DEIM Forum 2013 A2-2 606 8501 E-mail: kato@dl.kuis.kyoto-u.ac.jp 1. 2. 1 4 A B C D A B C D A : B :: C : D : :: : : :: : A B C D A= B= C= D= D 3 Turney [20] A B C D A B C D Bollegala [5] Web SVM A B C D 2. 1 A, B t t C A : B :: C : D D t A B A B C D t A B T Web A B A B 1 A B A B B A Web n 2 A B Web 3 4 t i A B A B t i χ 2 B A
A B 5 α t i A B A B T T A B C D A B A B t i C 6 T t i C t i t i C Web n 7 T t i C t i Web 8 9 d j C t i C t i d j χ 2 t i C C t i P C(d j) P ti (d j) 10 β d j C t i P C(d j) P ti (d j) P C,ti (d j) 11 T t i P C,ti (d j) d j d j 2. 2 33 854 1 2 2 1 TF-IDF 2 [15] @5 @10 @20 5 10 20 MRR @5 @10 @20 D 20 49.8% [15] [11] 1 A( ) B( ) C( ) D() 2 MRR @k k MRR @5 @10 @20 1 0.045 8.3 10.8 18.7 2 0.150 24.5 30.9 33.8 0.249 34.4 42.1 49.8 3. 3. 1 Web Web 1 2 Booking.com 3 Web Web Web 1 http://www.gnavi.co.jp/ 2 http://tabelog.com/ 3 http://www.booking.com/
1 ( ) ( ) 3. 2 (Query by example) [1] (Contentbased retrieval [6], [7], [18]) 1 1 2 3. 3 2 1 2 1 [21] 2 4,000 4,000 1 2 2 2 1 MindReader [8] MindReader
Content-based search MindReader [12] 2 4. (relative aggregation point, RAP) 4. 1 X P (X) D = (X, P (X)) [16] Y D P (X) X X D = {(x 1, y 1), (x 2, y 2),...} D (S) X (S) X (S) Q X (S) D (S) = {(x (S), +1) x (S) Q} {(x (S), 1) x (S) (X (S) Q)} D (T ) X (T ) X (T ) D (S) X (T ) f : X (T ) R X (T ) x (T ) i x (T ) j f(x (T ) i ) < f(x (T ) j ) (X (T ), ) f X (S) X (T ) X (S) = {x (S) 1, x (S) 2, x (S) 3 } P (X (S) ) X (S) Q = {x (S) 1, x (S) 2 } D (S) = {(x (S) 1, +1), (x (S) 2, +1), (x (S) 3, 1)} D (S) D (T ) X (T ) = {x (T ) 1, x (T ) 2, x (T ) 3 } 1,000 (X (S) = X (T ) ) (P (X (S) ) = P (X (T ) )) A [2], [17] A D (S) = D (T ) 4. 2 RAP RAP RAP 4. 2. 1 RAP D X ψ MAX (X) = argmax x X x b x b x
Source Domain Category 3 2 1 Cost Target Domain Category 2 3 1 Cost RAP H = {h 1, h 2,... h m} A = {a 1, a 2,... a n} RAP H ϕ : X R mn x mn ϕ(x) ϕ(x) = (ϕ 1 (x), ϕ 2 (x),..., ϕ n (x)) (3) 2 RAP RAP RAP X X D ψ : 2 X 2 X (2 X X ) RAP a ψ = x X xp (x ψ)dx, (1) x x P (x ψ) D X ψ(x) x P (x ψ) P (x ψ) = P (x ψ, X)P (X)dX, (2) X 2 X P (x ψ, X) X ψ(x) x ψ P (x ψ) 2 RAP ( ) 2 1 2 3 RAP 2 (b (S) 1 = b (T ) 1 ) (c (S) 3 = c (T ) 3 ) 10,000 15,000 10,000 15,000 RAP RAP ϕ i (x) = (h 1 (x, a i ), h 2 (x, a i ),..., h m (x, a i )) RAP x x x RAP ϕ(x) (x, λϕ(x)) λ RAP x ϕ(x) L 2 RAP ϕ (S) RAP ϕ (T ) x (S) X (S) (x (S), λϕ (S) (x (S) )) x (T ) X (T ) (x (T ), λϕ (T ) (x (T ) )) ( x (S) x (T ) ) RAP ( ϕ (S) (x (S) ) ϕ (T ) (x (T ) ) ) RAP RAP [10] 4 4. 3 2 (i) (ii) RAP 4. 3. 1 D (S) D (T ) 3 4 Geographic Object Retrieval Dataset http://www.mpkato.net/ jp/datasets/
3 SVM ndcg@10 in-domain Target Kyoto Tokyo Sapporo Fukuoka Nagoya Kyoto 0.620 0.463 0.520 0.511 0.431 Source Tokyo 0.460 0.596 0.449 0.501 0.389 Sapporo 0.492 0.432 0.638 0.524 0.506 Fukuoka 0.505 0.472 0.510 0.588 0.477 Nagoya 0.476 0.466 0.538 0.527 0.599 +1 1 D (S) D (S) X (T ) X (T ) f MAP ndcg 10 ndcg 10 ndcg@10 (NNS) 1 SVM(OSVM) SVM NNS D (S) OSVM D (S) NNS OSVM SVM D (S) OSVM transductive support vector machine (TSVM) structural correspondence learning (SCL) relative cluster mapping (RCM) Joachims TSVM [13], [22] OSVM SVM 1 SCL [3], [4] SVM RCM SCL SVM [14] 4. 3. 2 SVM in-domain (D (S) = D (T ) ) k k k 1 out-domain (D (S) = D (T ) ) in-domain k k 1 1 k = 5 100 5 20 5 500 3 ndcg@10 SVM out-domain (D (S) = D (T ) ) ndcg@10 in-domain (D (S) = D (T ) ) ndcg@10 A (Pearson s coefficient r = 0.678, p < 0.05) ndcg@10 in-domain 0.608 out-domain 0.482 t in-domain out-domain (t(179) = 5.89, p < 0.001) 5 Cohen s d (0.588) (in-domain out-domain) ( ) [19] [9] 1 4. 3. 3 RAP out-domain 400 (4 100 ) 4 5 MAP ndcg@10 MAP ndcg@10 (F (6, 2793) = 16.1, p < 0.001 F (6, 2793) = 40.0, p < 0.001) t RAP 6 MAP ndcg@10 NNS OSVM TSVM RAP 5 11 19 ndcg@10 5 8,000 11 5 MAP in-domain (0.609) out-domain (0.479) (t(157) = 5.35, p < 0.001, Cohen s d = 0.585) 6 0.05 Holm
Domain-dependent Domain-independent 4 MAP Inductive Transductive Intent NNS OSVM SVM TSVM SCL RCM RAP 1 0.539 0.546 0.490 0.417 0.482 0.490 0.490 2 0.387 0.452 0.522 0.439 0.512 0.521 0.574 3 0.347 0.319 0.317 0.344 0.321 0.317 0.320 4 0.409 0.350 0.672 0.558 0.688 0.672 0.668 5 0.488 0.458 0.512 0.506 0.515 0.513 0.522 6 0.198 0.227 0.327 0.329 0.324 0.327 0.333 7 0.078 0.083 0.155 0.150 0.153 0.155 0.144 8 0.192 0.219 0.254 0.206 0.251 0.254 0.260 9 0.488 0.491 0.548 0.561 0.548 0.548 0.570 10 0.261 0.293 0.335 0.305 0.329 0.335 0.337 11 0.442 0.401 0.630 0.581 0.631 0.630 0.654 12 0.180 0.177 0.280 0.233 0.284 0.280 0.284 13 0.586 0.571 0.645 0.627 0.638 0.645 0.640 14 0.115 0.114 0.161 0.109 0.161 0.161 0.156 15 0.354 0.293 0.545 0.506 0.541 0.545 0.538 16 0.416 0.399 0.702 0.609 0.686 0.701 0.705 17 0.270 0.270 0.379 0.317 0.384 0.379 0.385 18 0.256 0.226 0.401 0.312 0.398 0.401 0.399 19 0.586 0.595 0.641 0.532 0.646 0.641 0.645 20 0.288 0.286 0.238 0.203 0.236 0.238 0.239 Total 0.344 0.338 0.438 0.392 0.436 0.438 0.443 Domain-dependent Domain-independent 5 ndcg@10 Inductive Transductive Intent NNS OSVM SVM TSVM SCL RCM RAP 1 0.191 0.192 0.175 0.176 0.171 0.177 0.173 2 0.173 0.249 0.406 0.277 0.415 0.406 0.420 3 0.149 0.123 0.084 0.151 0.103 0.084 0.086 4 0.145 0.087 0.389 0.315 0.367 0.386 0.395 5 0.182 0.167 0.242 0.250 0.260 0.242 0.283 6 0.118 0.162 0.267 0.213 0.261 0.267 0.268 7 0.024 0.046 0.174 0.121 0.170 0.174 0.168 8 0.213 0.251 0.303 0.219 0.311 0.303 0.309 9 0.199 0.184 0.254 0.223 0.258 0.254 0.282 10 0.130 0.178 0.277 0.226 0.269 0.278 0.266 11 0.208 0.172 0.589 0.582 0.617 0.589 0.631 12 0.148 0.121 0.288 0.162 0.296 0.288 0.295 13 0.201 0.198 0.295 0.262 0.283 0.295 0.325 14 0.068 0.056 0.184 0.038 0.194 0.184 0.183 15 0.285 0.230 0.483 0.513 0.509 0.483 0.492 16 0.164 0.136 0.487 0.375 0.496 0.486 0.486 17 0.107 0.135 0.418 0.230 0.475 0.418 0.440 18 0.222 0.174 0.368 0.206 0.356 0.368 0.323 19 0.305 0.345 0.492 0.378 0.493 0.492 0.540 20 0.118 0.109 0.127 0.081 0.128 0.120 0.121 Total 0.168 0.166 0.315 0.250 0.322 0.315 0.324 7 RAP 5. [1] D. Angluin and C. Smith. Inductive inference: Theory and methods. ACM Computing Surveys, 15(3):237 269, 1983. [2] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira. Analysis of representations for domain adaptation. In Proc. of NIPS, pp. 137 144, 2006. [3] J. Blitzer, M. Dredze, and F. Pereira. Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification. In Proc. of ACL, pp. 440 447, 2007. [4] J. Blitzer, R. McDonald, and F. Pereira. Domain adaptation with structural correspondence learning. In Proc. of EMNLP, pp. 120 128, 2006. [5] D. Bollegala, Y. Matsuo, and M. Ishizuka. Measuring the similarity between implicit semantic relations from the web. In Proc. of WWW 2009, pp. 651 660, 2009. [6] M. Casey, R. Veltkamp, M. Goto, M. Leman, C. Rhodes, and M. Slaney. Content-based music information retrieval: current directions and future challenges. Proceedings of the 7 IEEE, 96(4):668 696, 2008. [7] V. Gudivada and V. Raghavan. Content based image retrieval systems. Computer, 28(9):18 22, 2002. [8] Y. Ishikawa, R. Subramanya, and C. Faloutsos. Mindreader: Querying databases through multiple examples. In Proc. of VLDB 1998, pp. 218 227, 1998. [9] M. Kamvar, M. Kellar, R. Patel, and Y. Xu. Computers and iphones and mobile phones, oh my!: a logs-based comparison of search users on different devices. In Proc. of WWW, pp. 801 810, 2009. [10] M. P. Kato, H. Ohshima, and K. Tanaka. Content-based retrieval for heterogeneous domains: domain adaptation by relative aggregation points. In Proc. of SIGIR 2012, pp. 811 820, 2012. [11] M. Kato, H. Ohshima, S. Oyama, and K. Tanaka. Query by analogical example: relational search using web search engine indices. In Proc. of CIKM 2009, pp. 27 36, 2009. [12] M. Kato, H. Ohshima, S. Oyama, and K. Tanaka. Search as if you were in your home town: geographic search by regional context and dynamic feature-space selection. In Proc. of CIKM 2010, pp. 1541 1544, 2010. [13] X. Ling, W. Dai, G.-R. Xue, Q. Yang, and Y. Yu. Spectral domain-transfer learning. In Proc. of KDD, pp. 488 496, 2008. [14] S. Nakajima and K. Tanaka. Relative queries and the relative cluster-mapping method. In Proc. of DASFAA 2004, pp. 843 856, 2004. [15] H. Ohshima and K. Tanaka. High-speed Detection of Ontological Knowledge and Bi-directional Lexico-Syntactic Patterns from the Web. Journal of Software, 5(2):195 205, 2010. [16] S. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10):1345 1359, 2010. [17] P. Rai, A. Saha, H. Daumé III, and S. Venkatasubramanian. Domain adaptation meets active learning. In Proc. of the NAACL HLT 2010 Workshop on Active Learning for Natural Language Processing, pp. 27 32, 2010. [18] A. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-based image retrieval at the end of the early years. IEEE Transactions on pattern analysis and machine intelligence, 22(12):1349 1380, 2000. [19] J. Teevan, S. Dumais, and E. Horvitz. Potential for personalization. ACM Transactions on Computer-Human Interaction, 17(1):1 31, 2010. [20] P. Turney and M. Littman. Corpus-based learning of analogies and semantic relations. Machine Learning Journal,
60(1-3):251 278, 2010. [21] A. Tversky. Features of similarity. Psychological Review, 84(4):327 352, 1977. [22] G. Xue, W. Dai, Q. Yang, and Y. Yu. Topic-bridged plsa for cross-domain text classification. In Proc. of SIGIR, pp. 627 634, 2008.