100x W=0.1 W=

Σχετικά έγγραφα
Computer No.53 (1992) IBM 650. Bacon TSS JRR-2.[1] free inductin decay IBM 7044 FACOM

2.1

X X (Knee) Knee Victor Franz Hess

X g 1990 g PSRB

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Homework 8 Model Solution Section

ΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές

Ó³ Ÿ , º 3(180).. 313Ä320

Higher spin gauge theories and their CFT duals

D Alembert s Solution to the Wave Equation

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Analytical Expression for Hessian

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

SPECIAL FUNCTIONS and POLYNOMIALS

A life-table metamodel to support management of data deficient species, exemplified in sturgeons and shads. Electronic Supplementary Material

Electronic Supplementary Information

Prey-Taxis Holling-Tanner

Geodesic paths for quantum many-body systems

10M M 56 II/Ibc AGB 2/3

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

4.6 Autoregressive Moving Average Model ARMA(1,1)

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Wilson ratio: universal nature of quantum fluids

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

A summation formula ramified with hypergeometric function and involving recurrence relation

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

ST5224: Advanced Statistical Theory II

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Heisenberg Uniqueness pairs

THICK FILM LEAD FREE CHIP RESISTORS

Lecture 21: Properties and robustness of LSE

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

Durbin-Levinson recursive method

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Concrete Mathematics Exercises from 30 September 2016

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1


ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ΕΘΝΙΚΗ ΥΟΛΗ ΔΗΜΟΙΑ ΔΙΟΙΚΗΗ ΙH ΕΚΠΑΙΔΕΤΣΙΚΗ ΕΙΡΑ ΤΜΗΜΑ ΚΟΙΝΩΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΔΙΟΙΚΗΣΗ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ

ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

Εξοικονόμηση Ενέργειας σε Εγκαταστάσεις Δρόμων, με Ρύθμιση (Dimming) ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

- 1+x 2 - x 3 + 7x x x x x x 2 - x 3 - -

[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB]

Supporting Information

A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ

Solutions to Exercise Sheet 5

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Numerical Analysis FMN011

Creative TEchnology Provider

Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog

Thermoelectrics: A theoretical approach to the search for better materials

Wishart α-determinant, α-hafnian

Commutative Monoids in Intuitionistic Fuzzy Sets

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE ON 64, 96 AND 128 NODES

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Physical and Chemical Properties of the Nest-site Beach of the Horseshoe Crab Rehabilitated by Sand Placement

ΥΒΡΙΔΙΚΟ ΣΥΣΤΗΜΑ ΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΕ ΙΣΤΙΟΠΛΟΪΚΑ ΣΚΑΦΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Math221: HW# 1 solutions

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Tridiagonal matrices. Gérard MEURANT. October, 2008

Injection Molded Plastic Self-lubricating Bearings

0.635mm Pitch Board to Board Docking Connector. Lead-Free Compliance

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Monolithic Crystal Filters (M.C.F.)

Trace gas emissions from soil ecosystems and their implications in the atmospheric environment

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Ceramic PTC Thermistor Overload Protection

Thin Film Precision Chip Resistor-AR Series

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΕΥΝΗΤΙΚΗ ΔΙΑΤΡΙΒΗ

Elements of Information Theory

Cable Systems - Postive/Negative Seq Impedance

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Homomorphism in Intuitionistic Fuzzy Automata

Table of Contents 1 Supplementary Data MCD


ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

Connec&ng thermodynamics to sta&s&cal mechanics for strong system-environment coupling

Transcript:

1 2 abstract: 1 [1] 1970 Furstenberg [2] 1 [3] 1979 Anderson [4] 1 2 1 H = NX n=1 jn >V n <nj + NX n (jn ><n+1j + jn +1>< nj); fv n g HjΨ >= EΨ > (ffi n =<njψ >), ffi n+1 + ffi n 1 + V n ffi n = Effi n, M n ψ! ψ! ψ ffin +1 =Π N n=1 ffi M ffi1 E Vn 1 n ; M n = N ffi 0 1 0 1 2002 12 11 2 E-mail: hyamada@cc.niigata-u.ac.jp! 1

2.1 Harper V n V n =2 cos(2ßffn + ) (ff ; 2 Q) [5] self-duality Herbert-Jones-Thouless ( )[6] =1 [7] Harper Soukoulis-Economou [8], V n =1:9[cos(Qn)+ 1 cos(2qn)](q =0:7), 3 V n = W j cos(2ßffn)j[9] Harper V n =2 cos(ßffn ν )(0 <ν<1)[] 2.2 :C n < V n 0 V n >= ffi n 0;n (C n ο e cn ) [11] c 1 random-dimer [12] fv A ;V B g V A! V A V A ;V B! V B. [13, 14] 1 (C n ο n s (s>0)) [15, 16] fv n g S(f) ο f ff (Fourier Filtering Method) ff ff >ff c ff 2 (E =0) ff 1:9 1 1980 [17, 18] 0» ff» 1 2

Furstenberg 1» ff» 1:5 ff ' 1:5 ff 1 fv n g Furstenberg 3 X n+1 = X n +2 B 1 (1 2b)Xn B + b (0» X n < 1=2) X n 2 B 1 (1 2b)(1 X n ) B + b (1=2» X n» 1): [19] B b B 2 b = 13 i b =(B 1) 1 (2b) (1 B)=B [19]. W V n =(2X n 1)W fv n g 0» Xn < 1=2! V n = W 1=2» X n < 1! V n = W C(n) ο n B 1 2 B (n >>1) [19]. B < 2 B 2 b =0, S(f) ο f 2B 3 B 1 ff =2 B!1 B 2 2 B B 1 W! W( W! W ) m P (m) ο m B 1 B B <2 (< m><1) B 2 [20] 4 (B» 2), fl =< ln(jffi N+1j 2 +jffin j 2 ) 2N > < ::: > N!1 N [17, 18, 21] 3

Furstenberg [17] B <3=2 3=2 < B < 2 fx n g V n [22, 23] 5 (B 2) 2» B» 3 [21, 24] [25] 0x -3 7 80 6 60 5 γ ξ 4 40 3 20 2 1 W= W=0.3 0-2 -1 0 1 2 E 0-3 -2-1 0 1 2 3 E 1: Lyapunov exponents fl as a function of energy, for several potential strength W within a range [0.01, 0.8]. The system and ensemble size are 2 20 and 50 respetively. (B =2:0.) 2: Localization length ο as a function of energy, for several potential strength W = 0:1; 0:3. The system and ensemble size are 2 22 and 50 respetively. (B =3:0.) B =2:0 fl E (W << 1) (E =0) fl B = 3:0 ( ) E =0 4

-1-2 -3-4 B=1.8 2.5 3.0 W^2 9 8 7 6 5 4 3 2 γ -5-6 -7-8 -9 γ 9 8 7 6 5 4 3 2 'B=1.1' '1.8' '2.3' '3.0' W^2/3 W~1/2 0.01 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 W 0.01 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 W 3: Lyapunov exponents at band center (E = 0) as a function of potential strength W for several bifurcation parameter B in symbolic cases. 4: Lyapunov exponents at band edge (E = 2:0) as a function of potential strength W for several bifurcation parameter B in symbolic cases. (E =0) fl W fl ο W 2 [26, 27] W (E =2:0) fl W (fl ο W 2=3 ) fl ο W 1=2 ( [28, 27] ) Van-Hope [24] fl B B = 2:0 fl ( 6) fl B W fl = C(W )B + D(W )(C; D ) fl(b Λ )=0 B Λ 7 B 2 B =2 fl>0 B =2 5

20x -3 400 γ 15 5 W=0.01 0.3 0.5 x -6 300 200 0 0 0.51.01.52.02.53.0 1.5x -3 1.0 γ 0.5 W=0.01 0.3 0.5 0 0.0 1.6 1.8 2.0 2.2 B 2.4 2.6 2.8 3.0 1.6 1.8 2.0 2.2 B 2.4 2.6 2.8 3.0 5: Lyapunov exponents as a function of bifurcation parameter B, for several potential strength W in symbolic cases (E =0). The inset is expansion of a case, W =0:01. 6: Lyapunovexponents as a function of bifurcation parameter B, for several potential strength W in non-symbolic cases (E =0). 3.0 2.5 B * 2.0 1.5 1.0 0.2 0.4 W 0.6 0.8 1.0 7: Bifurcation parameter B Λ estimated by fl(b Λ )=0:0 for several potential strength W in symbolic (2) and non-symbolic cases (fl) ate =0. N W B fl N [17] [16] N, N 8 9 W N ο = N B =2:8 N ο / N ν ν<1 6

20 18 16 W=0.5 0.3 0.05 24 22 20 W=0.5 0.3 0.05 0.01 ln ξ 14 12 ln ξ 18 16 14 12 8 8 12 14 ln N 16 18 9 11 12 13 ln N 14 15 16 8: Localization length ο as a function of system size N for several potential strength W at B=2.8. The line shows ο = N. 9: Localization length ο as a function of system size N for several potential strength W at B=3.0. The line shows ο = N. 9(B =3:0) W ο / N ν (ν ο 1) (W << 1) S(f) ο f 1:5 6 B» 2:8 (W << 1) S(f) ο f ff (ff ' 1:5) ff c 2( B!1 ) [15] [16] ff c =1:9 B fl hopping( 1 (off-diagonal model) stretched fl =0 [29] hopping 7

Long-tail r 1 [30, 31] 2 2N 2N [32, 33, 34] 4 [35] DNA A,T,G,C [36] [37] [38] well-define (W << 1) E c fl οje E c j ff ff [38] [39] [40] [1] P.W.Anderson, Phys. Rev. 9, 1492(1958). [2] H. Furstenberg, Trans. Am. Math. Soc. 8, 377(1963). [3] K. Ishii, Prog.Theor. Phys. Suppl. 53, 77(1973). [4] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673(1979). [5] P.G.Harper, Proc.Phys.Soc.London, Sect. A 68, 874(1955). [6] D.C.Herbert and R.Jones, J. Phys. C 4, 1145(1971); D.J.Thouless, ibid. 5, 77. [7] S.Aubry and G.Andre, Ann.Isr.Phys.Soc.3, 133(1980). 8

[8] C.M.Soukoulis and E.N.Economou, Phys. Rev. B 24, 5698(1981). [9] J.F.Weisz, M. Johansson and R. Riklund, Phys. Rev. B 41, 6032(1990); M. Johansson and Rolf Riklund, ibid, 42, 8244(1990). [] S.D.Sarma, S.He and X.C.Xie, Phys. Rev. Lett. 61, 2144(1988). [11] M. J. de Oliver and A. Petri, Phys. Rev. E 53, 2960(1996) ; ibid, 56, 215(1997). [12] D.H.Dunlap. H.-L.Wu and P.W.Phillips, Phys. Rev. Lett. 65, 88(1990). [13] H.-L.Wu and P.W.Phillips, Phys. Rev. Lett. 66, 1366(1991). [14] V. Bellani, E. Diez, R. Hey, L. Toni, L. Tarricone, G.B. Parravicini, F. Dominguez- Adame, and R. Gomez-Alcala, Phys. Rev. Lett. 82, 2159(1999). [15] F.A.B.F. de Moura and M.L.Lyra Phys. Rev. Lett. 81, 3735(1998); Physica A 266, 465(1999). [16] P. Carpena, P.B.Galvan, P.Ch.Ivanov and H.E.Stanly, Nature 418, 955(2002). [17] H. Yamada, M. Goda and Y. Aizawa, J. Phys.:Condens. Matter 3, 043(1991). [18] H. Yamada, M. Goda and Y. Aizawa, J. Phys. Soc. Jpn. 60, 3501(1991). [19] Y. Aizawa, C. Murakami and T. Kohyama, Prog. Theor. Phys. Suppl. 79, 96(1984). [20] K.Tanaka and Y. Aizawa, Prog. Theor. Phys. 90, 547(1993). [21] H.Yamada, J.Phys.Soc.Jpn.Suppl., to appear (2003). [22] A.K.Mohanty and A.V.S.S. Narayana Rao, Phys. Rev. Lett. 84, 1832(2000). [23] N.Scafetta, V.Latora, and P.Grigolini, Phys. Rev. E 66, 031906(2002). [24] H. Yamada, in preparation. [25] S.Russ, J.W.Kantelhardt, A.Bunde and S.Havlin, Phys. Rev. B 64, 134209(2001). [26] M.Kappus and F.J.Wegner, Z. Phys. B 45, 15(1981). [27] M.Yamanaka, Y.Avishai and M.Kohmoto, Phys. Rev. B 54, 228(1996). [28] B.Derrida and E.Gardner, J.Phys.(France),45, 1283(1984). [29] C.M.Soukoulis and E.N.Economou, Phys. Rev. Lett. 48, 43(1982). [30] B.L.Altshuler and L.S.Levitov, Phys. Rep. 288, 487(1997). 9

[31] L.Borland, L.G.Menchero and C.Tsallis, Phys. Rev. B 61, 1650(2000). [32] A. Crisanti, G. Paladin, and A. Vulpiani, Products of Random Matrices in Statistical Physics (Springer-Verlag, Berlin, 1993), and references therein. [33] H. Yamada and T. Okabe, Phys. Rev. E63, 26203(2001). [34] J. Heinrichs, Phys. Rev. B 66, 155434(2002). [35] D.Porath, A.Bezryain,S.de Vaies and Cees Dekker, Nature 403, 635(2000). [36] D.Holste, I.Grosse and H.Herzel, Phys. Rev. E 64, 041917(2001). [37] K. Iguchi, J.Phys.Soc.Jpn. 70, 593(2001). [38] F.M. Izrailev and A.A. Krokhin, Phys. Rev. Lett. 82, 4062(1999). [39] E.Abrahams, S.V.Kravchenko and M.P.Sarachik, Rev. Mod. Phys. 73, 251(2001). [40] V.N. Kuzovkov, W. Niessen, V.Kashcheyevs and O.Hein, J. Phys.:Condens. Matter 14, 13777(2002).