Differential equations

Σχετικά έγγραφα
Inverse trigonometric functions & General Solution of Trigonometric Equations

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Section 8.3 Trigonometric Equations

D Alembert s Solution to the Wave Equation

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

PARTIAL NOTES for 6.1 Trigonometric Identities

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Second Order Partial Differential Equations

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Matrices and Determinants

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Solutions to Exercise Sheet 5

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Homework 8 Model Solution Section

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Chapter 6 BLM Answers

Differentiation exercise show differential equation

If we restrict the domain of y = sin x to [ π 2, π 2

Trigonometry 1.TRIGONOMETRIC RATIOS

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Areas and Lengths in Polar Coordinates

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Section 9.2 Polar Equations and Graphs

Second Order RLC Filters

derivation of the Laplacian from rectangular to spherical coordinates

Areas and Lengths in Polar Coordinates

MathCity.org Merging man and maths

CRASH COURSE IN PRECALCULUS

The Simply Typed Lambda Calculus

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

2 Composition. Invertible Mappings

Reminders: linear functions

Math221: HW# 1 solutions

Parametrized Surfaces

Rectangular Polar Parametric

Example Sheet 3 Solutions

EE512: Error Control Coding

Section 7.6 Double and Half Angle Formulas

Srednicki Chapter 55

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Concrete Mathematics Exercises from 30 September 2016

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Quadratic Expressions

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Lifting Entry (continued)

Trigonometric Formula Sheet

Finite Field Problems: Solutions

Section 8.2 Graphs of Polar Equations

( y) Partial Differential Equations

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

1 String with massive end-points

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

C.S. 430 Assignment 6, Sample Solutions

Lecture 26: Circular domains

Tutorial problem set 6,

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Numerical Analysis FMN011

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

ST5224: Advanced Statistical Theory II

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Part III - Pricing A Down-And-Out Call Option

Answer sheet: Third Midterm for Math 2339

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Derivation of Optical-Bloch Equations

Math 6 SL Probability Distributions Practice Test Mark Scheme

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Geodesic Equations for the Wormhole Metric

TMA4115 Matematikk 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Approximation of distance between locations on earth given by latitude and longitude

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Answers to Selected Exercises

IIT JEE (2013) (Trigonomtery 1) Solutions

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Transcript:

Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential equation: The order of a differential equation is the order of the highest deriatie occurring in it. Degree of differential equation: Degree of a differential equation is the degree of the highest deriatie occurring in it when the deriaties are made free from the radical sign. Solutions of differential equations of the first order and first degree: Variables separable method. Homogeneous equations. Non-Homogeneous equations: Linear equation: Equation reducible to linear form: Variable separable method. To sole dy XY,where X is a function of only dx and Y is a function of y only. Bring all the terms of and on one side, the terms of y and on the other side. Integrate both sides and add an arbitrary constant on one side.. Sole (y + )+ ( y + y) 0. Sol: (y + )+ ( y + y) 0. (y + )+ ( + ) y 0. by (y + )( + ) + y 0 ( +) (y +) ( + ) + y (y + ) 0 log( + ) + log( + y ) log c log( + )( + y ) log c ( + )( + y ) c 3. Sole + y +y+ ++ 0 Sol: y +y+ ++ y +y+ ++ y +y+( ) ( ) + (y+ ) ( 3 ) + ++( ) ( ) + (+ ) ( 3 ). Sole e y + e y Sol: e y + e y e ey + e y e + e y e y (e + ) +a a tan ( a ) + c 3 tan ( y + 3 ) + 3 tan ( + 3 ) c tan ( y + 3 ) + tan ( + 3 ) c e y (e + ) e y e + + c Saq e y Q.No e 7 + + c

4. Sole (e + )y + (y + ) 0 Sol: (e + )y + (y + ) 0 by (e + )(y + ) (e + )y (e + )(y + ) + (y + ) (e + )(y + ) 0 y + (y+) 0 (e +) y+ (y+) + ( e +) 0 ( y+ ) + (y+) (y+) e 0 (+e ) (y+) e 0 (+e ) y log(y + ) log( + e ) log c y log(y + ) + log( + e ) + log c 6. Sole (log+) siny+ycosy Sol: (log+) siny+ycosy (siny + ycosy) (log + ) siny + y. cosy. log + cosy + y cosy [ cosy ] {log [ d (log ) ] } cosy + ysiny + cosy { log } + + c cosy + ysiny + cosy log + + c ysiny log + c y log(y + )( + e )c e y c(y + )( + e ) or e y e c(y + )( + e ) e +y c(y + )( + e ) 5. Sole y 5(y + ) Sol: y 5y + 5 + 5 y 5y (+5) y( 5y) 7. Sole + y 0 Sol: + y 0 Integrating on both sides + y 0 { a a + a sin ( a )} + sin () + y + sin (y) c + sin + y + sin y c y( 5y) (+5) Saq Q.No 7

8. Sole sin ( ) + y 0. Sole tan ( + y). Sol: sin ( ) + y sin( + y) put + y t + dt dt dt sin t dt + sin t +sin t sin t sin t sin t cos t dt dt dt [ cos t sint cost ] dt {sec t sec t tan t} dt tan t sec t + c 9. Sole tan( y) Sol: put y t dt The gien eq n becomes + dt tan t dt tan t dt. tan t cot dt log sint + c log sin (y ) + c Saq Q.No 7 3

Homogeneous differential equations To sole the equation f (,y) f (,y), where f (, y), f (, y)are homogeneous functions of the same degree in and y. Put y, so that + Substitute the alues of y and in the gien equation. Separate the ariables and. Integrate both sides and add an arbitrary constant on one side. Separate back the ariables y. + ( ) + ( ) ( ) ( )+ ( ) + ( ) ( ) + + ( ) ( ) ( ) ( ) + + ( ) ( ) ( ) ( ) f () log f() + c. f() log log log + log c log log c. Sole ( + y ) y.. Sol: ( + y ) y. y +y..() y ( y y ( c substituting y/ ) c y ) c let y + Eq n () + () +() + + + + ( + ) 3 + 3 + + 3 Saq Q.No 7 4

. Sole ( y ) y. 0. Sol: ( y ) y. 0 y y.. this is homogenous D. E let y + Eq n + () () + + ( ) + ( ) ( ) ( ) 4 4 ( f () log f() + c. f() 4 log log + logc log 4 log(c) ) 3. Sole ( y ) y. Sol: ( y ) y y y let y + Eq n + + +3 3 3 () () ( 3 3) + ( ) log log + log c substituting y/ y y y log y/ log c log y/ +log c log y c y log yc + y log yc 0 log log(c) 4 ( ) (c) 4 ( ( y ) ) 4 c 4 y 4 c 4 ( y ) c 4 Saq Q.No 7 5

y y c 4. sole y +y Sol: this is homogenous D. E 5. sole ( y) (y ) sol: ( y) (y ) let y + y y this is homogenous D. E Eq n + +() + ( ) (+) + ( ) (+) ( ) (+) (( (+ (( (+ + (+) ) log log + log c log log c log log(c) (c) y (y ) c ) let y + Eq n + () + ( ) ( ) + ( ) ( ) ( ) ( ) ( + ) ( ) ( ) ( ) ( )(+) [ + ( ) 3 (+) ] ( ) 3 (+) log( ) 3 log( + ) log + log c log( ) log( + ) 3 log c log ( ) (+) 3 log c y y c Saq Q.No 7 ( ) (+) 3 c( y ) ( y + )3 c 6

(y ) 3 3 (y + )3 c (y ) (y + ) 3 c 6. sole (y + cos y ) Sol: (y + cos y ) y + cos ( y ) y + cos ( y ). this is homogenous D. E let y + Eq n + + cos () cos () cos () sec () tan log + c tan ( y ) log + c 7. Gien the solution of sin ( y ) y Which passes through the point (, π 4 ) Sol: sin ( y ) y y sin ( y ) [y sin ( y )] [y sin ( y )].. let y + + sin () sin () sin () cosec cot log + c cot ( y ) log + c this is passing Through the point (, π 4 ) cot ( π ) log + c 4 0 + c c cot ( y ) log 8. sole y+ +y 3. Sol: y+ +y 3 [a + b 0] this is non homogeneous D. E of case() Re grouping the terms properly ( + y 3) ( y + ) ( + ) (y 3) y 0 ( + ) (y 3) [y + ] 0 [ y sin ( y ) ] ( + ) (y 3) d(y) 0 Saq Q.No 7 7

+ y 3y y c ( + + ) y y + 3y c 9. sole y+3 y+5. Sol: y+3 [ a b ] y+5 a b this is non homogeneous D. E of case() y+3.. ( y)+5 + log( + ) + c ( y) + log( y + ) + c y + log( y + ) c let ( y) Now eq n becomes +3 +5 +3 +5 +5 3 +5 + +5 +5 + +4+ + (+)+ + ( (+) Saq Q.No 7 + + + ) 8

y. e tan (etan ) + c Linear differential equations To sole + Py Q, where P and Q are functions of only. Make the co-efficient of unity, if not so alrea. Find I. F e p and remember that e log f() f() the solution is y(i. F) Q(I. F) + c. Sole ( + ) + y 4 0 Sol: ( + ) + y 4 0 + y 4 + + this is in the form of + Py Q where P + I. F e P, Q 4 + I. F e + e log(+) + the solution is y(i. F) Q(I. F) + c y( + ) 4 +. ( + ). Sole ( + ) + y etan Sol: ( + ) + y etan + y etan + + this is in the form of + Py Q where P, Q etan + + I. F e P I. F e + e tan the solution is y(i. F) Q(I. F) + c y. e tan e tan +. etan let e tan t etan dt y. e tan tdt + y( + ) 4. y( + ) 43 3 + c y( + ) 43 3 + c 3. Sole + y tan sin + y tan sin Sol: this is in the form of + Py Q where P tan, Q sin I. F e P I. F e tan e log sec I.Fsec the solution is y(i. F) Q(I. F) + c y(sec) sin sec y. e tan t Saq Q.No 7 y(sec) sin cos 9

y(sec) tan y(sec) log sec + c 4. Sole y tan e sec Sol: y tan e sec this is in the form of + Py Q where P tan, Q e sec I. F e P I. F e tan e log sec I.F sec cos the solution is y(i. F) Q(I. F) + c y(cos) e sec. cos y(cos) e y(cos) e + c 5. Sole ( + y + ) Sol: ( + y + ) +y+ - y + + y + this is in the form of + P Q where P, Q y + I. F e P I. F e e y I.Fe y the solution is (I. F) Q(I. F) + c (e y ) e y (y + ) (e y ) (y + )e y + e y (e y ) (y + )e y + e y + c (y + ) + ce y + y + ce y which is the required solution. 6. Sole ( + y ) (tan y ) Sol: ( + y ) (tan y ) tan y (+y ) + tan y (+y ) (+y ) this is in the form of + P Q where P ( + y ), Q tan y ( + y ) I. F e P I. F e (+y ) e tan y I.Fe tan y the solution is (I. F) Q(I. F) + c (e tan y ) e tan y. tan y (+y ) let tan y t dt (+y ) (e tan y ) e t. t. dt (e tan y ) e t (e t ) + c (e tan y ) e tan y (e tan y ) + c 7. Sole cos + y sin sec Sol: cos + y sin sec (e y ) (y + ) e y [ d (y + ) e y ] (e y ) (y + )e y. e y Saq Q.No 7 sin + y. sec cos cos + y. tan sec3 this is in the form of + Py Q 0

where P tan, Q sec 4 I. F e P I. F e tan e log sec I.Fsec the solution is y(i. F) Q(I. F) + c y(sec) sec 3. sec y(sec) sec 4 y(sec) ( + tan ) sec let tan t sec dt y(sec) ( + t )dt y(sec) t + t3 3 + c y(sec) tan + tan3 + c 3 8. Sole log + y log Saq Q.No 7