Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov DIF differential item functioning

Σχετικά έγγραφα
Research on Economics and Management

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Quick algorithm f or computing core attribute

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Other Test Constructions: Likelihood Ratio & Bayes Tests

ER-Tree (Extended R*-Tree)

High order interpolation function for surface contact problem

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

ST5224: Advanced Statistical Theory II

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Λέκτορας στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων, Πανεπιστήμιο Πειραιώς, Ιανουάριος 2012-Μάρτιος 2014.

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Adaptive grouping difference variation wolf pack algorithm

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

Congruence Classes of Invertible Matrices of Order 3 over F 2

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

MIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C


Analysis of energy consumption of telecommunications network and application of energy-saving techniques

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

Statistical Inference I Locally most powerful tests

90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z

Simplex Crossover for Real-coded Genetic Algolithms

A research on the influence of dummy activity on float in an AOA network and its amendments

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

Buried Markov Model Pairwise

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ

ΦΩΤΟΓΡΑΜΜΕΤΡΙΚΕΣ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΜΕΛΕΤΗ ΘΕΜΑΤΩΝ ΔΑΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Durbin-Levinson recursive method

A System Dynamics Model on Multiple2Echelon Control

A summation formula ramified with hypergeometric function and involving recurrence relation

Biostatistics for Health Sciences Review Sheet

ΣΤΥΛΙΑΝΟΥ ΣΟΦΙΑ

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

PLATEAU METEOROLOGY. X 6 min. 6 min Vol. 34 No. 4 August doi /j. issn X X / cosθcosφ P412.

Second Order RLC Filters

6.3 Forecasting ARMA processes

Arbitrage Analysis of Futures Market with Frictions

SMD Transient Voltage Suppressors

Lecture 34 Bootstrap confidence intervals

Mantel & Haenzel (1959) Mantel-Haenszel

Elements of Information Theory

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review


Approximation of distance between locations on earth given by latitude and longitude

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ

The martingale pricing method for pricing fluctuation concerning stock models of callable bonds with random parameters

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Module 5. February 14, h 0min

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

FORMULAS FOR STATISTICS 1

ΣΔΥΝΟΛΟΓΗΚΟ ΔΚΠΑΗΓΔΤΣΗΚΟ ΗΓΡΤΜΑ ΗΟΝΗΧΝ ΝΖΧΝ «ΗΣΟΔΛΗΓΔ ΠΟΛΗΣΗΚΖ ΔΠΗΚΟΗΝΧΝΗΑ:ΜΔΛΔΣΖ ΚΑΣΑΚΔΤΖ ΔΡΓΑΛΔΗΟΤ ΑΞΗΟΛΟΓΖΖ» ΠΣΤΥΗΑΚΖ ΔΡΓΑΗΑ ΔΤΑΓΓΔΛΗΑ ΣΔΓΟΤ

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ SPATIAL ECONOMETRIC MODELS FOR VALUATION OF THE PROPERTY PRICES

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Information and Communication Technologies in Education

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Motion analysis and simulation of a stratospheric airship

Area Location and Recognition of Video Text Based on Depth Learning Method

, ;21 , ) Freudenberger [1 ] 1974 (Burnout), (wear out), , Dworkin [5 ] 22 : ( meaninglessness ) 12, (normalessness) Maslach [6 ]

C.S. 430 Assignment 6, Sample Solutions

Homework 8 Model Solution Section

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙO ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»

Ψηφιακή Επεξεργασία Φωνής

Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ. Χρήστος Αθ. Χριστοδούλου. Επιβλέπων: Καθηγητής Ιωάννης Αθ. Σταθόπουλος

CorV CVAC. CorV TU317. 1

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Test Data Management in Practice

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

ΕΚΤΙΜΗΣΗ ΤΟΥ ΚΟΣΤΟΥΣ ΤΩΝ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΠΙΡΡΟΗΣ ΤΟΥ

Experimental Study of Dielectric Properties on Human Lung Tissue

ΤΟ ΤΡΑΠΕΖΙΚΟ ΣΥΣΤΗΜΑ- ΟΙ ΣΥΓΧΡΟΝΕΣ ΤΡΑΠΕΖΙΚΕΣ ΥΠΗΡΕΣΙΕΣ- ΧΡΗΜΑΤΟΙΚΟΝΟΜΙΚΉ ΑΝΑΛΥΣΗ ΤΩΝ ΤΕΣΣΑΡΩΝ ΣΥΣΤΗΜΙΚΩΝ ΤΡΑΠΕΖΩΝ

[1] P Q. Fig. 3.1

Ηλεκτρονικά σώματα κειμένων και γλωσσική διδασκαλία: Διεθνείς αναζητήσεις και διαφαινόμενες προοπτικές για την ελληνική γλώσσα

Notes on the Open Economy

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Gain self-tuning of PI controller and parameter optimum for PMSM drives

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

CRASH COURSE IN PRECALCULUS

Stabilization of stock price prediction by cross entropy optimization

172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell

Transcript:

38 6 Vol 38 No 6 2014 11 Journal of Jiangxi Normal UniversityNatural Science Nov 2014 1000-5862201406-0593-07 1 2* 1 1001912 100875 i ii DSF DIF DIF B 841 7TP 301 6 A 0 DIF differential item functioning DIF DIF 20 60 DIF 2 3-5 DIF 2 i MH SIBTEST LRDIF STND ii IRT Lord AERA Raju IRT APA NCMELRDIF 4 i 2 ii DIF iii Mantel Mantel- Haenszel SIBTEST iv 1 DIF DIF DIF DIF 2 DIF 20 60 DIF DIF DIF 2014-06-19 31100759 GFA111001 019-105812 2012 CHA12109 1972-

594 2014 DIF a θ DIF D 1 7 G = 0 G = 1 DIF a b j 0 5 DIF GRM b j DIF PCM DIF ω j = 0 DSF ω j > 0 DSF ω j < 0 1 3 DSF DSF DIF DSF DSF DSF j DSF DSF j 1 DSF DSF 2 DIF 1 1 DIF DSF a DSF 2 a DIF DSF 2 DIF DIF IRT DSF 1 2 DSF GRM PCM DSF 2 r J = r - 1 4 0 1 2 DSF 2 3 r = 4 J = 3 Y i 0 1 1 Y 1 ii 1 2 2 Y 2 iii 2 3 Y = 2 iii 2 3 Y = 3 1 2 2 7 DSF DSF j DSF 8 DIF DSF 2 IRT odds Logistic 2 DIF Y = 3 i j i 0 1 ii Y = 1 ii 1 2 2 1 9 GPCM 10 AC-LOR Logistic GRM CU-LOR 2 DSF 2 DSF PY j θ= expdαθ - b j + Gω j DIF 1 + expdαθ - b j + Gω j 2 DSF b j j

6 595 DSF 7 odds ratio DSF 2 11 DSF DSF 1 zλ^ j= λ^ j SEλ^ j DSF SEλ^ DSF DSF SEλ^ 2 j j= m T -2 K A jk D jk + α jb jk C jk A jk + D jk + k = 1 DSF 1 α jb jk + α jc jk 2 m A jk D jk T k 2 1 /2 K = 1 2 2 14 IRT DSF ETS λ j < 0 43 8 DSF 0 43 λ j 0 63 Δb j = b jf - b jr Δb j = 0 DSF DSF λ j > 0 63 Δb j > 0 DSF 2 3 2 Logistic Δb j j DSF 12 Logistic 8 Raju 2 DIF expβ DSF j0 + β j1 X + β j2 G PY j X= 1 + expβ j0 + β j1 X + β j2 G Raju Y j X Δb j < 0 25 G DSF Δb j < 0 50 G = 0 G = 1 β j2 j DSF Δb j > 0 50 DSF DSF β j2 = 0 j IRT DSF DSF β j2 > 0 j DSF 2 Δb j β j2 < 0 j DSF 2 X G 2 DSF 2 3 DSF β j2 G β j2 G β - 2 2 3 1 odds ratio odds DSF ΔR 2 ΔR 2 < 0 10 ratio j DSF 0 10 ΔR 2 0 20 λ DSF ΔR 2 > 0 20 λ 13 λ DSF 15 λ j = ln [ m A jk D jk k = 1 T k m B jk C jk 2 4 3 k = 1 T ] k IRT A jk k j B jk k j BILOGMG3 IRTLRDIF 16 MULTILOG7 DIFAS C jk k j λj zλj 17 D jk k IRT j λ j = 0j 3 DSFλ j > 0 j Logistic odds λ j < 0j ratio β λ j 18 2 2

596 2014 16 DSF 3 DSF DIF 3 1 DSF DIF DSF DSF R D Penfield 19 global DIF DSF global IRT DSF DSF DSF MH DSF DIF SSL 7 DSF DSF net DIF net DSF DIF DSF DSF DIF net Mantel DSF DSF DSF DSF 3 DSF SIBTEST DSF DSF Liu-Aresti common DSF DSF DSF 1 DIF 1 DSF DIF DIF DIF global DIF global DSF odds ratio DIF net DSF DIF global DSF 21 3 3 DSF DIF DIF DSF DSF DSF DIF DIF DSF DIF DSF DSF DIF DIF j DSF DSF DIF DSF DSF DIF DIF DSF DSF DIF DIF DIF net global DSF DSF idsf DIF DSFglobal iidsf DSF DSF net DSF DIF DSF 20 DIF DSF DIF DSF DIF 3 2 DSF DIF DIF net global DSF DIF R D Penfield DSF 19 3 DIF SSLDIF DSF 6 SSL

6 597 4 48% 1 152 52% Logistic IRT 10 DSF 2 2 2 DIFAS 17 DSF common log-ratio λ j λ j Ralf Schwarzer DSF DIF 21 10 4 global net DIF global 1 167 DSF Bonfereoni-adjusted Typed I error rate0 05 /J DIF net Liu-Agresti common Log-odds rationla Z 22 DSF Item step λ i SEλ i Zλ i DSF SIZE DSF FORM DIF EFFECT Item2 Item3 Item4 Item5 Item7 Item8 Item9 Item10 1 0 677 0 225 45 3 003 * 2 0 833 0 124 83 6 673 * 3 1 173 0 213 58 5 492 * 1-1 116 0 160 77-6 942 * 2-0 500 0 124 03-4 031 * 3-0 053 0 263 02-0 0202 LA = 0 873 ZLA= 8 009 * LA = - 0 665 ZLA= - 6 065 * 1-0 599 0 227 96-2 628 * 2-0 415 0 132 98-3 121 * LA = - 0 496 ZLA= - 4 55 * 3-0 614 0 234 26-2 621 * 1-0 686 0 219 43-3 126 * 2-0 442 0 135 86-3 253 * 3-0 070 0 237 58-0 295 1 1 268 0 233 24 5 436 * 2 0 956 0 137 04 6 976 * 3 0 875 0 180 61 4 845 * LA = - 0 430 ZLA= - 3 839 * LA = 0 984 ZLA= 8 708 * 1 0 207 0 249 54 0 830 2 0 269 0 123 48 2 178 * LA = 0 304 ZLA= 2 951 * 3 0 430 0 179 36 2 397 * 1 0 644 0 339 59 1 896 2 0 489 0 139 56 3 504 * 3 0 547 0 176 65 3 097 * 1-1 852 0 283 52-6 532 * 2-1 649 0 142 25-11 592 * 3-1 319 0 248 34-5 311 * LA = 0 522 ZLA= 4 619 * LA = - 1 614 ZLA= - 12 709 * 2 1 2 3 λ i 4 λ i 5 Bonfereoni-adjusted typed I error rate0 05 /J 8 global DSF global 6 net DSF DSF 7 DSF 8 DSF net 3 Logistic SPSSIRT Multilog 10 DSF Logistic DSF DSF 2 7 10 net DIF DSF DIF 2 7 λ 2 IRT 7 10 IRT 9 DSF DIF

598 2014 j λ j j λ j λ 3 4 5 8 DSF λ j 3 Logistic IRT DSF Logistic IRT Item step β j sig ΔR 2 b j FSE b j RSE Δb j SE Z Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8 Item9 Item10 1-0 023 0 964 0-4 400 23-4 300 44-0 100 35-0 29 2 0 109 0 441 0 01-1 500 07-1 570 10 0 070 09 0 81 3 0 078 0 556 0 01 0 520 09 0 500 07-0 020 08 0 25 1 0 721 0 001 0 52 3 360 14-2 880 19 6 240 17 37 43 * 2 0 835 0 0 70 0 460 09 0 100 08 0 360 09 4 23 * 3 1 260 0 1 59 1 640 15 2 670 13-1 030 14-7 34 * 1-1 070 0 1 14-1 340 08-2 190 13 0 850 11 7 89* 2-0 513 0 0 26 0 510 10 0 060 07 0 450 09 5 21* 3 0 080 0 756 0 01 2 340 22 2 170 11 0 170 17 0 98 1-0 548 0 016 0 30-1 850 05-1 900 10 0 050 08 0 63 2-0 441 0 001 0 19-0 400 05-0 460 05 0 060 05 1 20 3-0 499 0 023 0 25 0 940 10 1 860 04-0 920 08-12 05 * 1-0 658 0 002 0 43-1 760 05-1 860 10 0 100 08 1 27 2-0 427 0 002 0 18-0 310 05 0 370 04-0 680 05-15 01 * 3-0 025 0 914 0 0 990 10 1 080 05-0 090 08-1 14 1 0 120 0 794 0 01-3 860 17-3 830 38-0 030 29-0 10 2 0 046 0 726 0-1 580 07-1 670 10 0 090 09 1 04 3 0 418 0 002 0 17 0 200 08 0 400 37-0 200 27-0 75 1 1 392 0 1 94-2 610 08 1 870 11-4 480 10-46 63 * 2 0 981 0 0 96-0 810 06 0 280 05-1 090 06-19 73 * 3 0 915 0 0 84 0 620 08 1 110 06-0 490 07-6 92 * 1 0 179 0 467 0 03-2 700 09-2 680 18-0 020 14-0 14 2 0 276 0 025 0 08-0 660 07-0 520 07-0 140 07-2 00 * 3 0 471 0 007 0 22-1 080 11 1 340 07-2 420 09-26 21 * 1 0 647 0 058 0 42-3 130 10-2 650 19-0 480 15-3 17 * 2 0 516 0 0 27-0 990 05-0 750 06-0 240 06-4 35 * 3 0 636 0 0 40 0 640 08 0 950 06-0 310 07-4 38 * 1-1 851 0 3 43-1 630 05-2 410 15 0 780 11 6 99 * 2-1 656 0 2 74 0 040 06-0 670 05 0 710 06 12 85 * 3-1 318 0 1 74 1 400 12 0 840 05 0 560 09 6 08 * 23 5 DSF DSF i DSF DIF iidsf DSF DIF DSF 2 DSF DIF DSF DSF DIF 4 2 DIF DSF 2 2 18 iii

6 599 DSF DSF refine the analysis of DIF in polytomous items J Educational MeasurementIssues and Practice 2009 281 38-3 4 49 9Muraki E A generalized partial credit modelapplication of an EM algorithm J Applied Psychological Measurement 1992 162 159-176 DSFj j DIF j 10Wim J van der Linden Ronald K Hambleton Handbook of j j + 1 modern item response theory M New YorkSpringer- DIF Verlag New York Inc 199785-100 j j + 1 11Gattamorta K A A comparison of adjacent categories and cumulative DSF effect estimators D MiamiUniversity of Miami 2009 12Cohen A S Kim S H Baker F B Detection of differential item functioning in the graded response model J Applied Psychological Measurement 1993 174 335-350 DSF DSF DSF 13Penfield R D A nonparametric method for assessing differential step functioning in polytomous items C San Fran- DIF DSF DIF ciscoca 2006 14Hauck W W The large sample variance of the Mantel- Haenszel estimator of a common odds ratio J Biometrics 1979 354 817-819 15Jodoin M G Gierl M J Evaluating type I error and power rates using an effect size measure with the logistic regres- 6 3Holland P W Thayer D T Differential item performance and the Mantel-Haenszel procedure C NJErlbaum 1998129-145 4Penfield R D Camilli G Differential item functioning and item bias C New YorkElsevier 2007125-167 5Zumbo B D Three generations of DIF analysesconsidering where it has been where it is now and where it is going J Language Assessment Quarterly 2007 4 2 223-233 6Penfield R D Assessing differential step functioning in polytomous items using a common odds ratio estimator J Journal of Educational Measurement 2007 44 3 187-210 7Penfield R D Three classes of nonparametric differential step functioning effect estimators J Applied Psychological Measurement 2008 326 480-501 8Penfield R D Gattamorta K Childs R A An NCME instructional module on using differential step functioning to sion procedure for DIF detection J Applied Measure- 1American Educational Research AssociationAmerican ment in Education 2001 144 329-349 Psychological AssociationNational Council on Measure- 16Thissen D IRTLRDIF v 2 0 bsoftware for the computation of the statistics involved in item response theory likement in Education Standards for educational and psychological testing M Washington D CAmerican Psychological Association 1999 Unpublished ms 2 17Penfield R D Computer program exchange DIFASdifferlihood-ratio tests for differential item functioning 2001 J 2003 12 19 ential item functioning analysis system J Applied Psychological Measurement 2005 292 150-151 18Alvarez K Penfield R D Using differential step functioningdsfto refine the analysis of DIF in polytomous i- temsan illustration C Washington D C 2007 19Penfield R D Alvarez K Lee O Using a taxonomy of differential step functioning to improve the interpretation of DIF in polytomous itemsan illustration J Applied Measurement in Education 2009 221 61-78 20Penfield R D Distinguishing between net and global DIF in polytomous items J Journal of Educational Measurement 2010 472 129-149 21Schwarzer R Jerusalem M Generalized self-efficacy scale EB /OL 2014-05-16 www thefindingsgroup com 22Penfield R D Algina J Applying the Liu-Agresti estimator of the cumulative common odds ratio to DIF detection in polytomous items J Journal of Educational Measurement 2003 404 353-370 609

6 Fitz 609 12Cui Yang Gang Wei Chen Fangjiong An estimation-range extended autocorrelation-based frequency estimator J EURASIP Journal on Advances in Signal Processing 2009 10961938 13 J 2011 3781030-1033 14Fu HKam P Y Sample-autocorrelation-function-based frequency estimation of a single sinusoid in AWGN C/ / IEEE 75th Vehicular Technology Conference Yokohama 20121-5 15 D 2012 16 J 2013 375492-496 17Lank G W Reed I S Pollon G E A semicoherent detection and Doppler estimation statistic J Aerospace and Electronic Systems 1973 9 2 151-165 18 4 Ω J 2013 37 6561-564 An Improved Fitz Frequency Estimation Algorithm with Fast Speed and High Accuracy WANG Fang CHEN Yong YE Zhi-qing College of Physics and Communication Electronics Jiangxi Normal University Nanchang Jiangxi 330022 China AbstractFitz frequency estimation algorithm frequency estimation variance in the high SNR is higher and there is a big gap between the CRB An improved Fitz frequency estimation algorithm which first defines the modified autocorrelation function weighted by generalized Kay window has been proposed and then calculates the sum of the weighted phases of the modified autocorrelation function finally gets the frequency estimation of the complex sinusoidal signal in AWGN Computer simulation and analysis shows thatthe frequency estimation variance of improved algorithm decreases about 2 db when the data length is 24 and the signal to noise ratio is 20 db while the calculated a- mount of improved algorithm and original algorithm is about the same In the other words the proposed algorithm to meet the real-time requirement achieves a higher frequency estimation precision Key wordsfrequency estimationautocorrelationreal-timecramer-rao bound 599 23Leighton J P Gierl M J Defining and evaluating models of cognition used in educational measurement to make inferences about examinees thinking processes J Educational MeasurementIssues and Practice 2007 2623-16 The Differential Step Functioning in Polytomous Items LI Mei-juan 1 LIU Hong-yun 2* 1 Beijing Academy of Educational Sciences Beijing 1001912 School of Psychology Beijing Normal University Beijing 100875 AbstractThe research mainly introducesdifferential stepfunctioning DSFhow to play a role in the examination and interpretation of differential item functioningdifeffect There are two parts in the research The first part summarizes and reviews models methods patterns applications result interpretation about DSF abroad which aims to provide some reference for domestic test fairness Using DSF analysis methodology by testing actual data the second part verifies the DIF in test items and differentlevel of steps and takes further analysis to the reason for DIF production Therefore it provides more specific and operational basis for the item review and revision Key wordspolytomous itemsdifferential item functioningdifdifferential step functioning DSF