17 5 2005 10 Chinese Bulletin of Life Sciences Vol. 17, No. 5 Oct., 2005 1004-0374(2005)05-0404-07 O- (1 200092 2 200031) O- δ- µο- ω- κ- 24~33 ICK Q71 R966.3 A The progress in studies on O-superfamily conotoxins ZHANG Wei 1 *, HAN Yu-Hong 1,2 (1 Institute of Protein Research, Tongji University, Shanghai 200092, China; 2 Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of CAS, Shanghai 200031, China) Abstract: O-superfamily is one of the most complex group among conotoxins, it is composed of several members such as δ, µο-, ω, κ-contoxins. Usually, O-superfamily conotoxins contain 24~33 amino acid residues with three disulfide bonds. This disulfide-rich peptides can potently and selectively interfere with voltage-gated cation channels. This article reviews their characteristics of biochemistry, molecular genetics, physiology and pharmacology, relationship between structure and function, and application perspective as well. Key words: ion channel disulfide bond conotoxins (conotoxin, CTx) (conus) 10~46 500 2005-07-06 2005-07-14 (30471930) (1982 ) * (1977 )
O- 405 ( 1) (contulakin) (conantokin) (conopressin) [1] O- δ- µο- ω- κ- δ-ctx Na + µο-ctx Na + ω-ctx Ca 2+ κ-ctx K + [2] 1 O- - δ- µο- ω- κ- 24~33 4 Loop Cys I -Cys IV Cys II -Cys V Cys III -Cys VI δ-ctx µο-ctx ω-ctx 4~6 C N Cys mrna O- (Pre ) (Pro ) (mature ) O- cdna Pro κ-ctx ω-ctx δ-ctx µo-ctx κ-pviia ω-gvia N 45 22 1 23 5 ( 1) C. purpurascens κ-pviia δ-pvia ω-ctx K + κ-ctx Ca 2+ ω-ctx δ-pvia µο- MrVIB O- K + Ca 2+ (κ-ctx ω-ctx); Na + (δ-ctx µο-ctx 2 O- 2.1 δ- 25~33 4 Loop Na + 1 O C-C-CC-C-C δ Na + C-C-CC-C-C µο Na + C-C-CC-C-C ω Ca 2+ C-C-CC-C-C κ K + M CC-C-C-CC µ Na + CC-C-C-CC ψ nach CC-C-C-CC κμ K + A CC-C-C α nach CC-C-C-C-C αα nach CC-C-C-C-C κα K + S C-C-C-C-C-C-C-C-C-C σ 5-HT 3 T CC-CC τ? CC-CC χ? P C-C-C-C-C-C spastics? I C-C-CC-CC-C-C K + C-C conopressin C-C contryphan? C-C contulakin C-C conantokin NMDA C-C conorfamide Rfamide
406 1 O- δ- 7 19 7 F9 I12 L16 ( 2) Ala [3] C. purpurascens δ-pvia δ-ctx (the lock jaw syndrome) [4] δ-pvia Na V 1.2 Na + [5] δ-pvia Na V 1.4 Na V 1.6 [6] C.gloriamaris δ-gmvia Na + [7] Na V 1.2 Na V 1.4 Na V 1.6 C. textile δ-txvia Na + [3,8~9] Na + [9] (silent binding) δ-pvia δ-txvia Na + δ-ctx δ-ctx Na + Na + Na + Na + δ-ctx Site VI Na + [10] δ-evia Na + Na + [11] Na + (rna V 1.2 rna V 1.3 rna V 1.6) (rna V 1.4) (hna V 1.5) Na + δ-evia 2 δ- δ- C. purpurascens PVIA EACYAOGTFCGIKOGLCCSEFCLPGVCFG* C. nigropunctatus NgVIA SKCFSOGTFCGIKOGLCCSVRCFSLFCISFE C. striatus SVIE DGCSSGGTFCGIHOGLCCSEFCFLWCTFID C.catus CVIE YGCSNAGAFCGIHOGLCCSELCLVWCT C. consors CnVIA YECYSTGTFCGINGGLCCSNLCLFFVCLTFS C. ermineu EVIA DDCIKOYGFCSLPILKNGLCCSGACVGVCADL C. textile TxVIA WCKQSGEMCNLLDQNCCDGYCIVLVCT C. gloriamaris GmVIA VKPCRKEGQLCDPIFQNCCRGWNCVLFCV * C O
O- 407 Na + Na + 2.2 µo- µο- CTx µο-ctx µ-ctx Na + µο-ctx δ-ctx ω-ctx ICK µ-ctx α-β CSαβ µο-ctx µ-ctx M µο-mrvia µο-mrvib δ-ctx ω-ctx δ-ctx Na + ω-ctx Ca 2+ µ-ctx Site I ω-ctx Site I [12] µο-ctx µ-ctx Na + [13] µο-mrvia µ-giiib (>10 nmol) µο-mrvia µ-giiib µο-mrvia µ-giiib µο-mrvia Na + Na + µο-mrvia µο-mrvib Na + Ca 2+ [14] µο-mrvia µο-mrvib ( 3 ) ( 3) Ca 2+ µο-mrvia Ca 2+ µο-mrvib Ca 2+ Ca 2+ 2.3 ω- ω-ctx Ca 2+ Ca 2+ L N P Q R T L Ca 2+ Ca V 1 P/Q N R Ca 2+ Ca V 2 T Ca 2+ Ca V 3 ω-ctx Ca 2+ ω-mviia N Ca 2+ (Ca V 2.2) ω-mviic P/Q Ca 2+ (Ca V 2.1) [15~16] ω-gvia N Ca 2+ ω-cvia N Ca 2+ ω-cvib ω-cvic N P/Q Ca 2+ ω-cvid N Ca 2+ P/Q Ca 2+ [17] N Ca 2+ ω-cnviia Loop4 (SSSKGR) Ca 2+ ω-cnviia N Ca 2+ ω-gvia [18] C.pennaceus ω-pnvia ω-ctx ( 4) DHP (dihydropyridine) Ca 2+ [19] C. textile ω-txviidhp L- Ca 2+ CTx [20] 2.4 κ- 80 ( K V 1.X K V 2.X ) S1~S6 α C. purpurascens κ-pviia [21] κ-pviia K + Shaker K + K + K V 1.1 Shaker K V 1.1 κ-pviia S5~S6 κ- PVIIA Charybdotoxin Shaker K + Shaker K + S5~S6 3 µο- µο- C.marmoreus µο-mrvia ACRKKWEYCIVPIIGFIYCCPGLICGPFVCV C.marmoreus mo-mrvib ACSKKWEYCIVPILGFVYCCPGLICGPFVCV
408 4 ω- ω- C. geographus GVIA CKSOGSSCSOTSYNCCR-SCNOYTKRCY* C. magus MVIIA CKGKGAKCSRLMYDCCTGSC-R-SGKC* C. magus MVIIC CKGKGAPCRKTMYDCCSGSCGR-RGKC* C. striatus SVIA CRSSGSOCGVTSI-CC-GRCYR--GKCT* C. catus CVIA CKSTGASCRRTSYDCCTGSCRS--GRC* C. catus CVIB CKGKGASCRKTMYDCCRGSCRS--GRC* C. catus CVIC CKGKGQSCRKLMYDCCTGSCSRR-GKC* C. catus CVID CKSKGAKCSKLMYDCCSGSCSGTVGRC* C. consors CnVIIA CKGKGAOCTRLMYDCCHGSCSSSKGRC* C. textile TxVII CKQADEPCDVFSLDCCTGICLG-V--CMW C. pennaceus PnVIA GCLEVDYFCGIPFANNGLCCSGNCVFVCTPQ * C O (microsite) F424 G Charybdotoxin 3 κ-pviia κ-pviia C. purpurascens Na + δ-pvia 3 O- O-9 ω-gvia [22] ω-mviia [23] ω-mviic [24] ω-mviid [25] ω-svib [26] ω-txvii [27] ω-cvid [17] δ-txvia [28] κ-pviia [29] β (β1 β2 β3) (inhibitor cysteine knot motif, ICK motif) [30] Cys I -Cys IV Cys II -Cys V Cys III -Cys VI O- Loop Loop Loop2 Loop4 Nielson [31] ω-mviia ω-mviic Loop1 Loop3 Loop2 Loop4 N P/Q Ca 2+ O- Loop2 Loop4 δ-evia Loop2 O- Ser 11-Leu 19 Loop4 3 ( 2) 2 3 γ- Loop2 Pro13 Pro13 Ala P13Aδ-EVIA δ-evia 50% ω-gvia ω-mviia Try13 Ala Na + 99.9% Lys2 Ala 97.5% Try13 Lys2 Na + δ-txvia ω-gvia ω-mviia δ-txvia δ-txvia 3 2 ω-gvia ω-mviia δ-txvia δ-txvia Na + ω-txvii δ-txvia ω-txvii (Ala 4 Met 25 Trp 26) δ-txvia ω-txvii δ-txviaω-cvid HNMR Loop2 Loop4 Loop4 Loop2 GVIA MVIIA κ-pviia Shaker K + κ-pviia Shaker P-Loop Ala K + P-Loop κ-pviia K + Savarin [29] κ-
O- 409 PVIIA Lys7 Phe9 dyad motif K + 4 O- O- ω- 200 ω- GVIA N Ca 2+ Elan ω-mviia FDA N Ca 2+ G ADS [32] ω- CVID N Ca 2+ II κ-btx [33] [1] Olivera B M, Cruzab L J. Conotoxins in retrospect. Toxicon, 2001, 39(1): 7~14 [2] Terlau H, Olivera B M. Conus venoms: a rich source of novel ion channel-targeted peptides. Physiol Rev, 2004, 84 (1): 41~68 [3] Bulaj G, De La Cruz R, Azimi-Zonooz A, et al. δ-conotoxin structure/function through a cladistic analysis. Biochemistry, 2001, 40(44): 13201~13208 [4] Shon K J, Grilley M M, Marsh M, et al. Purification, characterization, synthesis, and cloning of the lock jaw peptide from Conus purpurascens venom. Biochemistry, 1995,34(15): 4913~4918 [5] Terlau H, Shon K J, Grilley M M, et al. Strategy for rapid immobilization of prey by a fish-hunting marine snail. Nature, 1996, 381(6578): 148~151 [6] Safo P, Rosenbaum T, Shcherbatko A, et al. Distinction among neuronal subtypes of voltage-activated sodium channels by µ-conotoxin PIIIA. J Neurosci, 2000, 20(1): 76~80 [7] Shon K J, Hasson A, Spira M E, et al. δ-conotoxin GmVIA, a novel pepetide from the venom of Conus Gloriamaris. Biochemistry, 1994, 33(38): 11420~11425 [8] Hasson A, Fainzilber M, Gordon D, et al. Alteration of sodium currents by new peptide toxins from the venom of a molluscivorous Conus snail. Eur J Neurosci, 1993, 5(1): 56~64 [9] Lev-Ram V, Olivera B M, Levitan I B. A toxin from the venom of the predator snail Conus textile modulates ionic currents in Aplysia bursting pacemaker neuron. Brain Res, 1994, 640(1-2): 48~55 [10] Fainzilber M, Kofman O, Zlotkin E, et al. A new neurotoxin receptor site on sodium channels is identified by a conotoxin that affects sodium channel inactivation in molluscs and acts as an antagonist in rat brain. J Biol Chem, 1994, 269(4): 2574~2580 [11] Barbier J, Lamthanh H, Le Gall F, et al. A δ-conotoxin from Conus ermineus venom inhibits inactivation in vertebrate neuronal Na + channels but not in skeletal and cardiac muscles. J Biol Chem, 2004, 279(6): 4680~4685 [12] Terlau H,Stocker M, Shon K J, et al. Micro-conotoxin MrVIA inhibits mammalian sodium channels but not through Site I. J Neurophysiol, 1996, 76(3): 1423~1429 [13] Mcintosh J M, Hasson A, Spira M E, et al. A new family of conotoxins that blocks voltage-gated sodium channels. J Biol Chem, 1994, 270(28): 16796~16802 [14] Daly N L, Ekberg J A, Thomas L, et al. Structures of µoconotoxins from Conus marmoreus inhibitors of tetrodotoxin (TTX)-sensitive and TTX-resistant sodium channels in mammalian sensory neurons. J Biol Chem, 2004, 279(24): 25774~25782 [15] Hillyard D R, Monje V D, Mintz I M, et al. A new Conus peptide ligand for mammalian presynaptic Ca 2+ channels. Neuron, 1992, 9(1): 69~77 [16] Olivera B M, Cruz L J, de Santos V, et al. Neuronal calcium channel antagonists. Discrimination between calcium channel subtypes using ω-conotoxin from Conus magus venom. Biochemistry, 1987, 26(8): 2086~2090 [17] Lewis R J, Nielsen K J, Craik D J, et al. Novel ω-conotoxins from Conus catus discriminate among neuronal calcium channel subtypes. J Biol Chem, 2000, 275(45): 35335~35344
410 [18] Favreau P, Gilles N, Lamthanh H, et al. A New ω-conotoxin that targets N-type voltage-sensitive calcium channels with unusual specificity. Biochemistry,2001,40(48): 14567~14575 [19] Kits K S, Lodder J C, van der Schors RC, et al. Novel ω- conotoxins block dihydropyridine-insensitive high voltageactivated calcium channels in molluscan neurons. J Neurochem,1996, 67(5): 2155~2163 [20] Fainzilber M, Lodder J C, van der Schors R C, et al. A Novel hydrophobic ω-conotoxin blocks molluscan dihydropyridinesensitive calcium channels. Biochemistry, 1996, 35(26): 8748~8752 [21] Shon K J, Stocker M, Terlau H, et al. κ-conotoxin PVIIA is a peptide inhibiting the shaker K + channel. J Biol Chem, 1998, 273(1): 33~38 [22] Davis J H, Bradley E K, Miljanich G P, et al. Solution structure of ω-conotoxin GVIA using 2-D NMR spectroscopy and relaxation matrix analysis. Biochemistry, 1993, 32 (29): 7396~7405 [23] Basus V J, Nadasdi L, Ramachandran J, et al. Solution structure of ω-conotoxin MVIIA using 2D NMR spectroscopy. FEBS Lett, 1995, 370(3): 163~169 [24] Farr-Jones S, Miljanich G P, Nadasdi L, et al. Solution structure of ω-conotoxin MVIIC, a high affinity ligand of P- type calcium channels, using 1H NMR spectroscopy and complete relaxation matrix analysis. J Mol Biol, 1995, 248 (1): 106~124 [25] Civera C, Vazquez A, Sevilla J M, et al. Solution structure determination by two-dimensional 1H NMR of ω-conotoxin MVIID, a calcium channel blocker peptide. Biochem Biophys Res Commun, 1999, 254(1): 32~35 [26] Nielsen K J, Thomas L, Lewis R J, et al. A consensus structure for ω-conotoxins with different selectivities for voltage-sensitive calcium channel subtypes:comparison of MVIIA, SVIB and SNX-202. J Mol Biol, 1996, 263(2): 297~310 [27] Kobayashi K, Sasaki T, Sato K, et al. Three-dimensional solution structure of ω-conotoxin TxVII, an L-type calcium channel blocker. Biochemistry, 2000, 39(48): 14761~14767 [28] Kohno T, Sasaki T, Kobayashi K, et al. Three-dimensional solution structure of the sodium channel agonist/antagonist δ-conotoxin TxVIA. J Biol Chem, 2002, 277(39): 36387~36391 [29] Savarin P, Guenneugues M, Gilquin B, et al. Three-dimensional structure of κ-conotoxin PVIIA, a novel potassium channel-blocking toxin from cone snails. Biochemistry, 1998, 37(16): 5407~5416 [30] Norton R S, Pallaghy P K. The cystine knot structure of ion channel toxins and related polypeptides. Toxicon, 1998, 36 (11): 1573~1583 [31] Nielsen K J, Adams D, Thomas L, et al. Structure-activity relationships of ω-conotoxins MVIIA, MVIIC and 14 loop splice hybrids at N and P/Q-type calcium channels. J Mol Biol, 1999, 289(5): 1405~1421 [32] Jain K K. An evaluation of intrathecal ziconotide for the treatment of chronic pain. Exp Opin Investig Drugs, 2000, 9 (10): 2403~2410 [33] Fan C X, Chen X K, Zhang C, et al. A novel conotoxin from Conus betulinus, κ-btx, unique in cysteine pattern and in function as a specific BK channel modulator. J Biol Chem, 2003, 278(15): 12624~12633