FRACTIONAL INTEGRATION OF THE PRODUCT OF BESSEL FUNCTIONS OF THE FIRST KIND. Abstract

Σχετικά έγγραφα
A summation formula ramified with hypergeometric function and involving recurrence relation

Generalized fractional calculus of the multiindex Bessel function

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

On the k-bessel Functions

Uniform Convergence of Fourier Series Michael Taylor

CRASH COURSE IN PRECALCULUS

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

2 Composition. Invertible Mappings

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Example Sheet 3 Solutions

Section 8.3 Trigonometric Equations

Math221: HW# 1 solutions

Every set of first-order formulas is equivalent to an independent set

Fractional Colorings and Zykov Products of graphs

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Matrices and Determinants

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Other Test Constructions: Likelihood Ratio & Bayes Tests

4.6 Autoregressive Moving Average Model ARMA(1,1)

On Strong Product of Two Fuzzy Graphs

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

The k-α-exponential Function

Inverse trigonometric functions & General Solution of Trigonometric Equations

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

A General Note on δ-quasi Monotone and Increasing Sequence

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

SPECIAL FUNCTIONS and POLYNOMIALS

Approximation of the Lerch zeta-function

Second Order RLC Filters

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type

Homework 3 Solutions

C.S. 430 Assignment 6, Sample Solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Commutative Monoids in Intuitionistic Fuzzy Sets

Solution Series 9. i=1 x i and i=1 x i.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Approximation of distance between locations on earth given by latitude and longitude

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,

Riemann Hypothesis: a GGC representation

EE512: Error Control Coding

ST5224: Advanced Statistical Theory II

Solutions to Exercise Sheet 5

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

The k-bessel Function of the First Kind

On Generating Relations of Some Triple. Hypergeometric Functions

SOME PROPERTIES OF FUZZY REAL NUMBERS

Lecture 2. Soundness and completeness of propositional logic

Homomorphism in Intuitionistic Fuzzy Automata

ω = radians per sec, t = 3 sec

Problem Set 3: Solutions

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

6.003: Signals and Systems

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Trigonometric Formula Sheet

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

If we restrict the domain of y = sin x to [ π 2, π 2

Areas and Lengths in Polar Coordinates

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Homework 8 Model Solution Section

derivation of the Laplacian from rectangular to spherical coordinates

Concrete Mathematics Exercises from 30 September 2016

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

Congruence Classes of Invertible Matrices of Order 3 over F 2

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

A Note on Intuitionistic Fuzzy. Equivalence Relation

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

PARTIAL NOTES for 6.1 Trigonometric Identities

Notes on the Open Economy

New bounds for spherical two-distance sets and equiangular lines

Statistical Inference I Locally most powerful tests

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

The Student s t and F Distributions Page 1

The Pohozaev identity for the fractional Laplacian

Areas and Lengths in Polar Coordinates

F19MC2 Solutions 9 Complex Analysis

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Lecture 12 Modulation and Sampling

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Positive solutions for a multi-point eigenvalue. problem involving the one dimensional

w o = R 1 p. (1) R = p =. = 1

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

Transcript:

FRACTIONAL INTEGRATION OF THE PRODUCT OF BESSEL FUNCTIONS OF THE FIRST KIND Anaoly A. Kilbas,1, Nicy Sebasian Dedicaed o 75h birhday of Prof. A.M. Mahai Absrac Two inegral ransforms involving he Gauss-hypergeomeric funcion in he kernels are considered. They generalize he classical Riemann-Liouville and Erdélyi-Kober fracional inegral operaors. Formulas for composiions of such generalized fracional inegrals wih he produc of Bessel funcions of he firs kind are proved. Special cases for he produc of cosine and sine funcions are given. The resuls are esablished in erms of generalized Lauricella funcion due o Srivasava and Daous. Corresponding asserions for he Riemann-Liouville and Erdélyi-Kober fracional inegrals are presened. Mahemaical Subec Classificaion 010: 6A33, 33C10, 33C0, 33C50, 33C60, 6A09 Key Words and Phrases: fracional inegrals, Bessel funcion of he firs kind, generalized hypergeomeric series, generalized Lauricella series in several variables, cosine and sine rigonomeric funcions 1. Inroducion This paper deals wih wo inegral ransforms defined for x > 0 and complex α, β, η C (R(α) > 0) by c 010, FCAA Diogenes Co. (Bulgaria). All righs reserved.

160 A.A. Kilbas, N. Sebasian and (I α,β,η xαβ 0+ f)(x) = Γ(α) x 0 ( (x ) α1 F 1 α + β, η; α; 1 ) f()d x (1.1) (I α,β,η f)(x) = 1 ( ( x) α1 αβ F 1 α + β, η; α; 1 x ) f()d. Γ(α) x (1.) Here Γ(α) is he Euler gamma funcion 1, Secion 1, R(α) denoes he real par of α, and F 1 (a, b; c; z) is he Gauss hypergeomeric funcion defined for complex a, b, c, C, c 0, 1,, by he hypergeomeric series 1,.1() F 1 (a, b; c; z) = k=0 (a) k (b) k (c) k z k k!, (1.3) where (z) k is he Pochhammer symbol defined for z C and k N 0 = N {0}, N = {1,,...} by (z) 0 = 1, (z) k = z(z + 1)...(z + k 1) (k N). (1.) The series in (1.3) is absoluely convergen for z < 1 and z = 1(z 1), R(c a b) > 0. (1.5) Operaors (1.1) and (1.) were inroduced by Saigo 5, and heir properies were invesigaed by many auhors; see bibliography and a shor survey of resuls in 3, Secion 7.1, For Secions 7.7 and 7.8. When β = α, (1.1) and (1.) coincide wih he classical lef and righ-hand sided Riemann- Liouville fracional inegrals of order α C, R(α) > 0, 6, Secion 5.1: (I α,α,η 0+ f)(x) = (I0+f)(x) α 1 Γ(α) (I α,α,η f)(x) = (I α f)(x) 1 Γ(α) x o x (x ) α1 f()d (x > 0), (1.6) ( x) α1 f()d (x > 0). (1.7) If β = 0, (1.1) and (1.) are he so-called Erdélyi-Kober fracional inegrals defined for complex α, η C (R(α) > 0) by 6, Secion 18.1: (I α,0,η 0+ f)(x) = (I+ η,αf)(x) xαη Γ(α) x o (x ) α1 η f()d (x > 0), (1.8)

FRACTIONAL INTEGRATION OF THE PRODUCT... 161 (I α,0,η f)(x) = (K η,αf)(x) xη Γ(α) x ( x) α1 αη f()d (x > 0). (1.9) We invesigae composiions of inegral ransforms (1.1) and (1.) wih he produc of Bessel funcion of he firs kind, J ν (z), which is defined for complex z C (z 0) and ν C (R(ν) > 1) by, 7.() J ν (z) = k=0 (1) k ( z )ν+k Γ(ν + k + 1)k!. (1.10) We prove ha such composiions are expressed in erms of he generalized Lauricella funcion due o Srivasava and Daous 7, which is defined by = F A: B ; ;B (n) C: D ; ;D (n) = F A: B ; ;B (n) (a): θ,, θ (n), (b ): φ ; ; (b) (n) : φ (n) ; C: D ; ;D (n) (c): ψ,, ψ (n), (d ): δ ; ; (d) (n) : δ (n) ; z 1,, z n k 1,,k n =0 A (a ) k1 θ + +knθ(n) C (c ) k1 ψ + +k nψ (n) he coefficiens { B z 1. z n B(n) (b ) k1 φ D(n) (d ) k1 δ D θ (m) ( = 1,..., A); φ (m) ( = 1,..., B (m) ) ψ (m) ( = 1,..., C); δ (m) (b (n) ) knφ (n) (d (n) ) kn δ (n) z k 1 1 k 1! zkn n k n!, (1.11) ( = 1,..., D (m) ); m {1,..., n} (1.1) are real and posiive, and (a) abbreviaes he array of A parameers a 1,..., a A, (b (m) ) abbreviaes he array of B (m) parameers b (m) } ( = 1,..., B (m) ); m {1,..., n}, wih similar inerpreaions for (c) and (d (m) ) (m = 1,..., n). (z) a is a generalizaion of he Pochhammer symbol (1.): (z) a = Γ(z + a) Γ(a) The muliple series (1.11) converges absoluely eiher (z, a C). (1.13) (i) i > 0 (i = 1,..., n), z 1,..., z n C,

16 A.A. Kilbas, N. Sebasian or (ii) i = 0 (i = 1,..., n), z 1,..., z n C, z i < ϱ i (i = 1,..., n), and divergen when i < 0 (i = 1,..., n); excep for he rivial case z 1 = z n = 0, where wih i 1 + E i = (µ i ) 1+ C D (i) ψ (i) D (i) + δ (i) ϱ i = δ (i) A θ (i) B (i) φ (i) (i = 1,..., n), (1.1) min {E i} (i = 1,..., n), (1.15) µ 1,...,µ n >0 B (i) φ (i) ( C n i=1 ( A n i=1 µ i ψ (i) µ i θ (i) ) ψ (i) ) θ (i) D (i) B (i) (δ (i) ) δ(i) (φ (i) )φ(i). (1.16) For more deails see 7. Special cases of (1.11) are esablished in erms of generalized hypergeomeric funcion of one and wo variables respecively, for he sake of compleeness we define hese funcions here. A generalized hypergeomeric funcion p F q (z) is defined for complex a i, b C, b 0, 1,... (i = 1,,... p; = 1,,... q) by he generalized hypergeomeric series 1,.1(1) pf q (a 1,..., a p ; b 1,..., b q ; z) = k=0 (a 1 ) k... (a p ) k z k (b 1 ) k... (b q ) k k!. (1.17) This series is absoluely convergen for all values of z C if p q; and i is an enire funcion of z. We define a generalizaion of he Kampé de Férie funcion by means of he double hypergeomeric series 7 F p:q;k l:m;n (ap):(bq);(c k); (α l ):(β m );(γ n ); x, y= r,s=0 { p (a ) r+s }{ q (b ) r }{ k (c ) s } { l (α ) r+s }{ m (β ) r }{ n x r y s (γ ) s } r! s!. (1.18)

FRACTIONAL INTEGRATION OF THE PRODUCT... 163 The above double series is absoluely convergen for all values of x and y, if p + q < l + m + 1 and p + k < l + n + 1. Also, if p + q = l + m + 1 and p + k = l + n + 1, we mus have any one of he following ses of condiions: p l, max{ x, y } < 1; p > l, x 1/(pl) + y 1/(pl) < 1. The paper is organized as follows. Formulas for composiions of inegral ransforms (1.1) and (1.) wih he produc of Bessel funcions (1.10) are proved in erms of generalized Lauricella funcion (1.11) in Secion and 3, respecively. The corresponding resuls for he Riemann-Liouville and Erdélyi-Kober fracional inegrals (1.6), (1.7) and (1.8), (1.9) are also presened in Secions and 3. Special cases giving composiions of fracional inegrals wih he produc of cosine and sine funcions are considered in Secions.. Lef-sided fracional inegraion of Bessel funcions Our resuls in Secions and 3 are based on he preliminary asserions giving composiion formulas of generalized fracional inegrals (1.1) and (1.) wih a power funcion. Lemma 1. (, Lemmas 1-) Le α, β, η C. (a) If R(α) > 0 and R(σ) > max 0, R(β η), hen (I α,β,η 0+ σ1 )(x) = Γ(σ)Γ(σ + η β) Γ(σ β)γ(σ + α + η) xσβ1. (.1) (b) If R(α) > 0 and R(σ) < 1 + min R(β), R(η), hen (I α,β,η σ1 )(x) = Γ(β σ + 1)Γ(η σ + 1) Γ(1 σ)γ(α + β + η σ + 1) xσβ1. (.) The generalized lef-sided fracional inegraion (1.1) of he produc of Bessel funcions(1.10) is given by he following resul. Theorem 1. Le n N, α, β, η, σ, ν C and a, ρ R + ( = 1,..., n) be such ha n R(α) > 0, R(ν ) > 1, R(σ + ρ ν ) > max0, R(β η). (.3)

16 A.A. Kilbas, N. Sebasian Then here holds he formula 0+ σ1 n J ν (a ρ ) (x) n = x σβ1 ( a x ρ ) ν Γ(u)Γ(v) Γ(ν + 1) Γ(w)Γ(z) F :0,...,0 u:ρ 1,...,ρ n,v:ρ 1,...,ρ n :1,...,1 w:ρ 1,...,ρ n,z:ρ 1,...,ρ n:ν 1 +1:1,...,ν ; n+1:1: a 1 xρ 1,..., a nx ρn (.) where u = σ + n ρ ν, v = σ + η β + n ρ ν, w = σ β + n ρ ν, z = σ + α + η + n ρ ν and F :0,...,0 :1,...,1 is given by (1.11). P r o o f. Firs of all we noe ha i in (1.1) is given by i = 1+n > 0 (i = 1,..., n N), and herefore F :0,...,0 :1,...,1 in he righ hand side of (.) is defined. Now we prove (.). Applying equaion (1.10), Using (1.1) and (1.11) and changing he orders of inegraion and summaion, we find = 0+ = σ1 k 1,...,k n=0 0+ k 1 =0 σ1 n J ν (a ρ ) (x) (1) k 1 ( a 1 ρ 1 ) ν 1+k 1 Γ(ν 1 + k 1 + 1) k 1! (1) k n ( a n ρ n ) ν n+k n (x) Γ(ν n + k n + 1) k n! k n =0 (1) k 1 ( a 1 ) ν 1+k 1 Γ(ν 1 + 1)(ν 1 + 1) k1 k 1! (1) kn ( an ) νn+kn Γ(ν n + 1)(ν n + 1) kn k n! (I α,β,η 0+ {σ+ν 1ρ 1 + +ν nρ n+ρ 1 k 1 + +ρ nk n1 })(x). By (.3), for any k N 0 ( = 1,..., n) R(σ + n ρ ν + n ρ k ) R(σ + n ρ ν ) > max0, R(β η). Applying Lemma 1(a) and using (.1) wih σ replaced by σ + n ρ ν + n ρ k ( = 1,..., n), we obain 0+ σ1 n J ν (a ρ ) (x),

FRACTIONAL INTEGRATION OF THE PRODUCT... 165 = k 1,...,k n=0 (1) k 1 ( a 1 ) ν 1+k 1 Γ(ν 1 + 1)(ν 1 + 1) k1 k 1! (1) kn ( an ) νn+kn Γ(ν n + 1)(ν n + 1) kn k n! Γ(σ + n (ν ρ + ρ k ))Γ(σ + η β + n (ν ρ + ρ k )) Γ(σ β + n (ν ρ + ρ k ))Γ(σ + α + η + n (ν ρ + ρ k )) n = x σβ1 ( a x ρ ) ν Γ(ν +1) k 1,...,k n=0 x σβ1+ n (ν ρ +ρ k ) Γ(σ + n ρ ν )Γ(σ + η β + n ρ ν ) Γ(σ β + n ρ ν )Γ(σ + α + η + n ρ ν ) (σ+ n ρ ν ) ρ1 k 1 + +ρ nk n (σ+ηβ+ n ρ ν ) ρ1 k 1 + +ρ nk n (σβ+ n ρ ν ) ρ1 k 1 + +ρ nk n (σ+α+η+ n ρ ν ) ρ1 k 1 + +ρ nk n 1 ( a (ν 1 + 1) k1 (ν n + 1) kn k 1! 1 xρ 1 ) k 1 ( a n xρn ) kn This, in accordance wih Equaion (1.11), gives he resul in (.). This complee he proof of he heorem. Corollary 1.1. Le α, σ, ν C and a, ρ R + ( = 1,..., n) be such ha R(α) > 0, R(ν ) > 1 and R(σ + n ρ ν ) > 0. Then n I 0+ α σ1 J ν (a ρ ) (x) n = x σ+α1 ( a x ρ ) ν Γ(σ + n ρ ν ) Γ(ν + 1) Γ(σ + α + n ρ ν ) F 1:0,...,0 σ+ n ρ ν :ρ 1,...,ρ n : 1:1,...,1 σ+α+ n ρ ν :ρ 1,...,ρ n:ν 1 +1:1,...,ν ; a 1 xρ1 n+1:1: k n!.,..., a nx ρn (.5) Corollary 1.. Le α, η, σ, ν C and a, ρ R + ( = 1,..., n) be such ha R(α) > 0, R(ν ) > 1 and R(σ + n ρ ν ) > R(η). Then n I η,α + σ1 J ν (a ρ ) (x).

166 A.A. Kilbas, N. Sebasian n = x σ1 ( a x ρ ) ν Γ(σ + η + n ρ ν ) Γ(ν + 1) Γ(σ + α + η + n ρ ν ) F 1:0,...,0 σ+η+ n ρ ν :ρ 1,...,ρ n : 1:1,...,1 σ+α+η+ n ρ ν :ρ 1,...,ρ n:ν 1 +1:1,...,ν ; a 1 xρ1 n+1:1:,..., a nx ρn. (.6) Corollary 1.3. Le α, β, σ, ν 1, ν C and a 1, a, ρ 1, ρ R + be such ha R(α) > 0, R(ν 1 ) > 1, R(ν ) > 1 and R(σ + ρ 1 ν 1 + ρ ν ) > max0, R(β η). Then ( I α,β,η 0+ σ1 J ν1 ()J ν () ) (x) F :0,0 a a+1 :1,1, :1,1, b b+1 :1,1, :1,1 c = xc1 ν 1+ν Γ(a)Γ(b) Γ(c)Γ(d)Γ(ν 1 + 1)Γ(ν + 1) :1,1, c+1 :1,1, d :1,1: :1,1, d+1 :1,1:ν 1+1:1,...,ν n +1:1: ; x, x, (.7) where a = σ + ν 1 + ν, b = σ + η β + ν 1 + ν, c = σ β + ν 1 + ν, d = σ + α + η + ν 1 + ν and F :0,0 :1,1 is defined in (1.18). Corollaries 1.1 and 1. follow from Theorem 1 in respecive cases β = α and β = 0, if we ake (1.6) and (1.8) ino accoun. Corollary 1.3 follows from Theorem 1, if we pu n =, a 1 = 1, a = 1, ρ 1 = 1, ρ = 1, use (1.11) and ake ino accoun he relaion (z) k = k ( z ) k ( ) z + 1 where (z) k is he Pochhammer symbol (1.). k (z C, k N 0 ), (.8) Remark 1. When n = 1, a 1 = 1, ρ 1 = 1, ν 1 = ν equaion (.) is reduced o ( I α,β,η 0+ σ1 J ν () ) (x) = xσ+νβ1 Γ(σ + ν)γ(σ + ν + η β) ν Γ(σ + ν β)γ(σ + ν + α + η)γ(ν + 1) σ+ν F, σ+ν+1, σ+ν+ηβ, σ+ν+ηβ+1 5 ν+1, σ+νβ, σ+νβ+1, σ+ν+α+η, σ+ν+α+η+1 This resul was proved in, Theorem 3. ; x. (.9)

FRACTIONAL INTEGRATION OF THE PRODUCT... 167 3. Righ-sided fracional inegraion of Bessel funcions The following resul yields generalized righ-hand sided fracional inegraion (1.) of he produc of Bessel funcions. Theorem. Le α, β, η, σ, ν C and a, ρ R + ( = 1,..., n) be such ha n R(α) > 0, R(ν ) > 1, R(σ ρ ν ) < 1 + minr(β), R(η). (3.1) Then here holds he formula σ1 n J ν ( a ρ ) (x) n = x σβ1 ( a x ρ ) ν Γ(p)Γ(q) Γ(ν + 1) Γ(r)Γ(s) F :0,...,0 p:ρ 1,...,ρ n,q:ρ 1,...,ρ n : :1,...,1 r:ρ 1,...,ρ n,s:ρ 1,...,ρ n:ν 1 +1:1,...,ν ; a 1 n+1:1: x ρ,..., a n 1 x ρ, n (3.) where p = 1 + β σ + n ρ ν, q = 1 + η σ + n ρ ν, r = 1 σ + n ρ ν, s = α + β + η σ + n ρ ν + 1 and F :0,...,0 :1,...,1 is given by (1.11). P r o o f. Firs of all we noe ha i in (1.1) is given by i = 1+n > 0 (i = 1,..., n N), and herefore F :0,...,0 :1,...,1 in he righ hand side of (3.) is defined. Now we prove (3.). Using Equaions (1.) and (1.10) and changing he orders of inegraion and summaion, we have n ( σ1 a ) J ν ρ (x) = (I α,β,η = σ1 k 1,...,k n =0 k 1 =0 (1) k 1 ( a 1 ρ 1 )ν 1+k 1 Γ(ν 1 + k 1 + 1) k 1! k n=0 (1) k n ( an ρ n ) νn+kn Γ(ν n + k n + 1) k n! (x) (1) k 1 ( a 1 ) ν 1+k 1 Γ(ν 1 + 1)(ν 1 + 1) k1 k 1! (1) kn ( an ) νn+kn Γ(ν n + 1)(ν n + 1) kn k n!

168 A.A. Kilbas, N. Sebasian (I α,β,η { σν 1ρ 1 ν nρ nρ 1 k 1 ρ nk n1 })(x). By (3.1), for any k N 0 ( = 1,..., n) R(σ n ρ ν n ρ k ) R(σ n ρ ν ) < 1 + minr(β), R(η). Applying Lemma 1(b) and using (.) wih σ replaced by σ n ρ ν n ρ k ( = 1,..., n), we obain n ( σ1 a ) J ν ρ (x) = k 1,...,k n =0 (1) k 1 ( a 1 ) ν 1+k 1 Γ(ν 1 + 1)(ν 1 + 1) k1 k 1! (1) kn ( an ) νn+kn Γ(ν n + 1)(ν n + 1) kn k n! Γ(β σ + 1 + n (ν ρ + ρ k ))Γ(η σ + 1 + n (ν ρ + ρ k )) Γ(1σ+ n (ν ρ + ρ k ))Γ(1+α+β+ησ+ n (ν ρ + ρ k )) n = x σβ1 ( a x ρ ) ν Γ(ν + 1) x σβ1 n (ν ρ +ρ k ) Γ(p)Γ(q) Γ(r)Γ(s) k 1,...,k n =0 (p) ρ1 k 1 + +ρ n k n (q) ρ1 k 1 + +ρ n k n (r) ρ1 k 1 + +ρ n k n (s) ρ1 k 1 + +ρ n k n a 1 x ρ 1 )k 1 1 ( (ν 1 + 1) k1 (ν n + 1) kn k 1! By equaion (1.11), his yields he resul in (3.). ( a n x ρn )k n. k n! Corollary.1. Le α, σ, ν C and a, ρ R + ( = 1,..., n) be such ha R(ν ) > 1, and 0 < R(α) < 1 R(σ n ρ ν ). Then n ( I α σ1 a ) J ν ρ (x) ( n a ) ν = x σ+α1 x ρ Γ(1 σ α + n ρ ν ) Γ(ν + 1) Γ(1 σ + n ρ ν ) F 1:0,...,0 1σα+ n ρ ν :ρ 1,...,ρ n : 1:1,...,1 1σ+ n ρ ν :ρ 1,...,ρ n:ν 1 +1:1,...,ν ; a 1 n+1:1: x ρ,..., 1 a n x ρ n. (3.3)

FRACTIONAL INTEGRATION OF THE PRODUCT... 169 Corollary.. Le α, η, σ, ν C and a, ρ R + ( = 1,..., n) be such ha R(α) > 0, R(ν ) > 1, and R(σ n ρ ν ) < 1 + R(η). Then n ( K η,α σ1 a ) J ν ρ (x) n = x σ1 ( a x ρ ) ν Γ(1 + η σ + n ρ ν ) Γ(ν + 1) Γ(1 + η + α σ + n ρ ν ) F 1:0,...,0 1+ησ+ n ρ ν :ρ 1,...,ρ n : 1:1,...,1 1+α+ησ+ n ρ ν :ρ 1,...,ρ n:ν 1 +1:1,...,ν ; a 1 n+1:1: x ρ,..., 1 a n x ρ n (3.). Corollary.3. Le α, β, η, σ, ν 1, ν C, a 1, a and ρ 1, ρ R + be such ha R(α) > 0, R(ν 1 ) > 1, R(ν ) > 1, R(σ ρ 1 ν 1 ρ ν ) < 1+minR(β), R(η) and R(β σ +ν 1 +ν +1) > 0, R(η σ +ν 1 +ν +1) > 0. Then ( I α,β,η σ1 J ν1 ( 1 ) J ν ( 1 )) (x) = xσν 1ν β1 ν 1+ν Γ(c)Γ(f) Γ(g)Γ(h)Γ(ν 1 + 1)Γ(ν + 1) F :0,0 e e+1 :1,1, :1,1, f f+1 :1,1, :1,1 g :1,1, g+1 :1,1, h ; 1 :1,1:ν 1+1:1,...,ν n +1:1: x, 1 x, (3.5) :1,1: h+1 :1,1, where e = β σ + ν 1 + ν + 1, f = η σ + ν 1 + ν + 1, g = 1 σ + ν 1 + ν, h = α + β + η σ + ν 1 + ν + 1 and F :0,0 :1,1 is defined in (1.18). According o (1.7) and (1.9), Corollaries.1 and. follow from Theorem in respecive cases β = α and β = 0. Corollary 1.3 follows from Theorem 1, if we pu n =, a 1 = 1, a = 1, ρ 1 = 1, ρ = 1 and ake (.8) ino accoun. Remark. When n = 1, a 1 = 1, ρ 1 = 1, ν 1 = ν, equaion (3.9) is reduced o ( ( )) I α,β,η 1 σ1 J ν (x) = xσνβ1 ν Γ(β σ + ν + 1)Γ(η σ + ν + 1) Γ(1 σ + ν)γ(α + β + η σ + ν + 1)Γ(ν + 1)

170 A.A. Kilbas, N. Sebasian βσ+ν+1, F βσ+ν+, ησ+ν+1, ησ+ν+ 5 ν+1, 1σ+ν, σ+ν, α+β+ησ+ν+1, α+β+ησ+ν+ This formula was proved in, Theorem. ; 1 x. (3.6). Fracional inegraion of cosine and sine funcions For ν = 1 and ν = 1, he Bessel funcion J ν(z) in (1.10) coincides ( ) 1 wih cosine- and sine-funcions, apar from he muliplier πz : ( ) 1 ( ) 1 J 1 (z) = cos(z), J 1 (z) = sin(z). (.1) πz πz Seing ν 1 = = ν n = 1 and ρ 1 = = ρ n = 1, from Theorem 1 and Corollaries 1.1 and 1. we deduce he following resuls: Theorem 3. Le α, β, η, σ C, a R +, = 1,..., n be such ha R(α) > 0, R(σ) > 0, R(σ + η β) > 0, R(σ) > max0, R(β η) Then here holds he formula 0+ σ1 n cos(a ) (x) = x σβ1 Γ(σ)Γ(σ + η β) Γ(σ β)γ(σ + α + η) F :0,...,0 σ:,...,,σ+ηβ:,...,: :1,...,1 ; σβ:,...,,α+η+σ:,...,: 1 :1,..., 1 :1: a 1 x,..., nx a. (.) Corollary 3.1. Le α, σ C and a R + ( = 1,..., n) be such ha R(α) > 0 and R(σ) > 0. Then n I 0+ α σ1 cos(a ) (x) = x σ+α1 Γ(σ) Γ(σ + α) F 1:0,...,0 σ:,...,: 1:1,...,1 ; σ+α:,...,: 1 :1,..., 1 :1: a 1 x,..., nx a. (.3)

FRACTIONAL INTEGRATION OF THE PRODUCT... 171 Corollary 3.. Le α, η, σ C and a R + ( = 1,..., n) be such ha R(α) > 0 and R(σ) > R(η). Then n I η,α + σ1 cos(a ) (x) = x σ1 Γ(σ + η) Γ(σ + α + η) F 1:0,...,0 σ+η:,...,: 1:1,...,1 ; σ+α+η:,...,: 1 :1,..., 1 :1: a 1 x,..., nx a. (.) Theorem. Le α, β, η, σ C and a R + ( = 1,..., n) be such ha Then R(α) > 0, R(σ) > 0, R(σ + η β) > 0, R(σ) > max0, R(β η). = π n n 0+ n a σn1 n sin(a ) (x) x σβ1 Γ(σ)Γ(σ + η β) Γ(σ β)γ(σ + α + η) F :0,...,0 σ:,...,,σ+ηβ:,...,: :1,...,1 ; σβ:,...,,α+η+σ:,...,: 3 :1,..., 3 :1: a 1 x,..., nx a. (.5) Corollary.1. Le α, σ C and a R + ( = 1,..., n) be such ha R(α) > 0 and R(σ) > 0. Then = π n n F 1:0,...,0 1:1,...,1 n I 0+ α σn1 sin(a ) (x) n a x σβ1 Γ(σ) Γ(σ + α) σ:,...,: ; σ+α:,...,,: 3 :1,..., 3 :1: a 1 x,..., nx a. (.6)

17 A.A. Kilbas, N. Sebasian Corollary.. Le α, η, σ C and a R + ( = 1,..., n) be such ha R(α) > 0 and R(σ) > R(η). Then n I η,α + σn1 = π n n n a sin(a ) (x) x σ1 Γ(σ + η) Γ(σ + α + η) F 1:0,...,0 σ+η:,...,: 1:1,...,1 ; α+η+σ:,...,: 3 :1,..., 3 :1: a 1 x,..., nx a. (.7) Similarly, seing ν 1 = = ν n = 1 and ρ 1 = = ρ n = 1 and aking (.1) ino accoun, from Theorem and Corollaries.1 and., we obain he following resuls: Theorem 5. Le α, β, η, σ C and a R + ( = 1,..., n) be such ha Then R(α) > 0, R(β σ) > 0, R(η σ) > 0, R(σ) < minr(β), R(η). σ n cos ( a ) (x) = x σβ Γ(β σ)γ(η σ) Γ(σ)Γ(α + β + η σ) F :0,...,0 βσ:,...,,ησ:,...,: :1,...,1 ; a 1 σ:...,,α+β+ησ:,...,: 1 :1,..., 1 :1: x,..., a n x. (.8) Corollary 5.1. Le α, σ C and a R + ( = 1,..., n) be such ha 0 < R(α) < R(σ). Then n ( I α σ a ) cos (x) σ+α Γ(α σ) = x F 1:0,...,0 ασ:,...,: 1:1,...,1 Γ(σ) ; a 1 σ:,...,: 1 :1,..., 1 :1: x,..., a n x. (.9)

FRACTIONAL INTEGRATION OF THE PRODUCT... 173 Corollary 5.. Le α, η, σ C and a R + ( = 1,..., n) be such ha R(α) > 0 and R(σ) < R(η). Then n ( K η,α σ a ) cos (x) = x σ Γ(η σ) Γ(α + η σ) F 1:0,...,0 ησ:,...,: 1:1,...,1 ; a 1 α+ησ:,...,: 1 :1,..., 1 :1: x,..., a n x. (.10) Theorem 6. Le α, β, η, σ C and a R + ( = 1,..., n) be such ha R(α) > 0, R(β σ > 1, R(η σ) > 1, R(σ) < 1 + minr(β), R(η). Then here holds he formula = π n n n a σ+n1 n sin ( a ) (x) x σβ1 Γ(β σ + 1)Γ(η σ + 1) Γ(1 σ)γ(α + β + η σ + 1) F :0,...,0 βσ:,...,,ησ+1:,...,: :1,...,1 ; a 1 1σ:,...,,α+β+ησ+1:,...,: 3 :1,..., 3 :1: x,..., a n x. (.11) Corollary 6.1. Le α, σ C and a R + ( = 1,..., n) be such ha 0 < R(α) < 1 R(σ). Then n ( I α σ+n1 a ) sin (x) = π n n n a x σ+α1 Γ(1 α σ) Γ(1 σ)

17 A.A. Kilbas, N. Sebasian F 1:0,...,0 1σα:,...,: 1:1,...,1 ; a 1 1σ:,...,: 3 :1,..., 3 :1: x,..., a n x. (.1) Corollary 6.. Le α, η, σ C and a R + ( = 1,..., n) be such ha R(α) > 0 and R(σ) < 1 + R(η). Then n ( K η,α σ+n1 a ) sin (x) = π n n n a x σ1 Γ(η σ + 1) Γ(α + η σ + 1) F 1:0,...,0 ησ+1:,...,: 1:1,...,1 ; a 1 α+ησ+1:,...,: 3 :1,..., 3 :1: x,..., a n x. (.13) Remark 3. When n = 1, a 1 = 1, hen all he resuls in Secion coincide wih ha proved in, Secions 5 and 6. Acknowledgemens The auhors would like o hank he Deparmen of Science and Technology, Governmen of India, New Delhi, for he financial assisance for his work under proec-number SR/S/MS:87/05, and he Cenre for Mahemaical Sciences for providing all faciliies. The firs co-auhor (A.A.K.) was suppored, in par, by he Belarusian Fundamenal Research Fund (Proec F08MC-08) and by Naional Science Fund - Minisry of Educaion, Youh and Science, Bulgaria (Proec D ID 0/5/009 Inegral Transform Mehods, Special Funcions and Applicaions ).

FRACTIONAL INTEGRATION OF THE PRODUCT... 175 References 1 A. Erdélyi, W. Magnus, F. Oberheinger, F.G. Tricomi, Higher Transcendenal Funcions, Vol. I. McGraw-Hill, New York - Torono - London (1953). A. Erdélyi, W. Magnus, F. Oberheinger, F.G. Tricomi, Higher Transcendenal Funcions, Vol. II. McGraw-Hill, New York - Torono - London (1953). 3 A.A. Kilbas, M. Saigo, H-Transforms. Theory and Applicaions. Chapman and Hall/CRC, Boca Raon, Florida (00). A.A. Kilbas, N. Sebasian, Generalized fracional inegraion of Bessel funcion of he firs kind. Inegral Transforms Spec. Func. 19, No 1 (008), 869-883. 5 M. Saigo, A remark on inegral operaors involving he Gauss hypergeomeric funcions. Mah. Rep. College of General Edu. Kyushu Universiy 11 (1978), 135-13. 6 S.G. Samko, A.A. Kilbas, O.I. Marichev, Fracional Inegrals and Derivaives. Theory and Applicaions. Gordon and Breach Sci. Publ., London - New York (1993). 7 H.M. Srivasava, M.C. Daous, A noe on he convergence of Kampé de Férie s double hypergeomeric series. Mah. Nachr. 53 (197), 151-159.,1 Dep. Mah. & Mechanics, Belarusian Sae Universiy Minsk 0030, BELARUS (Corresponding auhor) Cenre for Mahemaical Sciences Pala Campus Arunapuram P.O. Palai, Kerala 686 57, INDIA e-mail: nicyseb@yahoo.com; www.cmsinl.org Received: December 8, 009