Nondeterministic Finite Automaton Event Detection in Focusing Region. Sequence Analysis. Sequence Analysis. Feature Extraction. Feature Extraction

Σχετικά έγγραφα
IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Discriminative Language Modeling Based on Risk Minimization Training

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

Buried Markov Model Pairwise

Evaluation of Expressing Uncertain Causalities as Conditional Causal Possibilities

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment

Περίληψη ιπλωµατικής Εργασίας

Kernel orthogonal and uncorrelated neighborhood preservation discriminant embedding algorithm

Multi-dimensional Central Limit Theorem

Detection and Recognition of Traffic Signal Using Machine Learning

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

2R2. 2 (L W H) [mm] Wire Wound SMD Power Inductor. Nominal Inductance Packing Tape & Reel. Design Code M ±20%

Development of a basic motion analysis system using a sensor KINECT


A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,

Applying Markov Decision Processes to Role-playing Game

E62 AC Series Features

2002 Journal of Software, );

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

A Method for Determining Service Level of Road Network Based on Improved Capacity Model

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University

Identification of Fish Species using DNA Method

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Vol. 37 No. 6 JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGY. Jun %

SAMSUNG ELECTRONICS CO., LTD TEST REPORT SAMSUNG ELECTRONICS CO., LTD. 1, Samsung-Ro, Giheung-Gu, Yongin-Si, Gyeonggi-Do 17113, Korea

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Chap. 6 Pushdown Automata

Nonparametric Bayesian T-Process Algorithm for Heterogeneous Gene Regulatory Network

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ

Creative TEchnology Provider

E62-TAB AC Series Features

ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Consolidated Drained

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Current Status of PF SAXS beamlines. 07/23/2014 Nobutaka Shimizu

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Test Data Management in Practice

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS

Multi-dimensional Central Limit Theorem

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker

Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare ( Massachusetts

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

Sunlord Specifications subject to change without notice. Please check our website for latest information. Revised 2018/04/15

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΤΕΙ ΘΕΣΣΑΛΙΑΣ. Αναγνώριση προσώπου με επιλογή των κατάλληλων κυρίων συνιστωσών. ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε ΚΑΒΒΑΔΙΑ ΑΛΕΞΑΝΔΡΟΥ.

Performance of Charcoal Cookstoves for Haiti, Part 1: Results from the Water Boiling Test

{takasu, Conditional Random Field

B37631 K K 0 60

Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

NPI Unshielded Power Inductors

Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Supporting Information

Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog

!" #$ : ( )

Supplementary Appendix

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

0.635mm Pitch Board to Board Docking Connector. Lead-Free Compliance

Ψηφιακή Επεξεργασία Φωνής

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

4 Way Reversing Valve


DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

PRODUCT IDENTIFICATION SWPA 3012 S 1R0 N T

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

Formal Semantics. 1 Type Logic

The challenges of non-stable predicates

EL ECTR IC MACH IN ES AND CON TROL. System s vulnerability assessment of a ircraft guarantee system based on improved FPN

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο

Anti-Corrosive Thin Film Precision Chip Resistor-SMDR Series. official distributor of

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

«Ευφυή Συστήματα Μεταφορών & εξελίξεις στην Ελλάδα»

SURTEC TEST REPORT. 9, Kon Jan North Road Liutu Industrial Zone Keelung,# 206, Taiwan RDT B

Stochastic Finite Element Analysis for Composite Pressure Vessel

4. Construction. 5. Dimensions Unit mm

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks


ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

SMD Transient Voltage Suppressors

Quartz Crystal Test Report

Inverse trigonometric functions & General Solution of Trigonometric Equations

Architecture οf Integrated Ιnformation Systems (ARIS)

Supporting Information

AME SAMPLE REPORT James R. Cole, Ph.D. Neuropsychology

Unshielded Power Inductors

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

Three coupled amplitudes for the πη, K K and πη channels without data

SMD Power Inductor. - SPRH127 Series. Marking. 1 Marking Outline: 1 Appearance and dimensions (mm)

Δίκτυα Επικοινωνιών ΙΙ: OSPF Configuration

Transcript:

y yy y Mult-Object Behavor Recognton by Selectve Attenton Toshkazu WADA y, Masayuk SATO yy,andtakash MATSUYAMA y ( ) (NFA) ( ), ( ) NFA,,. ( ) ( ),, ( ) ( ) ( ) y Department of Intellgence Scence and Technology, Graduate School of Informatcs, Kyoto Unversty, Yoshda- Honmach, Sakyo, Kyoto, 66- Japan yy Department of Electroncs and Communcaton, Graduate School of Engneerng, Kyoto Unversty, Yoshda-Honmach, Sakyo, Kyoto, 66- Japan ( ) ) ) (a)! (HMM) [], [], [4] HMM II II

'96/xx Vol. J79{D{II No. xx Sequence Analyss Feature Extracton (a) State Transton Model (HMM, etc.) Sequence Analyss Feature Extracton (b) Nondetermnstc Fnte Automaton Event Detecton n Focusng Regon (a):, (b):. Fg. Behavor recognton system. (a): Bottom-up system, (b): Bottom-up and Top-down system. lp readng [3] ' ' ( ) ( ) :! :! ( (b)) HMM (NFA) ) ) NFA NFA

.... ( ) NFA: (Q; q ; 6;;F) Q:,fq ; ; ;q m ;q rej g. (q ; ; ;q m ) q rej q m q m q acc q : 6: ( ) : (q; ) :Q6 7! Q bottom-up process Event sequence analyzer: NFA q Event detector q k q k+ q acc q rej σ = e(f( ρ ), I). e(f(succ( ρ )), I) ρ = δ (ρ, σ ) nput mage : I Fg. f(succ( ρ )) f( ρ ) - Q succ( ρ ) ρ δ (ρ,.) δ (ρ,.) δ (ρ,.) δ (ρ,.) - Focusng-regon sequence: f(q) Selectve Attenton Mechansm. Y X tme F : F = fq acc ;q rej g ( ) = q ( 6) + = ( ; ) top-down process : ( ) NFA q f(q) : t I(t) a(t) f ( <<) e(f;i(t)) e(f;i(t)) = ( ; f = or jf\a(t)j jf j > ; otherwse () j j `'

'96/xx Vol. J79{D{II No. xx = q k ( ). Table State transton table at = q k for event code length=. e(f(q k );I ) e(f(q k+ );I ) + q rej q k+ q k fq k ;q k+ g 6 f ; ; ; g NFA q acc Intalzaton: =; = q Step: = e(f( );I(t ))e(f (succ( ));I(t )) Step: + = ( ; ) Step3: = +, goto Step = q k + = fq k ;q k+ g Step 3 f(q ) f(q ) q q )q ) 3) (q rej ).. succ() = q q + ) ) q acc [ ] C C 86 ( (; ) j= q rej ) ( C ) (; ) C) () _((; ) C ) C) ): P C k C k z k ID C k j= C j ) z k j= z j [ ] ID ID ID ID

t t + Tme C token C C + C + C 3 C 4 3 4 C + C + 3 ID. Fg. 3 Token ID propagaton va lnks. actve state nactve state propageted tokens generated token t t + C j Ck + C j Ck + C j Ck + ID @ [ 6 [ C j (; ) A \ C k + j= ; (3) C j Ck + ID ( ) ID ( 3) 3 C,C,C 3 C j C j ID 3 C+ t + ID 3 C 4 C j C j ID t + ID ID (4) ID 3 C j 4 ID C k + ID q ε ε ε ε Event sequence analyzer qω q k ω q k+ ω acc qω qω rej Event sequence analyzer qω q k ω q k+ ω q acc ω qω rej Event sequence analyzer qωn q k ωn q k+ ωn 4 Fg. 4 acc qωn qωn rej Behavor classer. Event detector σ ω e(f( ω.ρ ),I) ρ e(f(suc( ρω )),I) ω Event detector σω e(f( ω ),I).ρ e(f(suc( ρω )),I) ρω Event detector σωn e(f( ρ ωn),i). ρ e(f(suc( ρωn )),I) ωn C.! ( =; ;N) q q q! ( 4). 3 NFA n a (t) ( =; ;n) a(t) a(t) Z ja(t) \ a ( (t))j ja(t) [ a ( dt; (4) (t))j

'96/xx Vol. J79{D{II No. xx a (t) a j (t) = Standard Sample: a(t) Behavor Object a N (t) Object tme f(t) = N = a( τ (t)) 5 Fg. 5 Learnng a common anomalous regon sequence. f(t) = N = a( τ (t)) t s t e t s t e Tme Slce = Tme Slce = Fg. 6 f( ) = te t = ts f(t) f( ) = te t = ts f(t) 6 Learnng a focusng regon sequence. tme j j f (t) ( 5) f(t) = n\ = a ( (t)): (5) NFA ( 6) NFA q t s < = t<t e f(q) f(q) = t\ e t=t s f(t) (6) ) ) j =,qj = t jf(qj) \ f(qj + )j=jf(qj) [ f (qj + )j Fg. 7 & Image Image 7. Eectveness of mult-vewpont mages. f(q k j+) = 8 >< >: f (q k j ); k< f (qj k ) \ f(qj k+ ); k = f (qj k+ ); k> (7) f(qj+) k =, j = j 3. (N c ) ( ) 3 ( 7)

pasted Image Event Detector () Image-level ntegraton Sequence Analyser 3 3 4 5 6 7 :Feasble State Combnaton : actve state : Inhbted actve state Event Detector Event Detector Integrated Event Code Sequence Analyser 4 5 :Feasble Path 9 (N c =) Fg. 9 State product space(n c =). () Event-level Integraton Common Anomalous Regon Sequence- Fg. 8 Event Detector Sequence Analyser Event Detector Sequence Analyser (3) State-level Integraton 8 Three types of nformaton ntegraton. Inhbton 3 4 5 6 7 3 4 5 Common Anomalous Regon Sequence- Fg. Learnng a feasble path. tme ) ) 3) ( 8) 3. ( ) 7 3. c(c =; ;N c ) I c e c e all NFA e all e all = \e c N c 3. 3 ( ) c(c = ; ;N c) Q c = fqc; ;q m c c g 9 Q Q N c ID

'96/xx Vol. J79{D{II No. xx 3. 3. ( 9 ) ID 3. 3. 4. ( 56 3 4 3[ / ]) (4 ) camera (a) `enter' (a) `ext'! tme! tme (, ) Fg. Examples of tranng data (gray-levelmage, anomalous regon). (

(a) `enter'! tme (a) `ext'! tme Fg. Example of focusng regons. ) 6 ( ) ( ) 3 q acc q q acc camera camera! tme 3 ( ) Fg. 3 An example of test data(extracted). enter camera q acc q acc q q ext camera t t q enter camera ext camera 4 3 (, ) Fg. 4 State Transtons for Fg. 3 (black: actvated states,gray: nhbted states). (a) (b) (c) (d) (e) (e) 3 ( ) t t 4 6 (a) (e) 5 6 5 4 3 6 5 4 3 6 Max : 5(85%) 5 Max : 45(75%) enter + ext 4 enter + ext 3 ext x ext x enter x enter x..3.4.5.6.7.8..3.4.5.6.7.8 (a) camera (b) camera Non-Integraton 6 Max : 6(%) 5 enter + ext Max : 4(67%) 4 enter + ext ext x enter x..3.4.5.6.7.8 3 enter x ext x..3.4.5.6.7.8 6 5 4 3 enter + ext Max :59(98%) enter x ext x..3.4.5.6.7.8 (c) Image-level Integraton (d) Event-level Integraton (e) State-level Integraton 5 ( :, : ) Fg. 5 Recognton results (Vertcal:Number of correct recognton,horzontal: threshold ). 5.

'96/xx Vol. J79{D{II No. xx NFA NFA ( :JSPS-RFTF96P5) (A)()848 [] Yamato J., Ohya J., and Ish K., \Recognzng human acton n tme-sequentalmages usng hdden markov model", Proc. of CVPR, pp. 379-385, (99) [] Starner T. and Pentland A., \Real-tme Amercan sgn language recognton from vdeo usng hdden markov models", Proc. of ISCV, pp. 65-7, 995. [3] Bregler C. and Omohundro S.M., \Nonlnear manfold learnng for vsual speech recognton", Proc. of ICCV, pp.494-499, 995. [4] Wlson A. and Bobck A., \Learng VsualBehavor for Gesture Analyss", M.I.T. Meda Laboratory PerceptualComputng Secton TechncalReport No.337. 995. 5 Davd Marr... Davd Marr IAPR A StructuralAnalyss of Complex Aeral Photographs (PLENUM), SIGMA: A Knowledge-Based Aeral Image Understandng System (PLENUM),