Vol.7 No (Mar. 2014) Latent Dirichlet Allocation LDA Twitter LDA

Σχετικά έγγραφα
Topic Estimation for Microblogs Taking into Account the Relationships between Adjacent Tweets

Buried Markov Model Pairwise

Twitter 6. DEIM Forum 2014 A Twitter,,, Wikipedia, Explicit Semantic Analysis,

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM


Applying Markov Decision Processes to Role-playing Game

ER-Tree (Extended R*-Tree)

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

1 n-gram n-gram n-gram [11], [15] n-best [16] n-gram. n-gram. 1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e)

SocialDict. A reading support tool with prediction capability and its extension to readability measurement

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

Stabilization of stock price prediction by cross entropy optimization


Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

ΣΔΥΝΟΛΟΓΗΚΟ ΔΚΠΑΗΓΔΤΣΗΚΟ ΗΓΡΤΜΑ ΗΟΝΗΧΝ ΝΖΧΝ «ΗΣΟΔΛΗΓΔ ΠΟΛΗΣΗΚΖ ΔΠΗΚΟΗΝΧΝΗΑ:ΜΔΛΔΣΖ ΚΑΣΑΚΔΤΖ ΔΡΓΑΛΔΗΟΤ ΑΞΗΟΛΟΓΖΖ» ΠΣΤΥΗΑΚΖ ΔΡΓΑΗΑ ΔΤΑΓΓΔΛΗΑ ΣΔΓΟΤ

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ. Σχολή Τεχνολογικών Εφαρμογών Τμήμα Εφαρμοσμένης Πληροφορικής & Πολυμέσων

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕΣ» OSWINDS RESEARCH GROUP

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

Démographie spatiale/spatial Demography

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Simplex Crossover for Real-coded Genetic Algolithms

[15], [16], [17] [6] [2] [5] Jiang [6] 2.1 [6], [10] Score(x, y) y ( 1) ( 1 ) b e ( 1 ) b e. O(n 2 ) Jiang [6] (word lattice reranking)


2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

Anomaly Detection with Neighborhood Preservation Principle

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ

Bayesian modeling of inseparable space-time variation in disease risk

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Statistical Inference I Locally most powerful tests

Αλγοριθµική και νοηµατική µάθηση της χηµείας: η περίπτωση των πανελλαδικών εξετάσεων γενικής παιδείας 1999

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Policy Coherence. JEL Classification : J12, J13, J21 Key words :

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΦΙΛΟΣΟΦΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΙΤΑΛΙΚΗΣ ΦΙΛΟΛΟΓΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΟΣ ΚΥΚΛΟΣ ΣΠΟΥΔΩΝ ΚΑΤΕΥΘΥΝΣΗ: ΛΟΓΟΤΕΧΝΙΑ-ΠΟΛΙΤΙΣΜΟΣ

ΠΑΝΔΠΙΣΗΜΙΟ ΑΙΓΑΙΟΤ ΥΟΛΗ ΚΟΙΝΧΝΙΚΧΝ ΔΠΙΣΗΜΧΝ ΣΜΗΜΑ ΓΔΧΓΡΑΦΙΑ

«Έντυπο και ψηφιακό βιβλίο στη σύγχρονη εποχή: τάσεις στην παγκόσμια βιομηχανία».

Development of a Tiltmeter with a XY Magnetic Detector (Part +)

Determination of Topic Description Terms in Topic Model

{takasu, Conditional Random Field

IMES DISCUSSION PAPER SERIES

Online Social Networks: Posts that can save lives. Sotiria Giannitsari April 2016

Η Επίδραση των Events στην Απόδοση των Μετοχών

Topic Modeling with Latent Dirichlet Allocation


Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

Automatic extraction of bibliography with machine learning

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής


Other Test Constructions: Likelihood Ratio & Bayes Tests

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕς» OSWINDS RESEARCH GROUP

derivation of the Laplacian from rectangular to spherical coordinates

ΦΩΤΟΓΡΑΜΜΕΤΡΙΚΕΣ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΜΕΛΕΤΗ ΘΕΜΑΤΩΝ ΔΑΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

CorV CVAC. CorV TU317. 1

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

ΕΥΘΑΛΙΑ ΚΑΜΠΟΥΡΟΠΟΥΛΟΥ

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Listening to the customers voice through social network analytics

Yahoo 2. SNS Social Networking Service [3,5,12] Copyright c by ORSJ. Unauthorized reproduction of this article is prohibited.

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

2 Composition. Invertible Mappings

Study of urban housing development projects: The general planning of Alexandria City

Web 論 文. Performance Evaluation and Renewal of Department s Official Web Site. Akira TAKAHASHI and Kenji KAMIMURA

Η ΔΙΑΣΤΡΕΥΛΩΣΗ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΓΛΩΣΣΑΣ ΜΕΣΩ ΤΩΝ SOCIAL MEDIA ΤΗΝ ΤΕΛΕΥΤΑΙΑ ΠΕΝΤΑΕΤΙΑ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΗΣ ΑΝΑΣΤΑΣΙΑΣ-ΜΑΡΙΝΑΣ ΔΑΦΝΗ

Molecular evolutionary dynamics of respiratory syncytial virus group A in

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

C.S. 430 Assignment 6, Sample Solutions

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ

Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Online Social Networks: Posts that can save lives. Dimitris Gritzalis, Sotiria Giannitsari, Dimitris Tsagkarakis, Despina Mentzelioti April 2016

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

Quick algorithm f or computing core attribute

Οικονοµετρική ιερεύνηση των Ελλειµµάτων της Ελληνικής Οικονοµίας

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: Mετακύλιση τιμών βασικών προϊόντων και τροφίμων στην περίπτωση του Νομού Αιτωλοακαρνανίας

Transcript:

Twitter 1,a) 1 1 2013 8 26, 2013 9 27 Latent Dirichlet Allocation LDA Twitter LDA 1 1 LDA 1 1 1 1 Twitter-LDA Twitter-LDA Twitter-LDA Twitter 2 Twitter-LDA 1 2 Topic Tracking Model TTM Twitter Twitter A Proposal of Online Topic Model for Twitter Considering Temporal Dynamics of User Interests and Topic Trends Kentaro Sasaki 1,a) Tomohiro Yoshikawa 1 Takeshi Furuhashi 1 Received: August 26, 2013, Accepted: September 27, 2013 Abstract: Latent Dirichlet Allocation (LDA) is a topic model which has been applied to various fields. It has been also applied to user profiling or event summarization on Twitter. In the application of LDA to tweet collection, it generally treats aggregated all tweets of a user as a single document. On the other hand, Twitter-LDA which assumes a single tweet consists of a single topic has been proposed and showed that it is superior to the former way in topic semantic coherence. However, Twitter-LDA has a problem that it is not capable of online inference. In this paper, we extend Twitter-LDA in the following two points. First, we model the generation process of tweets more accurately by estimating the ratio between topic words and general words for each user. Second, we enable it to estimate temporal dynamics of user interests and topic trends in online based on Topic Tracking Model (TTM) which models consumer purchase behaviors. Keywords: topic model, Twitter, time evolution, online learning 1. 1 Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464 8603, Japan a) sasaki@cmplx.cse.nagoya-u.ac.jp Twitter Twitter 140 140 c 2014 Information Processing Society of Japan 53

[6], [14], [15], [19] Latent Dirichlet Allocation LDA [4] Twitter LDA LDA [14] [19] LDA LDA 1 1 LDA 1 1 [9], [14], [19] Zhao Twitter 1 1 Twitter-LDA [21] Twitter-LDA LDA Twitter Twitter-LDA Topic Tracking Model TTM [10] Twitter-TTM Twitter 2. Twitter-LDA 2.1 Twitter-LDA 1 Twitter-LDA 1 1 LDA Twitter-LDA φ u φ u u φ u 1 θ B k θ k y y =0 θ B y =1 θ k y π Twitter-LDA y π 2 y π π u 2.2 2.1 LDA Twitter-LDA LDA 1 1 1 Twitter-LDA Fig. 1 Graphical model of Twitter-LDA. c 2014 Information Processing Society of Japan 54

1 10 Table 1 Perplexity of each model in 10 runs. LDA Twitter-LDA 50 943.5(9.8) 1,120.4(24.4) 725.9(10.0) 100 950.6(12.5) 928.2(16.1) 630.4(12.5) 150 958.1(6.2) 825.3(10.8) 580.3(9.9) 200 963.0(12.1) 742.8(10.5) 536.0(9.5) 250 973.4(9.9) 695.4(11.9) 507.4(7.7) 2 Fig. 2 Graphical model of improved-model. 2013 5 1 16,411 493,462 2013 4 23 1,000 30 *1 16,170 371,199 5,708 Collapsed [7] 500 [13] 2.2.1 D (test) ( perplexity =exp 1 ) log p(w u D (test) ) (1) N u N w u u K 50 250 50 10 1 10 () 1 Twitter-LDA *1 LDA 1 1 2.2.2 [12] z p(v z) M V (z) =(v (z) 1,...,v(z) M ) C(z; V (z) )= M m 1 m=2 l=1 log D(v(z) m,v (z) l )+1 D(v (z) l ) (2) (2) D(v) v D(v, v ) v v 1 1 1 C(k; V (k) ) (3) K k K 50 250 50 10 (3) 3 (2) M 20 3 LDA Twitter-LDA LDA K =50 LDA c 2014 Information Processing Society of Japan 55

3 10 Fig. 3 Coherence of each model averaged in 10 runs. Twitter-LDA 4 DTM Fig. 4 Graphical model of DTM. 3. 3.1 Topic Tracking Model 2.1 Topic Tracking Model TTM [10] TTM TTM Dynamic Topic Model DTM [3] Topic over Time ToT [17] DTM DTM 4 4 DTM ToT TTM 5 TTM TTM 1 t u φ t,u 1 ˆφ t 1,u α t,u 5 Fig. 5 p(φ t,u ˆφ t 1,u,α t,u ) k TTM Graphical model of TTM. φ αt,u ˆφ t 1,u,k 1 t,u,k (4) (4) φ t,u,k φ t,u k α t,u u t 1 t α t,u t k θ t,k 1 ˆθ t 1,k β t,u (5) θ t,k,v θ t,k v p(θ t,k ˆθ t 1,k,β t,k ) v θ β t,k ˆθ t 1,k,v 1 t,k,v (5) TTM 2.1 Twitter-TTM TTM φ t,u θ t,k 1 θ B c 2014 Information Processing Society of Japan 56

1 ˆΦ t 1 ˆΘ t 1 t z y D t Z t Y t 6 Fig. 6 Generation process of tweets in proposed model. 7 Twitter-TTM Fig. 7 Graphical model of Twitter-TTM. π u 1 6 7 Twitter [10] 1 3.2 Collapsed [7] EM [16] t Φ t = { ˆφ t,u } U u=1 Θ t = {ˆθ t,k } K k=1 θ t,b π t,u α t = {α t,u } U u=1 β t = {β t,k } K k=1 t p(d t,y t,z t ˆΦ t 1, ˆΘ t 1, α t, β t,λ,γ) ( Γ(2γ) ) U Γ(γ + n t,u,b )Γ(γ + n t,u,k ) = Γ(γ) 2 Γ(2γ + n t,u ) u Γ(Vλ) Γ(n t,b,v + λ) v Γ(λ) V Γ(n t,b + Vλ) Γ(β t,k ) Γ(n t,k,v + β t,k ˆθt 1,k,v ) Γ(n t,k + β t,k ) Γ(β k v t,k ˆθt 1,k,v ) Γ(α t,u ) Γ(c t,u,k + α t,u ˆφt 1,u,k ) Γ(c t,u + α t,u ) Γ(α u t,u ˆφt 1,u,k ) k (6) n t,u,b n t,u,k t u n t,b,v v t n t,k,v v t k c t,u,k t u k n t,u = n t,u,b + n t,u,k n t,b = v n t,b,v n t,k = k n t,k = k v n t,k,v c t,u = k c t,u,k (6) z p(z i = k D t,y t,z t\i, ˆΦ t 1, ˆΘ t 1, α t, β t ) c t,u,k\i + α t,u ˆφt 1,u,k c t,u\i + α t,u Γ(n t,k\i + β t,k ) Γ(n t,k,v + β t,k ˆθt 1,k,v ) Γ(n t,k + β t,k ) Γ(n t,k,v\i + β t,k ˆθt 1,k,v ) v (7) i =(t, u, s) z i t u s \i i z i = k y p(y j =0 D t,y t\j,z t,λ,γ) n t,b,v\j + λ n t,u,b\j + γ n t,b\j + Vλ n t,u\j +2γ p(y j =1 D t,y t\j,z t, ˆΘ t 1, β t,γ) n t,k,v\j + β t,k ˆθt 1,k,v n t,k\j + β t,k n t,u,k\j + γ n t,u\j +2γ (8) (9) j =(t, u, s, n) y j t u s n \j j c 2014 Information Processing Society of Japan 57

α t β t [13] α t,u α new t,u = α t,u (10) ˆφ t 1,u,k (Ψ(c t,u,k +α t,u ˆφt 1,u,k ) Ψ(α t,u ˆφt 1,u,k )) k Ψ(c t,u + α t,u ) Ψ(α t,u ) β t,k β new t,k = β t,k (11) ˆθ t 1,k,v (Ψ(n t,k,v +β t,k ˆθt 1,k,v ) Ψ(β t,k ˆθt 1,k,v )) v Ψ(n t,k + β t,k ) Ψ(β t,k ) φ t,u,k θ t,k,v MAP ˆφ t,u,k = c t,u,k + α t,u ˆφt 1,u,k c t,u + α t,u, (12) ˆθ t,k,v = n t,k,v + β t,k ˆθt 1,k,v n t,k + β t,k (13) t +1 4. Twitter Diao Twitter-LDA [6] Yan 2 biterm topic model BTM [20] Chua 2 [5] [18] Wang TM-LDA TM-LDA TM-LDA Lau Online LDA OLDA [2] Twitter [11] LDA [8] LDA 1 1 1 1 5. 2013 5 1 5 15 19,764 2013 4 23 1,000 10,244,572 30 19,729 8,257,368 63,030 LDA TTM K 100 3.2 500 [13] 1 2.2 LDA 8 5 2 5 15 x t =1 5 2 t =2 5 3... t =14 5 15 8 Fig. 8 Perplexity for each time. c 2014 Information Processing Society of Japan 58

t 1 t t =1 TTM LDA 8 TTM t =2 TTM LDA LDA 1 6. Twitter-LDA TTM Twitter Twitter-TTM [1] Twitter [1] Ahmed, A. and Xing, E.P.: Timeline: A dynamic hierarchical Dirichlet process model for recovering birth/death and evolution of topics in text stream, Proc. UAI 10 (2010). [2] AlSumait, L., Barbara, D. and Domeniconi, C.: Online LDA: Adaptive topic models for mining text streams with applications to topic detection and tracking, Proc. ICDM 08, pp.3 12, IEEE (2008). [3] Blei, D.M. and Lafferty, J.D.: Dynamic topic models, Proc. ICML 06, pp.113 120, ACM (2006). [4] Blei, D.M., Ng, A.Y. and Jordan, M.: Latent Dirichlet allocation, The Journal of Machine Learning Research, Vol.3, pp.993 1022 (2003). [5] Chua, F. and Asur, S.: Automatic Summarization of Events from Social Media, Technical report, HP Labs. [6] Diao, Q., Jiang, J., Zhu, F. and Lim, E.: Finding bursty topics from microblogs, Proc. ACL 12, pp.536 544, ACL (2012). [7] Griffiths, T.L. and Steyvers, M.: Finding scientific topics, Proc. National Academy of Sciences of the United States of America, Vol.101, No.Suppl 1, pp.5228 5235 (2004). [8] Hoffman, M., Bach, F.R. and Blei, D.M.: Online learning for latent Dirichlet allocation, Proc. NIPS 10, pp.856 864 (2010). [9] Hong, L. and Davison, B.D.: Empirical study of topic modeling in twitter, Proc. SOMA 10, pp.80 88, ACM (2010). [10] Iwata, T., Watanabe, S., Yamada, T. and Ueda, N.: Topic Tracking Model for Analyzing Consumer Purchase Behavior, Proc. IJCAI 09, Vol.9, pp.1427 1432 (2009). [11] Lau, J.H., Collier, N. and Baldwin, T.: On-line Trend Analysis with Topic Models:# twitter Trends Detection Topic Model Online, Proc. COLING 12, pp.1519 1534 (2012). [12] Mimno, D., Wallach, H.M., Talley, E., Leenders, M. and McCallum, A.: Optimizing semantic coherence in topic models, Proc. EMNLP 11, pp.262 272, ACL (2011). [13] Minka, T.: Estimating a Dirichlet distribution, Technical report, MIT (2000). [14] Pennacchiotti, M. and Popescu, A.M.: A Machine Learning Approach to Twitter User Classification, Proc. ICWSM 11, pp.281 288 (2011). [15] Sakaki, T., Okazaki, M. and Matsuo, Y.: Earthquake shakes Twitter users: Real-time event detection by social sensors, Proc. WWW 10, pp.851 860, ACM (2010). [16] Wallach, H.M.: Topic modeling: Beyond bag-of-words, Proc. ICML 06, pp.977 984, ACM (2006). [17] Wang, X. and McCallum, A.: Topics over time: A non- Markov continuous-time model of topical trends, Proc. KDD 06, pp.424 433, ACM (2006). [18] Wang, Y., Agichtein, E. and Benzi, M.: TM-LDA: Efficient Online Modeling of the Latent Topic Transitions in Social Media, Proc. KDD 12, pp.123 131, ACM (2012). [19] Weng, J., Lim, E.P., Jiang, J. and He, Q.: Twitterrank: Finding topic-sensitive influential twitterers, Proc. WSDM 10, pp.261 270, ACM (2010). [20] Yan, X., Guo, J., Lan, Y. and Cheng, X.: A Biterm Topic Model for Short Texts, Proc. WWW 13, pp.1445 1456, International World Wide Web Conferences Steering Committee (2013). [21] Zhao, W.X., Jiang, J., Weng, J., He, J., Lim, E.P., Yan, H. and Li, X.: Comparing twitter and traditional media using topic models, Proc. Advances in Information Retrieval, pp.338 349, Springer (2011). c 2014 Information Processing Society of Japan 59

2013 3 4 1997 1998 2005 COE 2006 10 IEEE 1985 2004 1996 IEEE c 2014 Information Processing Society of Japan 60