frequency HQ-23: Initial permeability vs temperature Flux density (mt) Complex Permeability μ' -----μ" HQ-23: Flux density vs temperature 5 4 3 2 4 35 3 25 2 5 5-4 -2 2 4 6 8 2 4 6 8 2 22 Temperature (ºC) HQ-23: Relative loss factor vs frequency 2 4 6 8 2 4 All measurements made on Toroid OD= 3mm, ID=2mm Ht=mm.
E E CORES Application of EE Cores Small E Core Impedance matching tranformer For Miniature Tranformers SMD Tranformers Large E Core Commom mode choke and broadband transformers For SMPS Energy storage chokes B F E D A C DIMENSIONS Le Ae Ve AL VALUE ( ±25%) Almin Approx wt Type A(mm) B(mm) C(mm) D(mm) E (mm) F (mm) mm mm 2 mm 3 MSB-5S MSB-7C MGQ5C HP 4 gms/pair + 2.3 E/6/28 -.7 6. +. -. 28. +. -.8 72. +2.4 -. 28. +. -. 46. +.7 -. 27 785 22 --- 59 --- 59 24 EE8/38/2 8. ±.6 38. ±.5 9.8 ±.4 59. Min 9.8 ±.4 28.2 ±.5 84 395 723 --- 67 --- 5 36 +. EE7/33/32 7.5 ± 33.2 -.5 32. +. -.8 48. +.5 -. 22. +. +.7 -.7 2.9 -. 49 683 2 --- 8 --- 8 55 EE 65X33X28 65. +.5 -.2 32.8 +. -.6 27.4 +. -.8 44.2 +.5 -. 2. +. -.7 22.2 +.8 -. 47 532 782 --- 555 --- --- 4 EE 65X33X3 65. + -.2 32.8 +. -.6 3.7 +. -.6 44.2 +.5 -. 2. +. -.7 22.2 +.8 -. 47 267 3935 63 45 --- --- 9 EE 55X27X2 55. +.2 -.9 27.8 +. -.6 2. +. -.6 37.5 +.2 -. 7.2 +. -.5 8.5 +.8 -. 2 354 425 79 6 --- --- 24 EE 42X2X2 42. +. -.7 2.2 +. -.4 2. +. -.8 29.5 +.2 -. 2.2 +. -.5 4.8 +.7 -. 98 236 23 64 52 --- --- 3 EE 42X2X5 42. + -.7 2.2 +. -.4 5.2 +. -.5 29.5 +.2 -. 2.2 +. -.5 4.8 +.7 -. 97 82 765 525 4 --- --- 86 EE 42X2X9 42. +. -.7 2.2 +. +. -.4 9. -.5 29.5 +.2 -. 2.2 +. -.5 4.8 +.7 -. 97 7 4 29 23 --- --- 5 EE 4X7X2 4. +.7 -.5 7.5 +.6 -. 2. +. -.7 28.5 +.7 -. 2. +. -.7.25 +.6 -. 78.45 47 563 5 4 --- --- 56 EE 36XX8 36.2 ±.5 8. +.5 -..5 +. -.5 24.5 +.2 -..2 +. -.5 2. +.5 -. 8 2 967 4 3 --- --- 5 EE 35X4X9 34.9 ±.7 4.5±.25 9.5 ±.25 25.75±.5 9.2 ±.25.±.25 7 83 587 33 265 --- --- 3 EE 33X6X3 33.±.5 6.5 +.5 -. 3. +. -.6 23.4 min. +. -.6 2. +.5 -. 76.6 8 897 --- --- --- --- 45 -.5 -. +. +.5 EE33X4X3 33.±.5 4. +. 3. -.6 23.4 min. -.6 9.5 -. 67 8 796 47 39 --- --- 43 EE33X5X7 3.5±.35 +.5 +. +. +.35 5.2 -.35 7. -.4 2. min 7.5 -.4.5 -. 66 57 38 273 2 33 --- 2.6 +.5 EE 25X3X 25. +.8 2.5 -.7 -..5±.25 7.5 +.8 -. 7.5 +. -.5 8.95 +.5 -. 57 76 44 38 35 --- --- 23..5 +.6 +. +.3 +.6 EE 25X6X7 25.3 + -.3 5.7 -. 6.8 -.4 9.2 min 6.5 -.25 2.55 -. 73.5 42. 32 685 --- --- --- 5.4 EE 25X3X7 25. + -.7 2.8 +. +. -.5 7.5 -.6 7.5 +.8 +. +.5 -. 7.5 -.5 8.7 -. 57.5 52.5 32 2625 2 26 8 6.5 +. +. EE 25X9X6 25.4 ±.7 9.7 -.4 6.55 9. +.2 +. +.4 -.5 -. 6.55 -.5 6.3 -. 48 4 95 2248 2 24 --- EE2XX5 2.5±.55.2 +. +. -.4 5.3 2.8 +.6 +. +.4 -.4 -. 5.2 -.4 6.3 -. 42.8 3.2 34 9 56 2745 --- 8 EE2XX5-M 2.4 +.. +. +. -.8 -.4 5.9 4. +.8 +. +.4 -.5 -. 5.9 -.4 7. -. 44.9 33.5 5 --- --- --- 45 7.4 EE 9X8X5 9.3 ±.3 7.9 ±.2 5.2 +. 4. ±.3 5.2 +. -.5 -.5 5.5 ±.2 37 22.2 822 --- --- 5 --- 4.7 EE6X2X5 6. ±.4 2.4 ±.3 5. +. 2. ±.3 3.9 ±.3.4 ±.3 56.4 9. 6 --- --- --- --- 5 -.5 EE6X8X5 6. +.7 +. +. -.5 8.2 -.3 4.7.3 +.6 +. +.4 -.4 -. 4.7 -.3 5.7 -. 37 2. 75 5 47 --- 4 EE 2.65 2.65`±.45 6.5 +. +. -.2 3.7 9.2 ±.3 3.7 ±. 4.6 +. -.3 -.3 29.7 29.6 367 8 2
EER, EC, ETD, EED, EEH CORES Application of EER,EC, ETD, EED, EEH For High inductance and low height Compact Transformers Compact winding design with low leakage currents A E D Flyback converter for TV and monitors Switch mode power supplies Constant area of cross section along the magnetic path F B C DIMENSIONS Type A(mm) B(mm) C(mm) D(mm) E (mm) F (mm) EC35 35. ±.5 22.6 ±.3.3 ±.3 25.6 +./-.3 ±.3 6.6 ±.3 EC4A 4. ±.5 24.2 ±.3 3.4 ±.3 29. +./- 3.3 ±.25 7.2 ±.3 EC4B 4. ±.5 22.8 ±.3 3.4 ±.3 29. +./- 3.3 ±.25 5.8 ±.3 EC4C 4. ±.5 22.5 ±.3 3.4 ±.3 29. +./- 3.3 ±.3 5.5 ±.3 EC42 42. ±.5 22.4 +.4/-.2 5.5 ±.3 29.4 Min 75.5 +.2/-.4 5.4 ±.3 EC9 9. ±.8 45. +.65 3. ±. 7. ±.5 3. ±. 35. ±.5 EC2 2. ± 2. 5.9 ±.5 3. ±.5 9. Min 3. ±.5 35.7 ±.5 EER95 9.35 ±.5 2.45 ±. 4.9 ±. 7.5 Min 3.4 ±..675 ±.5 EER5.85 ± 2. 2.45 ±. 5.9 ±.5 8.85 ±.2 4.25 ±.25.575 ±. EER77 7.5 ±.35 8.5 ±.2 5. ±.2 3.6 ±.35 5. ±.5 6.3 ±.5 EER2622 25.5 ±.5. ±.2 7.5 ±.2 9.8 Min 7.5 ±.5 7.9 ±.2 EER28-A 28.5 +.6/-.5 7.3 +/-.6.4 ±.3 2.2 +./- 9.9 ±.3 2.25 +.6/- EER28-B 28.5 ±.6 5.6 +/-.6.4 ±.3 2.2 +./- 9.9 ±.3.55 +.6/- EER28-C 28.5 +.6/-.5 2.8 +.6/-.4 ±.3 2.2 +./- 9.9 ±.3 8.4 +.6/- EER39 3. ±.8 5.3 ±.2.3 ±.2 25.6 Min.3 ±.2.8 ±.3 EER42X2 42.5 ±.65 2.2 ±.2 9.6 ±.4 32.3 ±.5 7.3 ±.25 5. ±.5/ EER42X7 42. +.8/-.5 25.7 ±.2 7.3 ±.3 3.3 ±.5 7.3 ±.25 8.2 ±.2 ETD29 3.6 +./-.6 6. +/-.4 9.8 +/-.6 22. +.4/- 9.8 +/-.6.7 +.6/- ETD34 34. +./-.6 7.5 +/-.4. +/-.6 25.6 +.4/-. +/-.6.8 +.5/- ETD39 38.9 +./-.7 2. +/-.4 2.8 +/-.6 29.3 +.6/- 2.8 +/-.6 4.2 +.8/- ETD39 38.9 +./-.7 22.4 +/-.4 2.8 +/-.6 29.3 +.6/- 2.8 +/-.6 6.75 ±.5 ETD44 44. ±. 22.3 ±.3 4.8 ±.4 33.8 ±.8 4.8 ±.4 6.5 ±.4 ETD49 48.5 +./-.9 24.9 +/-.4 6.7 +/-.6 36. ±.8/ 6.7 +/-.6 7.7 +.8/-. ETD54 54.5 ±.3 27.6 +/-.4 8.9 ±.4 4.2 ±. 8.9 ±.4 2.2 ±.4 ETD5922 59.8 ±.4 3.2 +/-.4 22. +/-.9 43.6 +2.2/- 22. +/-.9 22 +.9/- EEH282 28. ±.3.2 ±.2.9 ±.5 2.5 Min 8.5 ±.5 6.6 ±. EEH2929 29.3 ±.3 4.6 ±.2.6 ±.2 2.6 Min 8.4 ±.2.5 ±.2 EEH33 33. ±.3.5 ±.2 3 ±.3 23.3 Min.5 ±.2 5.85 ±.5 EE425 42.5 ±.5 2.4 ±.3 4.8 ±.3 3.5 Min 4.8 ±.3 5.4 ±.3
EER, EC, ETD, EED, EEH CORES Type Wt (gm) Le (mm) Ae (mm 2 ) Ve (mm 3 ) AL± 25% EC35 55 93.8 7. 36 265 EC4A 82.7 48. 55 35 EC4B 79 93.8 43. 343 32 EC4 C 77 93.6 48. 3852 345 EC42 2 98.8 94. 967 4 EC9 656 26. 624. 34784 7 EC2 975 26. 7.73 258 8 EER95.6 3.4 8.8 6 8 EER 5.9 4.2 2.3 72 4 EER 77 4.4 4.2 2. 827 93 EER 2622.2 54. 44.3 239 88 EER28-A 34 78.3 85. 664 285 EER28-B 35 64. 85. 5444 32 EER28-C 25 54.5 83.8 4568 32 EER39 29 45.2 35.3 6 59 EER42X2 3 98.6 24. 23664 39 EER42X7 36 3.6 239. 278 42 ETD29 28 7.4 76. 535 2 ETD34 4 78.6 97. 7632 28 ETD39 6 92. 25. 5 32 ETD39 63 3.2 2.3 253 32 ETD44 94 3. 73. 79 37 ETD49 24 4. 2. 245 4 ETD 54 8 27 28 355 5 ETD5922 258 39. 368. 55 6 EEH282 22 5.7 87.8 4688 384 EEH2929 29.4 69.2 9 622 33 EEH33 32.7 52.8 2.7 6289 32 EER42/5 85.2 66 659 ---
EI CORES Application od EI cores Transformers for SMPS Impedance matching Transformers Miniature and SMD transformers B E D A F G C DIMENSIONS Type A(mm) B(mm) C(mm) D(mm) E (mm) F (mm) G(mm) EI64 6 ±.3 4.5 ±.5 4.8 +. -.2.7 Min 3.8 ±.2.4 ±.2 2 ±.2 EI96 9.2 ±.4 5.2 +.8 5.5 + -.4 -.2 4 Min 5. +/-.5.5 ±.3 2.4 ±.2 EI228 22. ±.6 9 ±.5 6. +. -.5 5.6 Min 6. +/-.5 ±.3 4. ±.3 EI259 25. +.5 9.3 +.7 6.5 ±.3 7.8 Min 6.5 ±.25 3. +.4 -.3 -.3 -. 3.3 ±.3 EI282 28. ±.5 2.2 +.3. +. 8.6 Min 7.5 +. 2.2 +.5 -.8 -.6 -.6 -. 3.5 ±.3 EI282 A 28. ±.5 2.8 ±.6 +. -.2 +..3 8.6 Min 7.5 -.6 2.8 ±.3 3.5 ±.3 EI326 3. +.7 26.5 +.6. +. 2. +.7. +. 6. +.6 -.2 -. -.7 -. -.7 -. 5.5 ±.2 EI3329 33. ±.5 28.75 ±.5 3. +. 23.4 Min. +. 9. +.5 -.6 -.6 -. 5. ±.3 EI353 35. +.8 29.6 +.9 2. +. 25.3 Min.3 +. 8.3 +.6 5.5 ±.2 -.5 -.2 -.6 -.6 -. +.8 +. +.7 +. +.5 EI435 4. ±.5 35 -.3 2 -.7 27.5 -. 2. -.7 2.2 -. 7.5 ±.3 EI542 5. ±. 42.5 +.75 +.7 +. -.25 4.7 ±.4 34.5 -. 4.6 ±.4 24.5 -. 9. ±.25 EI726 7. ±.5 56. ±. 9.5 ±.5 5. ±.5 9.5 ±.5 35.5 ±.5.5 ±.5
EI CORES EFFECTIVE PARAMETERS Type Wt set Le Ae Ve AL± 25% Gm mm mm 2 mm 3 MSB7C MSB5S EI64 3.7 35.3 9 66 385 4 EI96 4.7 38.6 25.5 976 6 67 EI228 8 4 36 476 6 6 EI259.2 47. 42. 98 2 25 EI282 22. 48.9 86. 44 5 EI282 A 23. 49.5 86.5 495 65 min InMGQ5C EI326 34. 58.6. 644 4 39 EI3329 42. 67.5 9. 84 37 52 EI353 4.5 67.3 2. 876 4 48 EI435 6.3 77. 47. 37 45 54 EI542.9 95.4 226.4 2599 5 5 EI726 257.4 33. 39. 587 5 2 AL Values : nh ±25% KHz.V Ts
EFD CORES Application of EFD cores For DC- DC Converter For flat transformers of Lower center leg Optimized cross section of Legs Good thermal response in case of Flat type EFD due optimised distribution of Cross section E D A G F B C DIMENSIONS Type A(mm) B(mm) C(mm) D(mm) E (mm) F (mm) G(mm) EFD.5 ±.3 5.2 ±. 2.7 ±. 7.65 ±.25 4.55 ±.5 3.75 ±.5.45 ±.5 EFD22 25 ±. 6.2 ±. 3.5 ±. 9. ±.25 5.4 ±.5 4.55 ±.5 2. ±. EFD55 5. ±.4 7.5 ±.5 4.65 ±.5. ±.35 5.3 ±.5 5.5 ±.25 2.4 ±. EFD22 2 ±.55. ±.5 6.65 ±.5 5.4 ±.5 8.9 ±.2 7.7 ±.25 3.6 ±.5 EFD2525 25. ±.65 2.5 ±.5 9. ±.2 8.7 ±.6.4 ±.2 9.3 ±.25 5.2 ±.5 EFD33 3. ±.8 5. ±.2 9. ±.2 22.4 ±.75 4.6 ±.25.2 ±.3 4.9 ±.5 EFD43 4.7 ±.8 5. ±.5 8. ±.25 28.7 ±.6 6. ±.3. ±.5 5. ±.5 EFFECTIVE PARAMETERS Type Wt set gm Le mm Ae mm 2 Ve mm 3 AL± 25% HP4 EFD.9 23.7 7.2 7 585 EFD22.8 28.5.4 325 825 EFD55 2.8 34. 5. 5 95 EFD22 7.2 47. 3. 46 3 EFD2525 6 57. 58. 33 22 EFD33 24 38. 69. 47 2 EFD43 3. 7.9 82.2 583 245 AL Values : nh ± 25% KHz.V Ts SOFT FERRITE CORE PRODUCT GUIDE 3
EP CORES Application od EP cores For power application Excellent properties for broadband transformers For Transformers featuring high Inductance and Low height Excellent magnetic sheilding B C E D A F DIMENSIONS Type A(mm) B(mm) C(mm) D(mm) E (mm) F (mm) EP5 6. ±.5 2.8 ±.5 3.8 ±. 4.4 ±.5.7 ±. 2 ±. EP7 9.4 +. -.4 3.75 ±. -. 6.5 +. -.3 72 +.4 -. 3.4 +. -.2 25 +.2 -. EP.5 ±.3 5. ±. 7.6 ±.2 9.8 ±.2 3.3 ±.5 3.7 ±. EP3 2.8 +. -.6 6.5. -.5 9. +. -.4 9.7 +.6 -. 45 +. -.3 45 +.2 -. EP7 8. ±.4 8.4 ±.. +.3 2. ±.4 5.7 ±.8 5.7 ±.5 EP2 24. ±.5.7 ±. 5. ±.4 6.5 ±.4 8.8 ±.25 7.2 ±.5 EFFECTIVE PARAMETERS Type Wt set gm Le mm Ae mm 2 Ve AL± 25% mm 3 HP4 EP5.5 9.7 3. 28.7 4 EP7.4 5.7.3 62. EP 2.8 9.2.3 27. EP3 4.7 24.2 9.5 474. 6 EP7 2 29.5 33.7 999. 22 EP2 27 4. 78.7 323. 385 AL Values : nh ± 25% KHz.V Ts SOFT FERRITE CORE PRODUCT GUIDE 32
EPC CORES Application od EPC cores For DC- DC Converter For flat transformers of Lower center leg A E D Optimized cros section of Legs EMI Suppression Chokes Good thermal response F B C DIMENSIONS Type A(mm) B(mm C(mm) D(mm) E(mm) (mm) EPC33 3.2 ±.25 6.6 ±.2 4.6 ±.5 8.3 Min 5.6 ±.5 4.5 ±.2 EPC76 7.5 ±.3 8.55 ±.2 6. ±.2 2 ±.5 7.7 ±.5 6.5 ±.2 EPC92 9. ±.4 9.75 ±.2 6. ±.5 3. Min 8.5 ±.5 7.25 +.2/-. EPC2228 2.9 ±.3 4.5 ±.2 7.3 ±.5 4.7 Min 9.5 ±.5.55 ±.5 EPC2225 2.9 ±.3 4.2 ±.2 7.3 ±.5 9.5 ±.5 4.7 Min.55 ±.5 EPC2525 25.4 ±.5 2.5 ±.25 FQKT6.5 6.5 ±.3 2. ±.2 8. ±.5 8.7 ±.2 8.35 ±.4.5 ±.25 9. ±.2 5.7 ±. 9. ±.5 8.6 +.25/-. FQT7.4 7.4 ±.3.8 ±. FQKT8 8. ±.3.8 ±.2 8.7 ±.2 8.7 ±.2 5.7 ±.5. ±.5 8.7 ±.5 5.7 ±.5.8 ±.5 8.7 ±.5 EFFECTIVE PARAMETERS Type Wt / set Le Ae Ve Al± 25% gm mm mm 2 mm 3 Hp4 EPC33.92 9.28 8.36 6.23 87 EPC76 4.62 4.2 22.8 97 5 EPC92 5.2 46. 22.7 47 9 EPC2228 2.84 63.5 36.9 233 3 EPC2225 2.4 63. 4.2 253 39 EPC2525 2.6 52.73 39.8 2867 5 FQKT6.5 9.2 44. 3.8 38 FQKT7.4 9.5 48. 32. 52 5 FQKT8 9.8 48. 32.3 55 3 AL Values : nh ± 25% KHz.V Ts SOFT FERRITE CORE PRODUCT GUIDE 33
EPC CORES Application od PQ cores Compact Transformers Low distortion broadband transmission at low signal DC/DC Converters E D A F C B DIMENSIONS Type A(mm) B(mm) C(mm) D(mm) E (mm) F (mm) PQ22 2.3 ±.4. ±. 4. ±.4 8. ±.4 8.8 ±.2 7.5 ±.2 PQ262 26.5 ±.45.75 ±.25 9. ±.45 22.5 ±.45 2. ±.2 5.75 ±.5 PQ2625 26.5 ±.45 2.5 ±.25 9. ±.5 22.5 ±.45 2. ±.2 8.5 ±.25 PQ322 33. ±.5.55 ±.2 22. ±.5 27.5 ±.5 3.45 ±.25 6.5 ±.2 PQ323 33. ±.5 5.5 ±.5 22. ±.5 27.5 ±.5 3.5 ±.25.65 ±.2 PQ3535 36. ±.6 7.35 ±.25 26. ±.5 32 ±.5 4.4 ±.25 2.5 ±.5 PQ44 4.5 ±.9 2. ±.5 28. ±.6 37. ±.6 4.9 ±.3 4.8 ±.2 PQ55 5. ±.7 25 ±.25 32. ±.6 44. ±.7 2. ±.35 8.5 ±.3 EFFECTIVE PARAMETERS Type Wt / set Le Ae Ve AL gm mm mm 2 mm 3 HP4 PQ22 4 45.7 62.6 285 28 PQ262 3. 45.3 9.5 472. 6 PQ2625 36. 55.5 33.7 999. 445 PQ322D 43 56.7 7. 9639. 636 PQ323D 62 74.7 67. 25 477 PQ3535 8. 87.9 96. 7228. 537 PQ44 95..9 2. 2482. 49 PQ55 95 3. 328. 37 63 SOFT FERRITE CORE PRODUCT GUIDE 34
RM CORES Application of RM cores Compact design Low distortion broadband transmission at low signal DC/DC Converters D A C E F B Type A(mm) B(mm) C(mm) D(mm) E (mm) F (mm) RM4 +.. -.5 5.2 ±.5 RM5 4.9 max 5.2 ±.5 RM6 RM8 RM RM2 RM4 +. 7.9 -.7 6.2 ±.5 +. 23.2 -.9 8.2 ±.5 + 28.5 -.3 9.3 ±.5 + 37.4 -.3 2.25 ±.5 + 42.2 -.4 5.5 ±.5 +. +.4 +. 3.5 +.2 4.6 -.2 7.95 -. 3.9 -.2 -. +. +.4 +. 3.5 +.2 6.8 -.4.2 -. 4.9 -.2 -. +. +.5 +. 4. +.2 8.2 -.4 2.4 -. 6.4 -.2 -. +. +.6 +. 5.4 +.2. -.5 7. -. 8.55 -.3 -. +. +.9 +. 6.2 +.3 3.5 2.2.9 -.5 -. -.4 -. +. +. +. 6. 25. 2.8 -.5 -. -.4 8.4 +.3 -. +. +.2 +..4 +.3 8. 29. 5. -.6 -. -.6 -. EFFECTIVE PARAMETERS Type Wt set Le Ae Ve AL gm mm mm 2 mm 3 HP4 RM4.7 23.2 3.8 322 7 RM5 3.3 22. 23.8 526 8 RM6 5. 28.6 36.6 5 235 RM8 2.4 38. 64. 243 33 RM 22. 44. 98. 43 434 RM2 45 56. 5. 84 54 RM4 74 69. 26. 4 6 AL Values : nh ± 25% KHz.V Ts SOFT FERRITE CORE PRODUCT GUIDE 35
PLANNER CORES Application of Planar cores Low profile core High AL Value High core surface to volume ratio Excellent thermal performance High output currents at low output voltage Good EMC characteristics A D E F C G B DIMENSIONS Type A(mm) B(mm) C(mm) D(mm) E (mm) F (mm) G(mm) PEE47 4. ±.3 3.5 ±. 5. ±.. ±.25 3. ±.5 2. ±. --- PEE88 8. ±.35 4. +.. ±.2 4. ±.3 4. ±. 2. ±. --- PEE22 2.8 ±.4 5.7 ±. 5.8 ±.3 6.8 ±.4 5. ±. 3.2 ±. --- PEI45 4. ±.3 3.5 ±. 5. ±.. ±.25 3. ±.5 2. ±..5 ±.5 PEI86 8. ±.35 4. ±.. ±.2 4. ±.3 4. ±. 2. ±. 2. ±.5 PEI228 2.8 ±.4 5.7 ±. 5.8 ±.3 6.8 ±.4 5. ±. 3.2 ±. 2.5 ±.5 PEE642 64 ±.3.2±.5 5.8 ±. 53.8 ±..2 ±.2 5. ±.5 --- EFFECTIVE PARAMETERS Type Wt set Le Ae Ve AL±25% gm mm mm 2 mm 3 HP4 PEE47.2 2.7 4.3 3. 28 PEE88 4.8 24.3 39.3 96 288 PEE22 3 32.5 78.3 255 48 PEI45. 6.7 4.5 24 44 PEI86 4. 2.5 39.5 8 32 PEI228.5 26. 78.5 24 552 PEE642 2 79.9 59. 47 4 AL Values : nh ± 25% KHz.V Ts SOFT FERRITE CORE PRODUCT GUIDE 36
UU AND UI CORES Application of U Cores Pulse and High Voltage Transformer Line Deflection transformers Energy storage chokes common chokes Suppression for Line Filter DIMENSIONS Type A(mm) B(mm) C(mm) D(mm) E (mm) UU. ±.25 4.4 ±.4 3. +./-.4 4.3 +.4/-.2 8.6 ±.6 UU.5.5 ±.25 5.8 ±.4 5.35 ±.25 5.3 +.4/-..6 ±.3 UU 44 4 ±.3 4.2 ±.3 2.7 ±.2 8.4 Ref 8.4 ±.4 UU 5 5.2 ±.7 23.4 +/-.2 6.7 +/-.5 5.2 ±.3.4 +.4/- UU 6 6. ±.7 2.2 ±.6 6. ±.25 7. ±.3 2. ±.7 UU 2 2. ±.3 36. ±.5 6. ±.2 8. ±.25 24. ±.5 UU 2 2. ±.6 3.6 +/-.2 7.5 ±.25 6. ±.4 6.6 +. UU 23 23. ±.6 32. +/-.2 7.55 ±.25 8. ±.2 6.5 +. UU 4628 46 ± 79 ±.5 28 ±.8 7.5 min 5 ±. UU 825 8 ±.6 98 ±. 2 ±.5 4 ±.8 58 ±. UU 93X6 93. ±.8 52. ±. 6. ±.4 36.2 ±.2 96. ±.8 UU 93X3 93. ±.8 52. ±. 3. ±.6 36.2 ±.2 96. ±.8 UU.6 ± 2. 4.3 ±.8 25.4 ±.76 5.8 ±. 63.5 ±.5 UU 26 26. ± 2. 89. ±. 2. ±.6 7. ±. 62. Min I X25.4.59 ± 2. 25.4 ±.76 25.4 ±.76 --- --- I 93X3 93. ±.8 28. ±.5 3. ±.6 --- --- I 26 26. ± 2. 27.5 ±.5 2. ±.6 --- --- EFFECTIVE PARAMETERS Type Le Ae Ve AL±25% Wt cm cm 2 cm 3 MSB5S MGQ5C MSB7C UU.4 3.48.86.3 --- 72 --- UU.5 2.8 3.75.39.52 9 min --- UU 44 48.4.6 42.4 7.6 322 54 UU 5 8.7 4.8.32.536 8 258 min --- UU 6 7.6 5.2.275.433 --- 275 min --- UU 2 5.5 8.8.36 2.98 --- 7 min --- UU 2 2.4 6.8.56 3.8 245 23 min --- UU 23 22.4 7.4.6 4.54 265 --- --- UU 4628 --- 63 92.6 645 345 --- 79 UU 825 --- 258 4 mm 2 32 59. --- 3 UU 93X6 --- 955. 35.5 8.4 298 --- 53 UU 93X3 --- 5 3.84 6.452 98.965 --- 54 UU --- 34. 48. 5.6 2.68.8 --- 35 UU 26 --- 48. 5.6 269 --- --- 3 I x 25.4 --- 24.5 6.45 58. --- --- 65 I 93x3 --- 2 8.36 7.5 --- --- 85 I 26 --- 35.4 5.6 98 --- --- 38 SOFT FERRITE CORE PRODUCT GUIDE 37
COLOUR F B T CORES Application of FBT Storage choke Interference suppression component High saturation reponse, low loss and high Tc A D F E C B DIMENSIONS PART NO. A(mm) B(mm) C(mm) D(mm) E (mm) F (mm) Le Ae Ve Approx. wt. Cm Cm 2 Cm 3 gms / pair FUT 3544 34.75 ±.5 44.5 ±.6.5 +.5 3. min 25.5 ±.6 9.5 ±.25.8.4.38 55. -.3 FUT 3555 35.4 +.5 55..6 3. ±.3.9 min 35. ±.6. ±.3 2.852.287 6.542 84. FUT 3569 35.5 ±. 68.6 ±.6 2.8 +.5 3.5 min 48. ±.6 9.3 ±.4 5.77.73 8.498 96. -.3 FUT 357 35. +.5 7..6 2.5 ±.25 3.5 min 5. ±.6 8.5 ±.3 6.2.9 7.789 9. FUT 3859 38. ±.5 59. ±.6 4. +.5 2. min 37. ±.6.5 ±.25 3.6.522 2.67 5.5 -.3 FUT 3863 38. +.5 64. ±.6 3. +.5 3.8 min 42.6 ±.6.7 ±.2 4.923.333 9.893 98. 3 mm Ø -.3 FUT 3863 38. ±.5 62.9 ±.6 4. +.5 2. min 4.7 ±.5.5 ±.25 4.35.55 2.75 2. 4 mm Ø -.3 FUT 3872 38.9 ±.5 73. ±.5 4. ±.3 2.95 min 5. ±.5.3 ±.3 6.5.52 25.96 24. FUT 3956 38.75 ±.5 56.4 ±.6 3.5 ±.25 4.25 min 34.4 ±.6.5 ±.25 3.2.38 8.24 92. FUT 462 4.5 ±.5 62.2 ±.6 4.5 +.5 3.55 min 4.2 ±.6.5 ±.3 4.6.597 23.335 6. -.3 FUT 4363 42.75 +.5 66.5 ±.6 4. ±.3 6.75 min 4. ±.6.5 nom 5.24.54 23.46 2. -.6 FUT 4366 42.75 +.5 66.5 ±.6 4. ±.3 6.75 min 43.5 +.6.5 nom 5.96.54 24.57 26. -.6 FUT 4374 42.75 +.5 74. ±.6 4. ±.3 6.65 min 5. +.6.5 ±.3 7.52.54 27.65 34. -.6 FUT 4676 46. ±.5 76.2 ±.6 5. ±.3 8.4 min 52. ±.6 2. nom 8.2.7 3.39 6 FUT 427 42. ±.5 33.5 ±.6 3. ±.3 3. min 3. ±.6 23. ±.3 5.2.36 2.66 FUT 3867 38.5 ±.5 69.4 ±.3 4.75 ±.3 5. min 5. ±.6 22.7 ±.3 7.8.62 28.72 4 These cores are available in MSB 7C & MSB 5F(H) grade. SOFT FERRITE CORE PRODUCT GUIDE 38
FERRITE BAR Application of Ferrite Bars For Induction Heating For Tyre pressure and Keyless Entry application For EMI Absorption A C A B B E D C DIMENSIONS Type A(mm) B(mm) C(mm) D(mm) E (mm) WT/ set Fbar 79/23/4 79 ±.8 23.5 ±.5 4 ±.2 --- --- 36 Fbar 79/23/4 79 ±.8 9 ±.4 4 ±.2 --- --- 29 Fbar 64//3 64.5 ±.7 9.8 ±.2 3.5 ±.5 --- ---. Fbar 64/23/4 64.5 ±.7 23.5 ±.5 3.95 ±.2 --- --- 29. Fbar 62/3/4 62. ±.6 3. ±.5 4. ±.2 --- --- 37.5 Fbar 6/23/4 6. ±.5 23. ±.4 4. ±.2 --- --- 27. Fbar 55/23/4 55. ±. 23.5 ±.5 3.95 ±.2 --- --- 25. Fbar 42/23/4 42. ±.8 23.5 ±.5 4.3 ± 2. --- --- 2.5 Fbar 36/28/4 36. ±.6 28 ±.5 4. ±.2 --- --- 2. Fbar 32/26/4 32. ±.5 26. ±.5 4..2 --- --- 6.3 CFbar 88/44/4 88. ±.2 44. ±.6 4. ±.4 26. ±.6 3. ±.4 64. CFbar 62/3/4 62. ±.7 3. ±.5 4. ±.2 6. ±.3 8. ±.4 38. SOFT FERRITE CORE PRODUCT GUIDE 39
TOROID Application of Toroid Common mode choke Interference suppression for line filter Signal transformer Highest permeabilty for volume Gapped Torroid A C DIMENSIONS TYPE ØA(mm) ØB(mm) C(mm) Le Ae Ve AL (± 25%) AL min Approx wt. Cm 2 Cm 2 Cm 2 Cm 2 MSB-5S MGQ5C gms/pc T.. ±.6 6. ±.2 3. ±.3 2.5.6.5 9 2.72 T.. ±.6 6. ±.2 4. ±.3 2.5.8.2 2 6. T 2.5 2.5 ±.4 7.5 ±.4 5. ±.3 3.4.3.39 2 87.92 T 3.3 3.3 ±.3 8.3 ±.3 5.2 ±.6 3.39.3.43 345 68 2. T 5.2 5.2 ±.5 7.6 ±.4 6.7 ±.3 3.58.25.9 --- 33 4.4 T 6. 6. ±.4. ±.4 6.3 ±.3 4.8.9.77 745 2 3.7 T 7.5 7.5 ±.6.5 ±.4 8. ±.3 4.56.24. 98 232 5.3 T 9. 9. ±.5. ±.4 8. ±.3 4.7.32.5 25 34 7.3 T 2. 2. ±.5 3. ±.3 2.5 ±.5 5.34.5 2.67 353 467 2.9 T 25. 25. ±.6 5. ±.5. ±.3 6.2.49 2.95 37 375 4.5 T 25. 25. ±.6 5. ±.5 2. ±.4 6.28.6 3.77 36 48 8.3 T 27.5 27.5 ±.6 4.5 ±.5 6.5 ±.3 6.6.42 2.79 244 3 3.5 T 28. 28.5 ±.4 3.5 ±.4 6.7 ±.4 6.59.25 8.76 7 9 4. T 3.5 3.5 ±. 9. ±.6 2.5 ±.3 7.93.78 6.9 3825 4687 29 T 32. 32. ±.7 4.5 ±.5 7. ±.3 7.3.6 4.47 366 394 22 T 36. 36. ±. 23. ±.6 5. ±.4 9.26.97 9.3 395 523 44 T 45 45. ±.4 28. ±.8. ±.4.5.94.8 38 385 52 T 5 5. ±. 3. ±.8 2. ±.3 2.56 2. 25.2 6 8 2.8 T 58.3 58.3 ±. 4.8 ±.8 7.6 ±.4 5.56.54 23.96 37 --- 6.2 T 63. 63. ±.3 38 ±.8 25. ±.5 5.85 3.25 49.53 76 95 24 Note : Epoxy coated Toroids in above types also can be made available. SOFT FERRITE CORE PRODUCT GUIDE 4
DRUM CORES - OWD Application of Small Rods Crossover network Filters B E D A C C DIMENSIONS TYPE A(mm) B(mm) C(mm) D(mm) E(mm) OWD 22X5 22. ±. 6.4 ±.5 3.2 +.6 -. 2. ±.3 5. +.3 -. OWD 22X2 22. ±. 2.4 ±.5 3.2 +.6 -. 2. ±..3 5. +.3 -. OWD 28X2 28. ±. 2.7 ±.5 3.85 +.6 -. 6.9 ±.3 5. +.3 -. OWD 28X25 28. ±. 26.7 ±.5 3.85 +.6 -. 6.9 ±.3 5. +.3 -. OWD 35X25 35. ±. 26.9 ±.5 4.45 +.6 -. 2. ±.4 6.3 +.2 -. OWD 4X25 4. ±. 26. ±.5 4.45 OWD 4X35 45. ±. 36. ±.5 5. +.6 -. +.6 -. 24.95 ±.5 6.3 26.95 ±.5 6.3 +.2 -. +.2 -. OWD 56X35 56. ± 2.5 35. ±.5 5. +.6 -. 32.95 ±.5 6.3 +.2 -. SOFT FERRITE CORE PRODUCT GUIDE 4
SMALL RODS AND TUBE / BEADS Application of Small Rods Application of Small Rods For Antennae For Choke and Filter For small Signal Transformers A B DIMENSIONS Type OD(mm) Length(mm) 3x2.5 3. ±.3 2.5 ±.5 3.8X9.5 3.8 ±.3 9.5 ±.5 3.2X9 3.2 ±.3 9. ±.5 4.76X25 4.76 ±.3 25. ±.5 4.76X5 4.76 ±.3 5. ±.5 5x2 5. ±.3 2. ±.5 5x 5. ±.3 ±.5 6x2 6. ±.3 2 ±.5 6.35X5.8 6.35 ±.2 5.8 ±.5 6.35X38. 6.35 ±.2 38. ±.5 6.35X64.5 6.35 ±.2 64.5 ±.5 6.35X85 6.35 ±.2 85. ±.5 6.36X43.75 6.35 ±.2 43.75 ±.5 6.35X9.5 6.35 ±.2 9.5 ±.5 DIMENSIONS Type OD(mm) ID(mm) Length(mm) 4X2X2 4 ±.2 2. ±.2 2. ±.5 5X2.5X2 5 ±.3 2.5 ±.3 2. ±.5 6X3X2 6 ±.3 3. ±.2 2. ±.5 7X3X2 7 ±.3 3. ±.2 2. ±.5 8X3X2 8 ±.3 3. ±.2 2. ±.5 X5X2 ±.4 5. ±.3 2. ±.5 7.9X38. 7.9 ±.3 38. ±.5 9.5X76.2 9.5 ±.3 76.2 ±.5 9.75X25 9.75 ±.3 25. ±.75 2.7X2 2.7 ±.4 2. ±. 2.7X5 2.7 ±.4 5. ±. 2.7X97 2.7 ±.4 97. ±.5 2.7X.6 2.7 ±.4.6 ± O.5 2.7X76.2 2.7 ±.4 76.2 ±.5 2.7X5.8 2.7 ±.4 5.8 ±.5 5.9X5.8 5.9 ±.4 5.8 ±.5 9.5x38. 9.5 ±.4 38. ±. SOFT FERRITE CORE PRODUCT GUIDE 42
Distributor Parker Electronics Pvt. Ltd; A - 26, Lane No. 2, Shakarpur, Vikas Marg, Delhi - 92 (INDIA) Phone No: +9 2252777, +9 4759367 Corp. Office:- 59//, Industrial Area, Site - IV, Sahibabad, Distt. Ghaziabad, U.P.(INDIA) Phone: +9 2 4793777 Fax : +9 2 4793778 SOFT FERRITE CORE PRODUCT GUIDE 43