Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

Σχετικά έγγραφα
GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Homework 3 Solutions

Simplex Crossover for Real-coded Genetic Algolithms

Stabilization of stock price prediction by cross entropy optimization

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

Detection and Recognition of Traffic Signal Using Machine Learning

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Abstract Storage Devices

Approximation of distance between locations on earth given by latitude and longitude

Second Order RLC Filters

EE512: Error Control Coding

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

4.6 Autoregressive Moving Average Model ARMA(1,1)

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Numerical Analysis FMN011

2 Composition. Invertible Mappings

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Section 7.6 Double and Half Angle Formulas

Applying Markov Decision Processes to Role-playing Game

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

ECE 468: Digital Image Processing. Lecture 8

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Second Order Partial Differential Equations

Matrices and Determinants

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Section 8.3 Trigonometric Equations

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Areas and Lengths in Polar Coordinates

Inverse trigonometric functions & General Solution of Trigonometric Equations

Topology Structural Optimization Using A Hybrid of GA and ESO Methods

Example Sheet 3 Solutions

ST5224: Advanced Statistical Theory II

The Simply Typed Lambda Calculus

Areas and Lengths in Polar Coordinates

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Other Test Constructions: Likelihood Ratio & Bayes Tests

Buried Markov Model Pairwise

Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

; +302 ; +313; +320,.

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

ER-Tree (Extended R*-Tree)

6.3 Forecasting ARMA processes

Math221: HW# 1 solutions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Statistical Inference I Locally most powerful tests

Διπλωματική Εργασία. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Partial Trace and Partial Transpose

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

Section 8.2 Graphs of Polar Equations

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Quick algorithm f or computing core attribute

CRASH COURSE IN PRECALCULUS

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

Investigation of ORP (Oxidation-Reduction Potential) Measurement on Sulfur Springs and Its Application on Hot Spring Waters in Nozawa Onsen

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

derivation of the Laplacian from rectangular to spherical coordinates

Medium Data on Big Data

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Identification of Fish Species using DNA Method

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

On a four-dimensional hyperbolic manifold with finite volume

Concrete Mathematics Exercises from 30 September 2016

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

On Numerical Radius of Some Matrices

ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ. Υποβάλλεται στην

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity

Problem Set 3: Solutions

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

Homework 8 Model Solution Section

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Srednicki Chapter 55

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

New bounds for spherical two-distance sets and equiangular lines

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑΙΑ. του φοιτητή του Σμήματοσ Ηλεκτρολόγων Μηχανικών και. Σεχνολογίασ Τπολογιςτών τησ Πολυτεχνικήσ χολήσ του. Πανεπιςτημίου Πατρών

Sampling Basics (1B) Young Won Lim 9/21/13

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

6.003: Signals and Systems. Modulation

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Japanese Fuzzy String Matching in Cooking Recipes

BCI On Feature Extraction from Multi-Channel Brain Waves Used for Brain Computer Interface

CORDIC Background (4A)

Transcript:

1,a) 2,b) 1,c) 3,d) Quantum-Inspired Evolutionary Algorithm 0-1 Search Performance Analysis According to Interpretation Methods for Dealing with Permutation on Integer-Type Gene-Coding Method based on Quantum Bit Representation Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d) Abstract: Quantum-inspired Evolutionary Algorithm (QEA) and QEA with Pair-Swap strategy (QEAPS), each gene is represented by a quantum bit (qubit) in both algorithms, have shown superior search performance than Classical Genetic Algorithm in 0-1 knapsack problem. And then, in the experimental result using integer knapsack problem, a novel integer-type gene-coding method that can obtain an integer value as an observation result by assigning multiple qubits in a gene locus, have shown superior search performance than conventional binary-type gene-coding method. However, the gene-coding method cannot deal with permutation easily. Therefore, we have proposed two interpretation methods which can deal with permutation, in order to expand the gene-coding method based on the qubit representation. This paper has shown the results of computer experiment using the proposed interpretation methods, and has described the results of analysis. 1 National Institute of Technology, Ariake College, 150 Higashihagio-machi, Omuta, Fukuoka, 836-8585 Japan 2 Prefectural University of Kumamoto, 3-1-100 Tsukide, Higashi-ku, Kumamoto, 862-8502 Japan 3 Emeritus Professor, Kagoshima University, 1-21-40 Korimoto, Kagoshima, 890-0065 Japan a) yosifumi@ariake-nct.ac.jp b) iiimura@pu-kumamoto.ac.jp c) e47207@ga.ariake-nct.ac.jp d) shignaka@gmail.com 1. Quantum-Inspired Evolutionary Algorithm QEAClassical Genetic Algorithm: CGA[1] 0-1 0-1 Knapsack Problem: 0-1KP [2], [3]QEA Pair Swap c 2015 Information Processing Society of Japan 1

Chromosome Chromosome Observed binary Observed binary 2 Fig. 2 Binary-type gene-coding method for solving binary optimization problems. Fig. 1 1 Gene-coding method based on qubit representation and the observed binary.! #"$& ('#"*),+('-.),/0 Chromosome Quantum-inspired Evolutionary Algorithm based on Pair SwapQEAPS0-1KP QEA [4], [5] Han Integer Knapsack Problem: IKP IKP 0-1KP [6], [7] Traveling Salesman Problem: TSP 2. QEA QEAPS 0-1KP IKP QEA QEAPS Fig. 3 Observed binary 3 Integer-type gene-coding method for solving integer optimization problems. 2.1 1 i q i q i = q i1 q i2 q im j = 1, 2,, m i j h j q ij q ij = q ij1 q ij2 q ijh k = 1, 2,, h q ijk 0 1 α ijk β ijk p ijk q ijk q ijk = α ijk 0 + β ijk 1 = [ αijk β ijk ]. (1) α ijk 2 0 β ijk 2 1 α ijk 2 + β ijk 2 = 1 c 2015 Information Processing Society of Japan 2

by unitary transform representation using integer-type gene-coding method Observe Rotation angle list Best solution Observed binary Create rotation angle list if and Decode Evaluate 4 IKP Fig. 4 cycle of an individual in IKP. 2.2 2 [2], [3] h = 1 j j p ij 1 p i q i f(p i ) p i CGA 2.3 [6], [7] j 3 j q ij h p ij = [p ij1, p ij2,, p ijh ] T x ij 110 6 p ij x ij x i = [x i1, x i2,, x im ] q i f(x i ) x i CGA Table 1 1 IKP θ ijk Lookup table of the rotation angle θ ijk in IKP. θ ijk (for unitary transform) p ijk b ijk f(x i ) > f(s i ) α ij β ijk α ijk β ijk α ijk β ijk > 0 < 0 = 0 = 0 0 1 false θ C θ C ±θ C 1 0 false θ C θ C ±θ C Otherwise 0 0 0 0 2.4 IKP QEA QEAPS QEA QEAPS 4 h = 1 x ij x i = p i b i = s i i q i b i s i i q i p i p i x i x i p i x i [7] x i f(x i ) c 2015 Information Processing Society of Japan 3

by unitary transform representation using integer-type gene-coding method Observe Rotation angle list Create rotation angle list Best solution and if Permutation (Tour ) Evaluate Observed binary Decode Interpret as permutation 5 TSP Fig. 5 cycle of an individual in TSP. x i s i b i s i p i x i p i x i b i s i x i s i p i b i q i u i u i 1 [ α ijk β ijk ] = [ cos (θijk ) sin (θ ijk ) sin (θ ijk ) cos (θ ijk ) ] [ αijk β ijk ].(2) QEA 1 [2], [3]QEAPS 1 [4], [5] 3. TSP Table 2 2 TSP θ ijk Lookup table of the rotation angle θ ijk in TSP. θ ijk (for unitary transform) p ijk b ijk f(t i ) > f(s i ) α ij β ijk α ijk β ijk α ijk β ijk > 0 < 0 = 0 = 0 0 1 false θ C θ C ±θ C 1 0 false θ C θ C ±θ C Otherwise 0 0 0 0 3.1 TSP QEA QEAPS 5 TSP i q i b i s i i q i p i p i x i x i 5 x i1 x i3 6 m TSP x i x i t i t i f(t i ) t i s i b i s i p i t i t i s i 2 c 2015 Information Processing Society of Japan 4

Tour Tour (a) Example 1. (a) Example 1. Tour Tour (b) Example 2. (b) Example 2. 6 I 1 7 I 2 Fig. 6 Interpretation process using I 1 Fig. 7 Interpretation process using I 2 u i (2) q i IKP QEA QEAPS 3.2 TSP x i I 1 6 x i t i q i b i x i x i r i r ij j c rij c 1 A c 2 B c 3 C t i 6(a) 1 c ri1 c 5 E 2 c ri2 c 2 B 3 c ri3 c 4 D t i = E B D A C I 2 7 x i t i I 1 x i r i r ij c j t i c 2015 Information Processing Society of Japan 5

(0 + /. + * ()' " ' & $! # # &*-, 100 90 80 70 60 50 40 30 20 10 0 100 90 80 70 60 50 40 30 20 10 0 <>= V2=?A@CB1DFEHG>I?W@/B1D EHG>I J K>LM*N O J KWX Y O <>= V2=?A@CB2G>IJ?W@/B2GUI K>L J KWX M N O Y O PQ= Z[=?R@-BSDFEHG>I?A@\BSDFE]G>I J K>LM*NFO J KWX Y O PQ= Z[=?R@-BTG>I?A@\B2G>I J KUL J KRX M*NFO Y O 8 (*)+-, +/. )102, 03 4 576 8,:9*; I 1 Fig. 8 Experimental result in the case of I 1. CED ]:D FHG7IKJMLONEPQ5RTSU VW FOG^I9JMLONEPQ RZ_ ` W CED ]:D FHG7IXNEPQ FOG^IXNZPQ5RZ_ RTSU V W ` W Y a D FZG7IKJML[NZPQ5RTSU V W D FOGbIKJLcNEPQ5RZ_ ` W Y a D FZG7IXNHPQ5R\SU VW DFOGbIdNHPQ5RH_ ` W 9 1 2 354376298:48 ;<=?> @ 4 A B I 2 Fig. 9 Experimental result in the case of I 2. 7(a) c 1 A 5 c 2 B 2 c 3 C 4, t i = D B E C A 4. TSPLIB *1 burma1414a B N C D E F L G M H K I J3,323 I 1 I 2 QEA QEAPS m = 14 h = ceil (log 2 14) = 4 QEAQEAPS 100 1,000,000 QEA 5 *1 http://www.iwr.uni-heidelberg.de/groups/comopt/software/ TSPLIB95/ "! &# &# $ # "! 100 θ C [rad] θ C = { π/1000, π/900, π/800, π/700, π/600, π/500, π/400, π/300, π/200, π/100 } rad 20 8 I 1 9 I 2 20 R G QEA QEAPS I 2 I 1 I 1 6 x i3 6 2 t 2 t 3 t 5 BDC 6(a) CBD 6(b) I 2 6 7 x i3 6 2 x i3 C 2 BE I 2 I 1 building block G R QEA θ C = { π/700, π/600 } rad QEAPS θ C = { π/300, π/200, π/100 } rad 5. TSP QEAPS TSP 25330265 [1] D. E. Goldberg: Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA (1989). [2] K.-H. Han and J.-H. Kim: Quantum-inspired evolutionary algorithm for a class of combinatorial optimization, IEEE Trans. Evolutionary Computation, Vol. 6, No. 6, pp. 580 593 (2002). [3] K.-H. Han and J.-H. Kim: On setting the parameters of qea for practical applications: Some guidelines based on c 2015 Information Processing Society of Japan 6

empirical evidence, Genetic and Evolutionary Computation GECCO 2003, pp. 427 428 (2003). [4] S. Nakayama, T. Imabeppu, and S. Ono: Pair swap strategy in quantum-inspired evolutionary algorithm, Genetic and Evolutionary Computation GECCO 2006, Late Breaking Paper, Seattle, Washington, USA (2006). [5],,, :, D, Vol. J89-D, No. 9, pp. 2134 2139 (2006). [6] I. Iimura, Y. Moriyama, and S. Nakayama: Integer-type gene-coding method based on quantum bit representation in quantum-inspired evolutionary algorithm: Application to integer knapsack problem, J. Signal Processing, Vol. 16, No. 6, pp. 495 502 (2012). [7],, :,, Vol. 55, No. 2, pp. 1110 1115 (2014). c 2015 Information Processing Society of Japan 7