Volume 25 Number 9 The Chinese Journal of Nonferrous Metals Sep. 2015

Σχετικά έγγραφα
Supporting Information. Enhanced energy storage density and high efficiency of lead-free

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

ZnO-Bi 2 O 3 Bi 2 O 3

Evaluation on precision of occurrence measurement based on theory of errors

Table of Contents 1 Supplementary Data MCD

FENXI HUAXUE Chinese Journal of Analytical Chemistry. Savitzky-Golay. n = SG SG. Savitzky-Golay mmol /L 5700.

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Journal of Central South University (Science and Technology) May Bragg TU443 A (2011)

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Application of Mohr-Coulomb yield criterion in geo-technical engineering

. O 2 + 2H 2 O + 4e 4OH -

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

Research and Applications of Functional Materials of Titanate

Effects of lime sulphur synthetic solution on leaching characteristic of gold concentrates

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

Screening of Respiration-deficient Saccharomyces cerevisiae Strains with Sugar-and Thermo-tolerances

Electronic Supplementary Information (ESI)

ER-Tree (Extended R*-Tree)

Research on explaining porosity in carbonate reservoir by capture cross section method

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Geological characteristics and genesis of Huanggoushan and Banmiaozi gold deposits in Laoling metallogenic belt of southern Jilin

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

Fused Bis-Benzothiadiazoles as Electron Acceptors

Analysis on construction application of lager diameter pile foundation engineering in Guangdong coastal areas

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Supporting Information

Supplementary Information for

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

PACS: Pj, Gg

Supporting Information

Uncovering the impact of capsule shaped amine-type ligands on. Am(III)/Eu(III) separation

Electronic Supplementary Information

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

DFT Kinetic Study of the Pyrolysis Mechanism of Toluene Used for Carbon Matrix

CuS * CuS. THz. CuS. THz-TDS. CuS. 1 THz = 33 cm - 1. THz. PACS Ci Bd. CuS. THz. THz. CuS. CuS. THz. http / / wulixb. iphy. ac.

Preparation of Hydroxyapatite Coatings on Enamel by Electrochemical Technique

Approximation Expressions for the Temperature Integral

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

FENXI HUAXUE Chinese Journal of Analytical Chemistry. LC-MS n Thermo Christ

Butadiene as a Ligand in Open Sandwich Compounds

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Supporting Information

Electronic Supplementary Information

Enhancing σ/π-type Copper(I) thiophene Interactions by Metal Doping (Metal = Li, Na, K, Ca, Sc)

- A. A Biphenol A BPA BPA BPA LLE 5 SPE Electrospinning Kang. Packed-fiber solid-phase extraction PFSPE 1 ml

Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media

MODEL EXPERIMENT STUDY ON THE DIFFERENT REINFORCEMENT EFFECTS OF UN-BONDED ANCHOR CABLE AND FULL-LENGTH BONDED ANCHOR CABLE IN ROCK ENGINEERING

The optimization of EV powertrain s efficiency control strategy under dynamic operation condition

Quick algorithm f or computing core attribute

Preparation of superfine aluminum hydroxide by ion-exchange membrane electrolysis

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

High order interpolation function for surface contact problem

(II) * PACS: a, Hj 300. ) [6 9] ) [10 23] ) [26 30]. . Deng [24,25] Acta Phys. Sin. Vol. 61, No. 15 (2012)

Evolution characteristics of fluid and genesis of Qinglonggou gold deposit in Qinghai

8Q5SAC) 8Q5SAC UV2Vis 8500 ( ) ; PHS23C ) ;721 ( ) :1 4. ;8Q5SAC : molπl ;Britton2Robinson Q5SAC BSA Britton2Robinson,

CorV CVAC. CorV TU317. 1

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011.

The Exploitation and Utilization of Magnesium Resources in Salt Lakes

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Grain orientation evolution and texture fluctuation effect of pure copper during equal channel angular pressing

Motion analysis and simulation of a stratospheric airship

Supporting Information. A Combined Crossed Molecular Beams and ab Initio Investigation on the Formation of Vinylsulfidoboron (C 2 H

Emulation system of the asynchronous push-broom remote sensing stereo imaging

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Preliminary Studies on the Antitumor Metal2Based Drugs Basing on TCM Active Ingredients

Arsenic removal from high-arsenic dust by NaOH-Na 2 S alkaline leaching

Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical

Rapid determination of soluble reactive silicate in seawater by flow injection analysis with spectrophotometric detection and its application

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Geological and geochemical characteristics of Kanchuangou Mo -Cu deposit in Muling of Heilongjiang

Polymer-Based Composites with High Dielectric Constant and Low Dielectric Loss

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Preparation and Application of Amorphous Alloy Catalyst

Numerical simulation of dendritic growth of magnesium alloys using phase-field method under forced flow

Rapid Raman spectra identification and determination of levofloxacin hydrochloride injection *

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

VEGF 1 : : : 101 TORCs 1 : : : : 125

GS3. A liner offset equation of the volumetric water content that capacitance type GS3 soil moisture sensor measured

Iron recovery from copper-slag with lignite-based direct reduction followed by magnetic separation

; +302 ; +313; +320,.

MgSn 0.05 Ti 0.95 O 3 SrTiO 3

Supporting Information

The toxicity of three chitin synthesis inhibitors to Calliptamus italicus Othoptera Acridoidea

difluoroboranyls derived from amides carrying donor group Supporting Information

1010 C 73 H 108 O 12. FENXI HUAXUE Chinese Journal of Analytical Chemistry 399 ~ HPLC. PDA 282 nm PP 1010 Weibull PP PP.

10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

SUPPORTING INFORMATION. Polystyrene-immobilized DABCO as a highly efficient and recyclable organocatalyst for Knoevenagel condensation

Comparative Study on Determinations of BTEX in Soils from Industrial Contaminated Sites

Syntheses of a Series of Lactato Cobalt Complexes and Their Interaction with Bovine Serum Albumin

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Transcript:

25 9 2015 9 Volue 25 Nuber 9 The Chinese Journal of Nonferrous Metals Sep. 2015 1004-0609(2015)-09-2501-09 SrBi 4 Ti 4 O 15 (( ) 266580) SrBi 4 Ti 4 O 15 (SBTi)(EET) SrBi 4 Ti 4 O 15 (SBTi) SBTi (Aaa) (I4/) SBTi a 25.81 μc/c 2 O641.1 A Ferroelectric phase transition and ferroelectricity of SrBi 4 Ti 4 O 15 XIAO Xiao-hong, LI Shi-chun (College of Mechanic and Electronic Engineering, China University of Petroleu (East China), Qingdao 266580, China) Abstract: The cheical bonds structures were analyzed by the atoic environent calculation ethod, and the valence electron structure of orthorhobic phase SrBi 4 Ti 4 O 15 was calculated according to the EET theory, the nubers of the effective valence electrons of each ato in SrBi 4 Ti 4 O 15 were obtained. Furtherore, according to the theory of crystal space group, the structures of orthogonal paraelectric phase (Aaa) and the tetragonal paraelectric phase (I4/) in the ferroelectric paraelectric phase transition were constructed, and the atoic displaceents in the phase transition were calculated by the atoic coordinate analysis. The spontaneous polarization in SrBi 4 Ti 4 O 15 was studied based on the atoic displaceents and atoic effective valence electrons nubers. The calculated spontaneous polarization strength in ferroelectric SrBi 4 Ti 4 O 15 along the a axis is 25.81 μc/c 2, which is in good agreeent with the experiental and other theoretical results. Key words: valence electron structure; epirical electron theory; ferroelectric phase transition; atoic displaceent; spontaneous polarization (BLSF) AURIVILLIUS [1] 1949 Aurivillius (A n 1 B n O 3n+1 ) 2 (Bi 2 O 2 ) 2+ c (Bi 2 O 2 ) 2+ (A n 1 B n O 3n+1 ) 2 [2] [3] [4 5] SrBi 4 Ti 4 O 15 (SBTi) 2 (Bi 2 O 2 ) 2+ 4 (50371059) ( )(YCX2014052) 2015-01-292015-04-01 0532-86983503-8320 E-ail lishchlishch@163.co

2502 2015 9 B Ti O TiO 6 A Sr/Bi SBTi SBTi SBTi REANEY [6] SBTi HERVOCHES [7] SBTi A2 1 a Aaa I4/ A2 1 a Aaa a KING-SMITH [8] Berry RESTA [9] KNbO 3 Berry [10 11] [12 13] BROWN [14] Pauling s d d 0 s=exp[(d 0 d)/0.37] Brown Pauling [15] (EET) (BLD) [15 16] [17 19] EET [20 23] SBTi SBTi EET SBTi SBTi SBTi 1 [7] SBTi A2 1 a(no.36) a=0.54507 n b=0.54376 n c= 4.09841 n Z=4 A Bi Sr (SOF) 0.667 0.333 x 1 y 1 z 1 1 1 SrBi 4 Ti 4 O 15 [7] Table 1 [7] Crystal structure paraeters of SrBi 4 Ti 4 O 15 Ato Site x 1 y 1 z 1 SOF Bi1 4a 0.250 0.258 0.000 0.667 Sr1 4a 0.250 0.258 0.000 0.333 Bi2 8b 0.255 0.248 0.10409 0.667 Sr2 8b 0.255 0.248 0.10409 0.333 Bi3 8b 0.245 0.263 0.21881 1 Ti1 8b 0.277 0.250 0.45032 1 Ti2 8b 0.268 0.242 0.34697 1 O1 4a 0.306 0.203 0.500 1 O2 8b 0.080 0.462 0.0515 1 O3 8b 0.301 0.298 0.40348 1 O4 8b 0.023 0.505 0.14058 1 O5 8b 0.286 0.212 0.30456 1 O6 8b 0.010 0.502 0.2502 1 O7 8b 0.017 0.481 0.457 1 O8 8b 0.047 0.516 0.352 1 [24] (AEC) I (1) [15] I = ISIMIK (1) I S I M I K 1

25 9 SrBi 4 Ti 4 O 15 2503 2 AEC SBTi I S I M d I 2 2 SBTi 2.1 (BLD) [15 16] EET EET D u v n = R ( 1) + R (1) β lg n u u v Dn v (2) R u (1) R v (1) u v n β N A B C DN D u v s t n D R R R R A n = u ( 1) + v (1) s (1) t (1) + β lg n A (3) u v s t n A n r = = j n cj n cj I r n A j n (4) (3) (4) N n N D n ) ( BLD 0.005 n 2.2 BLD SBTi [16] Sr 7 Bi 4 Ti 18 O 4 σ h C h t C t n c n l R(1) EET EET n Brown [14] n 2 3 2 SrBi 4 Ti 4 O 15 Table 2 Hybridization state paraeters of atos in SrBi 4 Ti 4 O 15 Ato σ C t n l n c R(1)/n Bi 1 0 0 5 0.1399 Sr 7 0 0 2 0.1202 Ti 18 1 0 4 0.1053 O 4 1 0 2 0.07895 EET q (5) q 1 = 2 I n (5) 1 SBTi 4 3 3.1 SBTi SBTi (A2 1 a) (Aaa) (I4/) ABRAHAMS [25 26] van AKEN [27] YMnO 3 SBTi ( 1) 1(a) SBTi () (ab ) ( 1(b)) SBTi Bi/Sr x 1 y 1 z 1 x 1 =x 1 0.25

2504 2015 9 3 SrBi 4 Ti 4 O 15 Table 3 Valence electron structure of SrBi 4 Ti 4 O 15 Bond A B d/n I S I M Bond I n d/n A B A B A B A B A B I S I M I n Ti2-O5 0.1748 1 1 2 2 4 1.4403 O6-O6 0.2725 2 2 2 2 4 0.0258 Ti1-O2 0.1900 1 1 2 2 4 0.8795 O4-O4 0.2726 2 2 2 2 4 0.0257 Ti1-O7 0.1912 1 1 2 2 4 0.8470 O3-O4 0.2729 1 1 2 2 4 0.0255 Ti2-O4 0.1924 1 1 2 2 4 0.8136 O8-O8 0.2731 2 2 2 2 4 0.0253 Ti2-O8 0.1927 1 1 2 2 4 0.8055 O7-O7 0.2733 2 2 2 2 4 0.0251 Ti1-O3 0.1940 1 1 2 2 4 0.7727 O2-O1 0.2737 1 2 2 1 4 0.0248 Ti1-O7 0.1980 1 1 2 2 4 0.6794 O3-O7 0.2754 1 1 2 2 4 0.0235 Ti2-O4 0.1999 1 1 2 2 4 0.6394 O2-O2 0.2757 2 2 2 2 4 0.0233 Ti1-O2 0.2015 1 1 2 2 4 0.6053 O2-O1 0.2773 1 2 2 1 4 0.0221 Ti2-O8 0.2022 1 1 2 2 4 0.5927 O2-O3 0.2777 1 1 2 2 4 0.0218 Ti1-O1 0.2059 1 2 2 1 4 0.5255 O3-O8 0.2786 1 1 2 2 4 0.0212 Bi3-O6 0.2233 1 1 2 2 4 0.9183 Bi/Sr2-O8 0.2796 1 1 2 2 4 0.1480/0.0781 Bi3-O6 0.2296 1 1 2 2 4 0.7495 O4-O8 0.2798 1 1 2 2 4 0.0204 Bi3-O6 0.2319 1 1 2 2 4 0.6957 O5-O6 0.2809 1 1 2 2 4 0.0197 Ti2-O3 0.2343 1 1 2 2 4 0.2095 O7-O1 0.2814 1 2 2 1 4 0.0194 Bi3-O6 0.2404 1 1 2 2 4 0.5281 O8-O5 0.2829 1 1 2 2 4 0.0184 Bi/Sr2-O4 0.2406 1 1 2 2 4 0.5235/0.2763 O3-O4 0.2846 1 1 2 2 4 0.0174 Bi/Sr1-O1 0.2434 2 2 1 1 4 0.4780/0.2523 O5-O4 0.2847 1 1 2 2 4 0.0174 Bi/Sr2-O8 0.2470 1 1 2 2 4 0.4260/0.2249 O7-O3 0.2853 1 1 2 2 4 0.0170 Bi/Sr2-O4 0.2485 1 1 2 2 4 0.4053/0.2139 O2-O3 0.2862 1 2 2 4 0.0165 Bi/Sr2-O3 0.2493 2 2 2 2 8 0.3949/0.2085 O2-O7 0.2863 1 1 2 2 4 0.0165 Bi/Sr1-O2 0.2558 2 1 1 2 4 0.3198/0.1688 O8-O5 0.2867 1 1 2 2 4 0.0163 Bi/Sr2-O2 0.2629 1 1 2 2 4 0.2542/0.1342 O5-O4 0.2892 1 1 2 2 4 0.0150 Bi3-O5 0.2633 1 1 2 2 4 0.2512 O5-O6 0.2935 1 1 2 2 4 0.0131 Bi/Sr1-O7 0.2645 4 2 1 2 8 0.2416/0.1275 O5-O6 0.2980 1 1 2 2 4 0.0113 O2-O7 0.2659 1 1 2 2 4 0.0319 Bi/Sr2-O3 0.3010 2 2 2 2 8 0.0738/0.0390 O8-O4 0.2679 1 1 2 2 4 0.0299 Bi/Sr1-O1 0.3036 2 2 1 1 4 0.0680/0.0359 Bi3-O5 0.2683 1 1 2 2 4 0.2135 O5-O6 0.3118 1 1 2 2 4 0.0072 O8-O3 0.2694 1 1 2 2 4 0.0285 Bi/Sr2-O7 0.3146 2 2 2 2 8 0.0475/0.0251 O6-O6 0.2719 2 2 2 2 4 0.0263 Bi/Sr1-O2 0.3164 2 1 1 2 4 0.0449/0.0237 O7-O1 0.2725 1 2 2 1 4 0.0258 Bi/Sr2-O2 0.3205 1 1 2 2 4 0.0392/0.0207 β=0.71 ΔD(n ) =0.0018 n 4 SrBi 4 Ti 4 O 15 Table 4 Effective valence electrons nuber of SrBi 4 Ti 4 O 15 Bi1 Sr1 Bi2 Sr2 Bi3 Ti1 Ti2 O1 O2 O3 O4 O5 O6 O7 O8 2.788 1.471 5.657 2.987 6.713 8.619 9.002 2.156 4.439 3.887 4.825 4.047 6.094 4.396 4.135 y 1 =y 1 0.258 z 1 =z 1 2 A Bi/Sr (c=0) ( 1 nn oo pp O2 O4 O6 O7 O8 ) x 1 =x 1

25 9 SrBi 4 Ti 4 O 15 2505 y 1 =y 1 z 1 =z 1 a b Bi/Sr 3 SBTi a b a b (Aaa) x 2 y 2 z 2 Wyckoff 5 5 Aa(No.63) Wyckoff 4a (0,0,0) (0 0 1/2) 8f (0 y z) (0 y z+1/2) (0 y z+1/2) (0 y z) Z=4 Δx 1 2 =x 1 x 2 Δy 1 2 =y 1 y 2 Δz 1 2 =z 1 z 2 5 (A2 1 a) (Aa) b c a 3 5 Table 5 Atoic coordinates of reselection cell and orthogonal paraelectric phase Ato A2 1 a Aa Site x 1 ' y 1 ' z 1 ' Site x 2 y 2 z 2 Δx 1 2 Δy 1 2 Δz 1 2 Bi1 4a 0.000 0.000 0.000 4a 0.000 0.000 0.000 0.000 0.000 0.000 Sr1 4a 0.000 0.000 0.000 4a 0.000 0.000 0.000 0.000 0.000 0.000 Bi2 8b 0.005 0.010 0.10409 8f 0.000-0.010 0.10409 0.005 0.000 0.000 Sr2 8b 0.005 0.010 0.10409 8f 0.000 0.010 0.10409 0.005 0.000 0.000 Bi3 8b 0.005 0.005 0.21881 8f 0.000 0.005 0.21881 0.005 0.000 0.000 Ti1 8b 0.027 0.008 0.45032 8f 0.000 0.008 0.45032 0.027 0.000 0.000 Ti2 8b 0.018 0.016 0.34697 8f 0.000 0.016 0.34697 0.018 0.000 0.000 O1 4a 0.056 0.055 0.500 4a 0.000 0.000 0.500 0.056 0.055 0.000 O2 8b 0.080 0.462 0.0515 8f 0.000 0.462 0.0515 0.080 0.000 0.000 O3 8b 0.051 0.040 0.40348 8f 0.000 0.040 0.40348 0.051 0.000 0.000 O4 8b 0.023 0.505 0.14058 8f 0.000 0.505 0.14058 0.023 0.000 0.000 O5 8b 0.036 0.046 0.30456 8f 0.000 0.046 0.30456 0.036 0.000 0.000 O6 8b 0.010 0.502 0.2502 8f 0.000 0.502 0.2502 0.010 0.000 0.000 O7 8b 0.017 0.481 0.457 8f 0.000 0.481 0.457 0.017 0.000 0.000 O8 8b 0.047 0.516 0.352 8f 0.000 0.516 0.352 0.047 0.000 0.000 1 Fig. 1 Structure of original orthogonal cell and reselection cell: (a) Structure relationship between original orthogonal cell and reselection cell; (b) Top view of cell structure

2506 2015 9 a =0.38542 n b =0.3845 n c c=4.09841 n SBTi(I4/ No.139) x 3 y 3 z 3 (Aa) (I4/) ( 6) 6 (I4/ No.139) Wyckoff 2a (0 0 0) 2b(0 0 1/2) 4e(0 0 z) (0 0 z) 4d(0 1/2 1/4) (1/2 0 1/4) 8g(0 1/2 z) (1/2 0 z) (0 1/2 z) (1/2 0 z) Z=2 Δx 2 3 =x 2 x 3 Δy 2 3 =y 2 y 3 Δz 2 3 =z 2 z 3 (I4/)SBTi O2 (Aa) O2 O7 z O2 O7 O4 O4 O8 z O4 O8 [7] 1% 2 Fig. 2 Botto surface scheatic diagra of shifted reselection cell 3.2 5 6 Δu a Δu b Δu [25] c 7 Δ u a = Δx a (6) Δ = Δy b (7) u b 3 Fig. 3 Relationship of lattice constant between original orthogonal cell and reselection cell 6 SrBi 4 Ti 4 O 15 Table 6 Atoic coordinates of tetragonal paraelectric phase SrBi 4 Ti 4 O 15 Ato Aa I4/ Site x 2 y 2 z 2 Site x 3 y 3 z 3 Δx 2 3 Δy 2 3 Δz 2 3 Bi1 4a 0.000 0.000 0.000 2a 0.000 0.000 0.000 0.000 0.000 0.000 Sr1 4a 0.000 0.000 0.000 2a 0.000 0.000 0.000 0.000 0.000 0.000 Bi2 8f 0.000 0.010 0.10409 4e 0.000 0.000 0.10409 0.000 0.010 0.000 Sr2 8f 0.000 0.010 0.10409 4e 0.000 0.000 0.10409 0.000 0.010 0.000 Bi3 8f 0.000 0.005 0.21881 4e 0.000 0.000 0.21881 0.000 0.005 0.000 Ti1 8f 0.000 0.008 0.45032 4e 0.000 0.000 0.45032 0.000 0.008 0.000 Ti2 8f 0.000 0.016 0.34697 4e 0.000 0.000 0.34697 0.000 0.016 0.000 O1 4a 0.000 0.000 0.500 2b 0.000 0.000 0.500 0.000 0.000 0.000 O2 8f 0.000 0.462 0.4485 8g 0.000 0.500 0.45275 0.000 0.038 0.004 O3 8f 0.000 0.040 0.40348 4e 0.000 0.000 0.40348 0.000 0.040 0.000 O4 8f 0.000 0.505 0.3594 8g 0.000 0.500 0.3557 0.000 0.005 0.004 O5 8f 0.000 0.046 0.30456 4e 0.000 0.000 0.30456 0.000 0.046 0.000 O6 8f 0.000 0.502 0.2502 4d 0.000 0.500 0.250 0.000 0.002 0.000 O7 8f 0.000 0.481 0.457 0.000 0.500 0.45275 0.000 0.019 0.004 O8 8f 0.000 0.516 0.352 0.000 0.500 0.3557 0.000 0.016 0.004

25 9 SrBi 4 Ti 4 O 15 2507 Δ = Δz c (8) u c 7 SBTi (A2 1 a) (Aa) (I4/) ab c c 4 ab Δui i a i Δu i ( 7) 4 ab Fig. 4 Atoic displaceent vector scheatic diagra in ab plane a(b)sbti (P r ) 29 μc/c 2 HERVOCHES [7] SBTi (P s ) 23.2 μc/c 2 SBTi (A2 1 a) a b a [10 11, 22] EET (P s ) 2e Ps = V Δ u i q Δu i (9) i q V 4 7 (9) SBTi a 25.81 μc/c 2 [7] 23.2 μc/c 2 5 7 Table 7 Atoic displaceents during phase transitions Ato Δu a /Å Δu b /Å Δu c /Å Δu i /Å Bi1 0.0 0.0 0.0 0.0 Sr1 0.0 0.0 0.0 0.0 Bi2 0.027 0.038 0.0 0.029 Sr2 0.027 0.038 0.0 0.029 Bi3 0.027 0.019 0.0 0.028 Ti1 0.147 0.031 0.0 0.148 Ti2 0.098 0.062 0.0 0.101 O1 0.305 0.299 0.0 0.295 O2 0.436 0.146 0.164 0.442 O3 0.278 0.154 0.000 0.271 O4 0.125 0.019 0.164 0.124 O5 0.196 0.177 0.0 0.204 O6 0.055 0.008 0.0 0.054 O7 0.093 0.073 0.164 0.096 O8 0.256 0.062 0.164 0.253 4 SBTi IRIE [28] 1) EET SBTi Sr Bi Ti O 7 1 18 4 SBTi Bi TiO 6 Ti TiO 6 2) SBTi SBTi (Aa) (I4/) 3) SBTi a a (A2 1 a)(aa) a 4) SBTi a 25.81 μc/c 2

2508 2015 9 REFERENCES [1] AURIVILLIUS B. Mixed bisuth oxides with layer lattices. 1. The structure type of CaNb 2 Bi 2 O 9 [J]. Arkiv for Kei, 1950, 1(5): 463 480. [2] FRIT B, MERCURIO J P. The crystal cheistry and dielectric properties of the Aurivillius faily of coplex bisuth oxides with perovskite-like layered structures[j]. Journal of Alloys and Copounds, 1992, 188: 27 35. [3],,,,. MBi 4 Ti 4 O 15 [J]., 2013, 32(1): 79 84. HUANG Xin-you, TONG Xiao-feng, XU Guo-qiang, LIANG Wan-ting, TANG Hao. Research and developent of MBi 4 Ti 4 O 15 -based ceraics[j]. Electronic Coponents and Materials, 2013, 32(1): 79 84. [4],. [J]., 2014, 29(5): 449 460. ZHANG Fa-qiang, LI Yong-xiang. Recent progress on bisuth layer-structured ferroelectrics[j]. Journal of Inorganic Materials, 2014, 29(5): 449 460. [5] ZHANG S, YU F. Piezoelectric aterials for high teperature sensors[j]. Journal of the Aerican Ceraic Society, 2011, 94(10): 3153 3170. [6] REANEY I M, DAMJANOVIC D. Crystal structure and doain wall contributions to the piezoelectric properties of strontiu bisuth titanate ceraics[j]. Journal of Applied Physics, 1996, 80(7): 4223 4225. [7] HERVOCHES C H, SNEDDEN A, RIGGS R, KILCOYNE S H, MANUEL P, LIGHTFOOT P. Structural behavior of the four-layer Aurivillius-phase ferroelectrics SrBi 4 Ti 4 O 15 and Bi 5 Ti 3 FeO 15 [J]. Journal of Solid State Cheistry, 2002, 164(2): 280 291. [8] KING-SMITH R D, VANDERBILT D. Theory of polarization of crystalline solids[j]. Physical Review B, 1993, 47(3): 1651 1654. [9] RESTA R, POSTERNAK M, BALDERESCHI A. Towards a quantu theory of polarization in ferroelectrics: The case of KNbO 3 [J]. Physical Review Letters, 1993, 70(7): 1010 1013. [10]. [M]. :, 1996. ZHONG Wei-lie. Ferroelectric physics[m]. Beijing: Science Press, 1996. [11] ABRAHAMS S C, KEVE E T. Structural basis of ferroelectricity and ferroelastcity[j]. Ferroelectrics, 1971, 2(1): 129 154. [12] RESTA R. Macroscopic polarization in crystalline dielectrics: the geoetric phase approach[j]. Reviews of Modern Physics, 1994, 66(3): 899 915. [13] ZHONG W, VANDERBILT D, RABE K M. Phase transitions in BaTiO 3 fro first principles[j]. Physical Review Letters, 1994, 73(13): 1861 1864. [14] BROWN I D, ALTERMATT D. Bond-valence paraeters obtained fro a systeatic analysis of the inorganic crystal structure database[j]. Acta Crystallographica Section B: Structural Science, 1985, 41(4): 244 247. [15]. [J]., 1978, 23(4): 217 224. YU Rui-huang. Epirical electron theory in solids and olecules[j]. Chinese Science Bulletin, 1978, 23(4): 217 224. [16]. [M]. :, 1993. ZHANG Rui-lin. Epirical electron theory of solids and olecules[m]. Jilin: Jilin Science and Technology Press, 1993. [17],,,. MoSi 2 [J]., 2007, 17(2): 216 222. PENG Ke, YI Mao-zhong, TAO Hui-jin, RAN Li-ping. Valence electronic structure analysis and cohesive energy calculation of MoSi 2 [J]. The Chinese Journal of Nonferrous Metals, 2007, 17(2): 216 222. [18],,. [J]. ( ), 2009, 33(1): 146 149. YANG Xin-jian, LI Shi-chun, LI Hong. Theoretical calculation of valence electron structure of cubic perovskite ferroelectrics[j]. Journal of China University Petroleu (Edition of Natural Sciences), 2009, 33(1): 146 149. [19],,,,. Al-Mg-Si [J]., 2013, 23(5): 1226 1233. GAO Ying-jun, CHEN Hao-tian, ZHU Tian-xia, ZHANG Shuang, HUANG Chuang-gao. Relationship between atoic bonding and property of Al-Mg-Si alloy[j]. The Chinese Journal of Nonferrous Metals, 2013, 23(5): 1226 1233. [20],. Au-Cu [J]., 2010, 20(4): 743 748. JIANG Shu-ying, LI Shi-chun. Calculation of valence electron structures and cohesive energies of interetallic copounds in Au-Cu syste[j]. The Chinese Journal of Nonferrous Metals, 2010, 20(4): 743 748. [21],,,,,,. CuTi 2 [J]., 2013, 23(5): 1282 1288. LI Yan-ju, CHEN Yong-chong, ZHANG Xi-feng, REN Ya-kun, ZHANG Yan-ping, WANG Qiu-ping, DU Zhi-wei. Electron theory investigation on broken bonds during atoic dissolution at solid-state reaction interface of CuTi 2 [J]. The Chinese Journal of Nonferrous Metals, 2013, 23(5): 1282 1288. [22],,. PbTiO 3 [J]., 2007, 24(B08): 140 144.

25 9 SrBi 4 Ti 4 O 15 2509 YANG Xin-jian, LI Shi-chun, LI Hong. The valence-electron structure and ferroelectricty calculation of PbTiO 3 using a valence bonding electron theory[j]. Journal of Atoic and Molecular Physics, 2007, 24(B08): 140 144. [23],,,. Mn Mo 2 FeB 2 [J]., 2009, 19(9): 1618 1624. PANG Xu-ing, ZHENG Yong, WANG Shao-gang, WANG Qiu-hong. Effects of Mn on structure and echanical properties of Mo 2 FeB 2 -based cerets[j]. The Chinese Journal of Nonferrous Metals, 2009, 19(9): 1618 1624. [24] LI S C. AEC: A new tool for EET, TFDC and crystal forula[j]. Materials Science Foru, 2011, 689: 245 254. [25] ABRAHAMS S C. Atoic displaceents at and order of all phase transitions in ultiferroic YMnO 3 and BaTiO 3 [J]. Acta Crystallographica Section B: Structural Science, 2009, 65(4): 450 457. [26] ABRAHAMS S C. Inorganic structures in space group P31; coordinate analysis and systeatic prediction of new ferroelectrics[j]. Acta Crystallographica Section B: Structural Science, 2010, 66(2): 173 183. [27] van AKEN B B, MEETSMA A, PALSTRA T T M. Hexagonal YMnO 3 [J]. Acta Crystallographica Section C: Crystal Structure Counications, 2001, 57(3): 230 232. [28] IRIE H, MIYAYAMA M. Dielectric and ferroelectric properties of SrBi 4 Ti 4 O 15 single crystals[j]. Applied Physics Letters, 2001, 79(2): 251 253. ( )