Σχετικά έγγραφα

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

{takasu, Conditional Random Field

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+



Faruqui [7] WordNet [15] FrameNet [2] PPDB [8]

Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών

Twitter 6. DEIM Forum 2014 A Twitter,,, Wikipedia, Explicit Semantic Analysis,

ER-Tree (Extended R*-Tree)

2. N-gram IDF. DEIM Forum 2016 A1-1. N-gram IDF IDF. 5 N-gram. N-gram. N-gram. N-gram IDF.

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Anomaly Detection with Neighborhood Preservation Principle

Web DEIM Forum 2009 A7-1. Web. Web. Web. Web. 4 Wikipedia. Wikipedia. Web.

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

SocialDict. A reading support tool with prediction capability and its extension to readability measurement

Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- Takuya Adachi 1 Naoki Fukuta 2.

substructure similarity search using features in graph databases

Bayesian Discriminant Feature Selection

Ανάλυση, Περιγραφή και Ανάκτηση Μουσικών Δεδομένων: το έργο ΠΟΛΥΜΝΙΑ*

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Shortness Ambiguity TEAM Ungrammaticality

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕς» OSWINDS RESEARCH GROUP

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ

Web. Web p OutDegree(p) log 7 1/OutDegree(p) A New Difinition of Subjective Distance between Web Pages

Indexing Methods for Encrypted Vector Databases

Query by Phrase (QBP) (Music Information Retrieval, MIR) QBH QBP / [1, 2] [3, 4] Query-by-Humming (QBH) QBP MIDI [5, 6] [8 10] [7]

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

Automatic extraction of bibliography with machine learning

Japanese Fuzzy String Matching in Cooking Recipes

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker

The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining

Επερωτήσεις σύζευξης με κατάταξη

Kenta OKU and Fumio HATTORI

From Secure e-computing to Trusted u-computing. Dimitris Gritzalis

Ανάκτηση Πληροφορίας. Διδάσκων: Φοίβος Μυλωνάς. Διάλεξη #03

Identifying Scenes with the Same Person in Video Content on the Basis of Scene Continuity and Face Similarity Measurement

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕΣ» OSWINDS RESEARCH GROUP

(String-to-Tree ) KJ [11] best 1-best 2. SMT 2. [9] Brockett [2] Mizumoto [10] Brockett [2] [10] [15] ê = argmax e P(e f ) = argmax e M m=1 λ

Big Data/Business Intelligence

HCI - Human Computer Interaction Σχεδιασμός Διεπαφής. ΓΤΠ 61 Βαµβακάρης Μιχάλης 09/12/07

Topic Structure Mining based on Wikipedia and Web Search

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής

Psychological Evaluation on Interactions between People and Robot

Αυτόματη Ανακατασκευή Θραυσμένων Αντικειμένων

Exhaustive Topic Detection and Query Expansion Support Based on Substance-Oriented Term Clustering

Collaborative Filtering

2002 Journal of Software

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

An Effective and Efficient Algorithm for Text Categorization

ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ. Data Mining - Classification


Study of urban housing development projects: The general planning of Alexandria City

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»

Inho Kang. Naver Corporation DEIM Forum 2018 D5-1 ( ) URL PC NAVER 2

[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)

Detection and Recognition of Traffic Signal Using Machine Learning

Χρήση συστημάτων πληροφορικής στην οδική υποδομή

Πεξηβάιινλ θαη Αλάπηπμε ΔΘΝΙΚΟ ΜΔΣΟΒΙΟ ΠΟΛΤΣΔΥΝΔΙΟ ΓΙΔΠΙΣΗΜΟΝΙΚΟ - ΓΙΑΣΜΗΜΑΣΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΙΑΚΧΝ ΠΟΤΓΧΝ (Γ.Π.Μ..) "ΠΔΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΣΤΞΗ"

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

1 n-gram n-gram n-gram [11], [15] n-best [16] n-gram. n-gram. 1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e)

Opinion Mining and Sentiment analysis

[15], [16], [17] [6] [2] [5] Jiang [6] 2.1 [6], [10] Score(x, y) y ( 1) ( 1 ) b e ( 1 ) b e. O(n 2 ) Jiang [6] (word lattice reranking)

Current Status and Future Prospects of Camera-Based Character Recognition and Document Image Analysis

Quick algorithm f or computing core attribute

Αντώνης Βεντούρης. Επίκουρος Καθηγητής Διδακτικής των Γλωσσών Τμήμα Ιταλικής Γλώσσας και Φιλολογίας Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Γεωγραφικά Συστήματα Πληροφοριών

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ίκτυο προστασίας για τα Ελληνικά αγροτικά και οικόσιτα ζώα on.net e-foundatio // itute: toring Insti SAVE-Monit

ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ. Information Extraction

GridFTP-APT: Automatic Parallelism Tuning Mechanism for Data Transfer Protocol GridFTP

Kernel Methods and their Application for Image Understanding

Architecture for Visualization Using Teacher Information based on SOM

Διδάσκοντες: Μαρία Χαλκίδη

Area Location and Recognition of Video Text Based on Depth Learning Method

Stabilization of stock price prediction by cross entropy optimization

(pattern recognition) (symbol processing) (content) (raw data) - 1 -

Legal use of personal data to fight telecom fraud

Ειδικές Επιστηµονικές Εργασίες

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Α/Α Υποέργου: Ε1 07 Τίτλος: ConServ: Δίκτυα Υπηρεσιών με Βάση τα Συμφραζόμενα: Διαχείριση, Δυναμική Προσαρμοστικότητα και Επεξεργασία Ερωτήσεων

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

Probabilistic Approach to Robust Optimization

Ημερίδα διάχυσης αποτελεσμάτων έργου Ιωάννινα, 14/10/2015

TMA4115 Matematikk 3

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΒΑΣΙΛΕΙΟΥ Τ. ΤΑΜΠΑΚΑ

Automatic Domain2Specific Term Extraction and Its Application in Text Cla ssification

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Ηλεκτρονικά σώματα κειμένων και γλωσσική διδασκαλία: Διεθνείς αναζητήσεις και διαφαινόμενες προοπτικές για την ελληνική γλώσσα

BCI On Feature Extraction from Multi-Channel Brain Waves Used for Brain Computer Interface

Bring Your Own Device (BYOD) Legal Challenges of the new Business Trend MINA ZOULOVITS LAWYER, PARNTER FILOTHEIDIS & PARTNERS LAW FIRM

Ψηφιακή ανάπτυξη. Course Unit #1 : Κατανοώντας τις βασικές σύγχρονες ψηφιακές αρχές Thematic Unit #1 : Τεχνολογίες Web και CMS

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

Προχωρημένες Εργασίες

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

Διπλωματική Εργασία. Του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

High order interpolation function for surface contact problem

Transcript:

DEIM Forum 2013 A2-2 606 8501 E-mail: kato@dl.kuis.kyoto-u.ac.jp 1. 2. 1 4 A B C D A B C D A : B :: C : D : :: : : :: : A B C D A= B= C= D= D 3 Turney [20] A B C D A B C D Bollegala [5] Web SVM A B C D 2. 1 A, B t t C A : B :: C : D D t A B A B C D t A B T Web A B A B 1 A B A B B A Web n 2 A B Web 3 4 t i A B A B t i χ 2 B A

A B 5 α t i A B A B T T A B C D A B A B t i C 6 T t i C t i t i C Web n 7 T t i C t i Web 8 9 d j C t i C t i d j χ 2 t i C C t i P C(d j) P ti (d j) 10 β d j C t i P C(d j) P ti (d j) P C,ti (d j) 11 T t i P C,ti (d j) d j d j 2. 2 33 854 1 2 2 1 TF-IDF 2 [15] @5 @10 @20 5 10 20 MRR @5 @10 @20 D 20 49.8% [15] [11] 1 A( ) B( ) C( ) D() 2 MRR @k k MRR @5 @10 @20 1 0.045 8.3 10.8 18.7 2 0.150 24.5 30.9 33.8 0.249 34.4 42.1 49.8 3. 3. 1 Web Web 1 2 Booking.com 3 Web Web Web 1 http://www.gnavi.co.jp/ 2 http://tabelog.com/ 3 http://www.booking.com/

1 ( ) ( ) 3. 2 (Query by example) [1] (Contentbased retrieval [6], [7], [18]) 1 1 2 3. 3 2 1 2 1 [21] 2 4,000 4,000 1 2 2 2 1 MindReader [8] MindReader

Content-based search MindReader [12] 2 4. (relative aggregation point, RAP) 4. 1 X P (X) D = (X, P (X)) [16] Y D P (X) X X D = {(x 1, y 1), (x 2, y 2),...} D (S) X (S) X (S) Q X (S) D (S) = {(x (S), +1) x (S) Q} {(x (S), 1) x (S) (X (S) Q)} D (T ) X (T ) X (T ) D (S) X (T ) f : X (T ) R X (T ) x (T ) i x (T ) j f(x (T ) i ) < f(x (T ) j ) (X (T ), ) f X (S) X (T ) X (S) = {x (S) 1, x (S) 2, x (S) 3 } P (X (S) ) X (S) Q = {x (S) 1, x (S) 2 } D (S) = {(x (S) 1, +1), (x (S) 2, +1), (x (S) 3, 1)} D (S) D (T ) X (T ) = {x (T ) 1, x (T ) 2, x (T ) 3 } 1,000 (X (S) = X (T ) ) (P (X (S) ) = P (X (T ) )) A [2], [17] A D (S) = D (T ) 4. 2 RAP RAP RAP 4. 2. 1 RAP D X ψ MAX (X) = argmax x X x b x b x

Source Domain Category 3 2 1 Cost Target Domain Category 2 3 1 Cost RAP H = {h 1, h 2,... h m} A = {a 1, a 2,... a n} RAP H ϕ : X R mn x mn ϕ(x) ϕ(x) = (ϕ 1 (x), ϕ 2 (x),..., ϕ n (x)) (3) 2 RAP RAP RAP X X D ψ : 2 X 2 X (2 X X ) RAP a ψ = x X xp (x ψ)dx, (1) x x P (x ψ) D X ψ(x) x P (x ψ) P (x ψ) = P (x ψ, X)P (X)dX, (2) X 2 X P (x ψ, X) X ψ(x) x ψ P (x ψ) 2 RAP ( ) 2 1 2 3 RAP 2 (b (S) 1 = b (T ) 1 ) (c (S) 3 = c (T ) 3 ) 10,000 15,000 10,000 15,000 RAP RAP ϕ i (x) = (h 1 (x, a i ), h 2 (x, a i ),..., h m (x, a i )) RAP x x x RAP ϕ(x) (x, λϕ(x)) λ RAP x ϕ(x) L 2 RAP ϕ (S) RAP ϕ (T ) x (S) X (S) (x (S), λϕ (S) (x (S) )) x (T ) X (T ) (x (T ), λϕ (T ) (x (T ) )) ( x (S) x (T ) ) RAP ( ϕ (S) (x (S) ) ϕ (T ) (x (T ) ) ) RAP RAP [10] 4 4. 3 2 (i) (ii) RAP 4. 3. 1 D (S) D (T ) 3 4 Geographic Object Retrieval Dataset http://www.mpkato.net/ jp/datasets/

3 SVM ndcg@10 in-domain Target Kyoto Tokyo Sapporo Fukuoka Nagoya Kyoto 0.620 0.463 0.520 0.511 0.431 Source Tokyo 0.460 0.596 0.449 0.501 0.389 Sapporo 0.492 0.432 0.638 0.524 0.506 Fukuoka 0.505 0.472 0.510 0.588 0.477 Nagoya 0.476 0.466 0.538 0.527 0.599 +1 1 D (S) D (S) X (T ) X (T ) f MAP ndcg 10 ndcg 10 ndcg@10 (NNS) 1 SVM(OSVM) SVM NNS D (S) OSVM D (S) NNS OSVM SVM D (S) OSVM transductive support vector machine (TSVM) structural correspondence learning (SCL) relative cluster mapping (RCM) Joachims TSVM [13], [22] OSVM SVM 1 SCL [3], [4] SVM RCM SCL SVM [14] 4. 3. 2 SVM in-domain (D (S) = D (T ) ) k k k 1 out-domain (D (S) = D (T ) ) in-domain k k 1 1 k = 5 100 5 20 5 500 3 ndcg@10 SVM out-domain (D (S) = D (T ) ) ndcg@10 in-domain (D (S) = D (T ) ) ndcg@10 A (Pearson s coefficient r = 0.678, p < 0.05) ndcg@10 in-domain 0.608 out-domain 0.482 t in-domain out-domain (t(179) = 5.89, p < 0.001) 5 Cohen s d (0.588) (in-domain out-domain) ( ) [19] [9] 1 4. 3. 3 RAP out-domain 400 (4 100 ) 4 5 MAP ndcg@10 MAP ndcg@10 (F (6, 2793) = 16.1, p < 0.001 F (6, 2793) = 40.0, p < 0.001) t RAP 6 MAP ndcg@10 NNS OSVM TSVM RAP 5 11 19 ndcg@10 5 8,000 11 5 MAP in-domain (0.609) out-domain (0.479) (t(157) = 5.35, p < 0.001, Cohen s d = 0.585) 6 0.05 Holm

Domain-dependent Domain-independent 4 MAP Inductive Transductive Intent NNS OSVM SVM TSVM SCL RCM RAP 1 0.539 0.546 0.490 0.417 0.482 0.490 0.490 2 0.387 0.452 0.522 0.439 0.512 0.521 0.574 3 0.347 0.319 0.317 0.344 0.321 0.317 0.320 4 0.409 0.350 0.672 0.558 0.688 0.672 0.668 5 0.488 0.458 0.512 0.506 0.515 0.513 0.522 6 0.198 0.227 0.327 0.329 0.324 0.327 0.333 7 0.078 0.083 0.155 0.150 0.153 0.155 0.144 8 0.192 0.219 0.254 0.206 0.251 0.254 0.260 9 0.488 0.491 0.548 0.561 0.548 0.548 0.570 10 0.261 0.293 0.335 0.305 0.329 0.335 0.337 11 0.442 0.401 0.630 0.581 0.631 0.630 0.654 12 0.180 0.177 0.280 0.233 0.284 0.280 0.284 13 0.586 0.571 0.645 0.627 0.638 0.645 0.640 14 0.115 0.114 0.161 0.109 0.161 0.161 0.156 15 0.354 0.293 0.545 0.506 0.541 0.545 0.538 16 0.416 0.399 0.702 0.609 0.686 0.701 0.705 17 0.270 0.270 0.379 0.317 0.384 0.379 0.385 18 0.256 0.226 0.401 0.312 0.398 0.401 0.399 19 0.586 0.595 0.641 0.532 0.646 0.641 0.645 20 0.288 0.286 0.238 0.203 0.236 0.238 0.239 Total 0.344 0.338 0.438 0.392 0.436 0.438 0.443 Domain-dependent Domain-independent 5 ndcg@10 Inductive Transductive Intent NNS OSVM SVM TSVM SCL RCM RAP 1 0.191 0.192 0.175 0.176 0.171 0.177 0.173 2 0.173 0.249 0.406 0.277 0.415 0.406 0.420 3 0.149 0.123 0.084 0.151 0.103 0.084 0.086 4 0.145 0.087 0.389 0.315 0.367 0.386 0.395 5 0.182 0.167 0.242 0.250 0.260 0.242 0.283 6 0.118 0.162 0.267 0.213 0.261 0.267 0.268 7 0.024 0.046 0.174 0.121 0.170 0.174 0.168 8 0.213 0.251 0.303 0.219 0.311 0.303 0.309 9 0.199 0.184 0.254 0.223 0.258 0.254 0.282 10 0.130 0.178 0.277 0.226 0.269 0.278 0.266 11 0.208 0.172 0.589 0.582 0.617 0.589 0.631 12 0.148 0.121 0.288 0.162 0.296 0.288 0.295 13 0.201 0.198 0.295 0.262 0.283 0.295 0.325 14 0.068 0.056 0.184 0.038 0.194 0.184 0.183 15 0.285 0.230 0.483 0.513 0.509 0.483 0.492 16 0.164 0.136 0.487 0.375 0.496 0.486 0.486 17 0.107 0.135 0.418 0.230 0.475 0.418 0.440 18 0.222 0.174 0.368 0.206 0.356 0.368 0.323 19 0.305 0.345 0.492 0.378 0.493 0.492 0.540 20 0.118 0.109 0.127 0.081 0.128 0.120 0.121 Total 0.168 0.166 0.315 0.250 0.322 0.315 0.324 7 RAP 5. [1] D. Angluin and C. Smith. Inductive inference: Theory and methods. ACM Computing Surveys, 15(3):237 269, 1983. [2] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira. Analysis of representations for domain adaptation. In Proc. of NIPS, pp. 137 144, 2006. [3] J. Blitzer, M. Dredze, and F. Pereira. Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification. In Proc. of ACL, pp. 440 447, 2007. [4] J. Blitzer, R. McDonald, and F. Pereira. Domain adaptation with structural correspondence learning. In Proc. of EMNLP, pp. 120 128, 2006. [5] D. Bollegala, Y. Matsuo, and M. Ishizuka. Measuring the similarity between implicit semantic relations from the web. In Proc. of WWW 2009, pp. 651 660, 2009. [6] M. Casey, R. Veltkamp, M. Goto, M. Leman, C. Rhodes, and M. Slaney. Content-based music information retrieval: current directions and future challenges. Proceedings of the 7 IEEE, 96(4):668 696, 2008. [7] V. Gudivada and V. Raghavan. Content based image retrieval systems. Computer, 28(9):18 22, 2002. [8] Y. Ishikawa, R. Subramanya, and C. Faloutsos. Mindreader: Querying databases through multiple examples. In Proc. of VLDB 1998, pp. 218 227, 1998. [9] M. Kamvar, M. Kellar, R. Patel, and Y. Xu. Computers and iphones and mobile phones, oh my!: a logs-based comparison of search users on different devices. In Proc. of WWW, pp. 801 810, 2009. [10] M. P. Kato, H. Ohshima, and K. Tanaka. Content-based retrieval for heterogeneous domains: domain adaptation by relative aggregation points. In Proc. of SIGIR 2012, pp. 811 820, 2012. [11] M. Kato, H. Ohshima, S. Oyama, and K. Tanaka. Query by analogical example: relational search using web search engine indices. In Proc. of CIKM 2009, pp. 27 36, 2009. [12] M. Kato, H. Ohshima, S. Oyama, and K. Tanaka. Search as if you were in your home town: geographic search by regional context and dynamic feature-space selection. In Proc. of CIKM 2010, pp. 1541 1544, 2010. [13] X. Ling, W. Dai, G.-R. Xue, Q. Yang, and Y. Yu. Spectral domain-transfer learning. In Proc. of KDD, pp. 488 496, 2008. [14] S. Nakajima and K. Tanaka. Relative queries and the relative cluster-mapping method. In Proc. of DASFAA 2004, pp. 843 856, 2004. [15] H. Ohshima and K. Tanaka. High-speed Detection of Ontological Knowledge and Bi-directional Lexico-Syntactic Patterns from the Web. Journal of Software, 5(2):195 205, 2010. [16] S. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10):1345 1359, 2010. [17] P. Rai, A. Saha, H. Daumé III, and S. Venkatasubramanian. Domain adaptation meets active learning. In Proc. of the NAACL HLT 2010 Workshop on Active Learning for Natural Language Processing, pp. 27 32, 2010. [18] A. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-based image retrieval at the end of the early years. IEEE Transactions on pattern analysis and machine intelligence, 22(12):1349 1380, 2000. [19] J. Teevan, S. Dumais, and E. Horvitz. Potential for personalization. ACM Transactions on Computer-Human Interaction, 17(1):1 31, 2010. [20] P. Turney and M. Littman. Corpus-based learning of analogies and semantic relations. Machine Learning Journal,

60(1-3):251 278, 2010. [21] A. Tversky. Features of similarity. Psychological Review, 84(4):327 352, 1977. [22] G. Xue, W. Dai, Q. Yang, and Y. Yu. Topic-bridged plsa for cross-domain text classification. In Proc. of SIGIR, pp. 627 634, 2008.