2010 37 91395 1402 Acta Horticulturae Sinica * 712100 223.4% 83.4% 68.1% P P N N K P N P K S 663.1 A 0513-353X 2010 09-1395-08 Variation of Soil Microbial Populations and Relationships Between Microbial Factors and Soil Nutrients in Cover Cropping System of Vineyard XI Zhu-mei LI Hua * LONG Yan ZHANG Jin and PANG Xue-liang College of Enology Northwest A & F University Shaanxi Engineering Research Center for Viti-Viniculture Yangling Shaanxi 712100 China Abstract Three such cover crops two perennial legumes (white clover and alfalfa) and a perennial gramineous grass tall fescue were sown inter-row in Cabernet sauvignon vineyard with clean tillage as the control. The effects of cover cropping on microbial populations soil nutrient contents and their relationships were studied. The results showed that soil microbial quantities in cover cropping treatments were increased among which azotobacter and cellulose-decomposing and bacteria microorganisms increased by 223.4% 83.4% and 68.1% respectively but only slightly changing for actinomyces compared with bare soil control the soil from white clover and alfalfa plots showed higher quantities of microbial populations than tall fescue polt and significant differences were observed between the two cover crop treatments and the control except actinomyces. Also it indicated that cover crop treatments 2010 04 06 2010 08 09 13115 2007ZDKG-09 Z225020901 01140303 Author for correspondence E-mail lihuawine@nwsuaf.edu.cn
1396 37 had higher soil organic matter content but reduced available P and total P. For white clover and alfalfa treatments the contents of soil hydrolyzable N total N available K increased evidently while decreased for tall fescue treatment. All kinds of soil nutrients showed significant or very significant position correlations with soil microorganism factors except that soil available P were no significant correlations with fungi and azotobacter. Path analysis indicated that in the vineyard intercropping system soil cellulose-decomposing microorganisms was the main factor affecting the accumulation of soil organic matter soil actinomyces was the most important factor affecting soil total N hydrolyzable N total P available P and available K. Key words vineyard inter-row cover crops soil microbial populations soil nutrients Drinkwater et al. 1998 Morlat & Jacquet 2003 King & Berry 2005 Abbona et al. 2007 Monteiro & Lopes 2007 Ranells & Wagger 1996 Rupp 1996 King & Berry 2005 2007 Spring 1992 2000 Tiquia et al. 2002 1997 2007 2007 Compant et al. 2005 Ingels et al. 2005 Whitelaw-Weckert et al. 2007 1 1.1 2007 2008 Vitis vinifera L. Cabernet Sauvignon2003 3 1 m 1.5 m Trifolium repens Haifa Festuca arundincea Finelawn Medicago sativa Algunjin 2005 1.2 33 17 107 04 514 m 2 163.8 h 220 d 580 mm 0 ~ 60 cm 0.82 g kg -1 0.72 g kg -1 44.5 mg kg -1 7.8 mg kg -1 120.4 mg kg -1 11.13 g kg -1 ph 8.34 1.45 g cm -3
9 1397 4 CT CF CM ST 1.0 m 3 3 351 m 2 3 1.3 2007 4 7 9 12 8 4 cm 0 ~ 20 cm 20 ~ 40 cm 4 4 1.4 1985 N N P P K K ph 1:1 1994 Excel DPS7.55 2 2.1 1 0 ~ 20 cm 20 ~ 40 cm 1 0 ~ 40 cm Table 1 The effect of cover crops on soil microbial quantity of 0 40 cm depth in vineyard / 10 4 g -1 Treatment / cm Soil layer Bacteria Fungi Actinomyces Azotobacter 0 ~ 20 26014.97 A 6.60 A 311.05 A 338.83 A 4.79 A T. repens 20 ~ 40 3710.17 B 2.10 B 54.16 B 47.00 B 2.70 B Average 14862.57 a 4.35 b 182.61 ab 192.92 a 3.74 a 0 ~ 20 18626.16 A 5.11 A 225.06 A 173.06 A 4.69 A F. arundincea 20 ~ 40 3372.84 B 2.74 B 34.63 B 42.32 B 2.02 B Average 10999.50 b 3.92 bc 129.85 b 107.69 b 3.36 a 0 ~ 20 31572.23 A 8.45 A 375.60 A 282.76 A 4.69 A M. sativa 20 ~ 40 2076.23 B 4.74 B 34.32 B 46.10 B 2.02 B Average 16824.23 a 6.60 a 204.96 a 164.43 a 3.30 a 0 ~ 20 14549.43 A 4.84 A 305.81 A 71.42 A 2.76 A Control 20 ~ 40 2381.45 B 2.45 B 41.45 B 24.45 B 1.02 B Average 8465.44 b 3.64 c 173.63 ab 47.94 c 1.89 b microorganisms P < 0.05 P < 0.05 Note Values with different lowercase letters are significantly different among different treatments at P < 0.05 Values with different capital letters are significantly different among different treatments at P < 0.05. The same below.
1398 37 90% 0 ~ 40 cm 124.6% ~ 302.4% 223.4% 74.6% ~ 97.9% 83.4% 29.9% ~ 98.7% 68.1% 3 2.2 2 K P N 0 ~ 20 cm 20 ~ 40 cm ph 0 ~ 40 cm N N K N N 3 P P P K K P < 0.05 17.1% 14.5% ph Treatment /cm Soil layer 2 0 ~ 40 cm Table 2 The effects of cover crops on soil nutrient content of 0 40 cm depth in vineyard ph N/ mg kg -1 Hydrolyzable N P/ mg kg -1 Available P K/ N/ P/ K/ mg kg -1 g kg -1 g kg -1 g kg -1 Available K Total N Total P Total K / g kg -1 Organic matter 0 ~ 20 8.05 A 50.18 A 9.21 A 137.50 A 0.82 A 0.73 A 20.10 A 12.48 A T. repens 20 ~ 40 8.17 A 34.83 B 4.81 B 104.50 B 0.68 B 0.63 B 20.08 A 9.64 B Average 8.11 a 42.50 a 7.01 b 121.00 a 0.75 a 0.68 a 20.09 a 11.06 a 0 ~ 20 8.18 A 33.33 A 13.39 A 115.50 A 0.63 A 0.74 A 19.45 A 12.57 A F. 20 ~ 40 8.18 A 24.18 B 7.51 B 92.75 B 0.48 B 0.69 A 19.58 A 9.21 B arundincea Average 8.18 a 28.75 c 10.45 a 104.13 b 0.56 c 0.71 a 19.51 a 10.89 a 0 ~ 20 8.14 A 51.00 A 7.62 A 139.25 A 0.84 A 0.71 A 20.15 A 12.64 A M. sativa 20 ~ 40 8.27 A 30.50 B 3.46 B 106.00 B 0.64 B 0.63 B 20.05 A 9.97 B Average 8.21 a 40.75 a 5.54 c 122.63 a 0.74 a 0.67 a 20.10 a 11.31 a 0 ~ 20 8.17 A 41.98 A 13.59 A 119.75 A 0.75 A 0.76 A 20.25 A 11.22 A Control 20 ~ 40 8.18 A 28.63 B 7.95 B 98.50 B 0.58 B 0.69 A 19.50 B 8.09 B Average 8.18 a 35.30 b 10.77 a 109.13 b 0.66 b 0.73 a 19.88 a 9.66 b
9 1399 2.3 3 N N P K P P K ph K K ph Correlation factor 3 Table 3 Pearson correlation coefficient between soil microbial quantity and soil nutrient content ph N Organic Total N matter N Hydrolyzable N P Total P P Available P K Total K K Available K Bacteria 0.764** 0.881** 0.853** 0.905** 0.769** 0.644* 0.031 0.951** Fungi 0.575 0.904** 0.926** 0.922** 0.697* 0.535 0.037 0.947** Actinomyces 0.727** 0.880** 0.881** 0.920** 0.839** 0.734** 0.099 0.942** Azotobacter 0.822** 0.840** 0.815** 0.871** 0.670* 0.534 0.004 0.925** 0.753** 0.947** 0.853** 0.881** 0.805** 0.678** 0.102 0.886** microorganisms ** P 0.01 * P 0.05 r =0.5760 r 0.01 =0.7079 Note ** indicates that correlation is significant at the P 0.01 level and * indicates that correlation is significant at the P 0.05 level. The same below. Critical value r 0.05 =0.5760 r 0.01 =0.7079. 2.4 3 K N N P P K 6 4 5 N N P P K N N N N N N P P K P P K P P K
1400 37 4 A N B N C P D P E K F Table 4 Path coefficients of soil microbial quantity to soil organic matter A soil total N B hydrolyzable N C total P D available P E and available K F content Soil Correlation factor nutrient A B C D E F χ 1 y χ 2 y χ 3 y χ 4 y χ 5 y χ 1 ( Bacteria) 1.328 0.426 0.612 0.191 0.980 1.763 2.209 χ 2 ( Fungi) 1.209 0.468 0.571 0.174 0.900 0.219 0.435 χ 3 ( Actinomycetes) 1.282 0.422 0.634 0.174 0.933 0.401 0.247 χ 4 ( Azotobacter) 1.263 0.406 0.549 0.200 0.948 0.040 0.639 χ 5 ( 1.249 0.405 0.567 0.182 1.042 1.085 0.095 χ 1 ( Bacteria) 1.939 0.645 1.139 0.594 0.414 3.761 2.792 χ 2 ( Fungi) 1.766 0.709 1.063 0.541 0.381 0.502 0.218 χ 3 ( Actinomycetes) 1.872 0.638 1.180 0.541 0.395 1.391 0.299 χ 4 ( Azotobacter) 1.845 0.614 1.022 0.624 0.401 0.390 0.191 χ 5 ( 1.825 0.612 1.057 0.568 0.440 0.194 0.413 χ 1 ( Bacteria) 1.440 0.387 1.070 0.644 0.245 2.074 2.345 χ 2 ( Fungi) 1.312 0.425 0.998 0.586 0.225 0.180 0.498 χ 3 ( Actinomycetes) 1.390 0.383 1.108 0.587 0.233 1.227 0.188 χ 4 ( Azotobacter) 1.371 0.368 0.960 0.677 0.237 0.459 0.194 χ 5 ( 1.355 0.367 0.992 0.617 0.260 0.068 0.621 χ 1 ( Bacteria) 1.804 0.269 1.783 0.213 0.846 3.253 2.573 χ 2 ( Fungi) 1.642 0.296 1.664 0.194 0.777 0.087 0.992 χ 3 ( Actinomycetes) 1.741 0.266 1.847 0.194 0.805 3.411 1.008 χ 4 ( Azotobacter) 1.716 0.256 1.600 0.224 0.819 0.050 0.446 χ 5 ( 1.697 0.255 1.655 0.204 0.899 0.808 0.094 χ 1 ( Bacteria) 1.980 0.563 2.124 0.233 0.830 3.922 2.624 χ 2 ( Fungi) 1.803 0.618 1.982 0.212 0.762 0.382 1.153 χ 3 ( Actinomycetes) 1.912 0.557 2.201 0.212 0.790 4.843 1.467 χ 4 ( Azotobacter) 1.885 0.535 1.906 0.245 0.803 0.060 0.289 χ 5 ( 1.863 0.534 1.971 0.223 0.882 0.778 0.204 χ 1 ( Bacteria) 0.501 0.362 0.632 0.566 0.108 0.251 1.452 χ 2 ( Fungi) 0.456 0.397 0.590 0.515 0.099 0.158 0.550 χ 3 ( Actinomycetes) 0.483 0.358 0.655 0.515 0.103 0.429 0.287 χ 4 ( Azotobacter) 0.476 0.344 0.567 0.595 0.105 0.354 0.330 χ 5 ( 0.471 0.343 0.586 0.542 0.115 0.013 1.001 y A B C D E F Note The date underline was direct path coefficients y represents dependent variable A B C D E and F respectively. Determination Sum of indirect coeffcient path coefficient 3 1 Compant et al. 2005 Ingels et al. 2005 Whitelaw-weckert et al. 2007
9 1401 2007 2008 2 N N K N N Ranells & Wagger 1996 Drinkwater et al. 1998 King & Berry 2005 Steenwerth & Belina 2008 3 P P 2007 P N 2005 2007 Steenwerth & Belina 2008 3 Taylor et al. 2002 2007 2007 N N P K 4 2008 N N P P K 2007 2005 2007 2007 2007 References Abbona E A Sarandón S J Marasas M E Astier M. 2007. Ecological sustainability evaluation of traditional management in different vineyard systems in Berisso Argentina. Agriculture Ecosystems and Environment 119 335 345. Compant S Reiter B Sessitsch A Nowak J Clément C Barka E A. 2005. Endophytic colonization of Vitis vinifera by plant growth-promoting bacterium Burkholderia sp. Strain PsJN. Applied and Environmental Microbiology 71 1685 1693. Drinkwater L Wagoner P Sarrantonio M. 1998. Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396 262 265. García-Gil J C Plaza C Soler-Rovira P Polo A. 2000. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biology and Biochemistry 32 1907 1913. Ingels C A Scow K M Whisson D A Drenovsky R E. 2005. Effect of cover on grapevines yield juice composition soil microbial ecology and gopher activity. American Journal of Enology and Viticulture 561 19 29. Institute of Soil Science CAS Nanjing. 1985. Study method of soil microorganisms. Beijing Science Press. (in Chinese). 1985... King A P Berry A M. 2005. Vineyard δ 15 N nitrogen and water status in perennial clover and bunch grass cover crop systems of California s central valley. Agriculture Ecosystems and Environment 109 262 272. Li Hui-ke Zhang Guang-jun Zhao Zheng-yang Li Kai-rong. 2007. Effects of interplanting of herbage on soil nutrient of non-irrigated apple orchard
1402 37 in the loess plateau. Acta Horticulturae Sinica 34 (2) 477 480. (in Chinese). 2007.. 34 (2) 477 480. Liu Shu-xia Wang Hong-bin Zhao Lan-po Wu Hai-wen Zhang Hong-mei Qin Zhi-jia. 2008. Effect of several cellulose-decomposing microorganisms on soil organic matter transformation. Journal of Agro-Environment Science 27 (3) 991 996. (in Chinese). 2008.. 27 (3) 991 996. Ma Jian-jun Li Qing-feng Zhang Shu-li. 2007. The correlation among soil microorganism and soil nutrient in different types of mixed stands of Hippophae Rhamnoides. Journal of Arid Land Resources and Environment 21 (6) 163 167. (in Chinese). 2007.. 21 (6) 163 167. Monteiro A Lopes C M. 2007. Influence of cover crop on water use and performance of vineyard in Mediterranean Portugal. Agriculture Ecosystems and Environment 121 336 342. Morlat R Jacquet A. 2003. Grapevine root system and soil characteristics in a vineyard maintained long-term with or without inter-row sward. American Journal of Enology and Viticulture 54 1 7. Nanjing University. 1994. Soil agricultural chemistry analysis. Beijing Agriculture Press. (in Chinese). 1994... Ranells N N Wagger M G. 1996. Nitrogen release from grass and legume cover crop monocultures and bicultures. Agronomy Journal 88 777 782. Rupp D. 1996. Green cover management to optimize the nitrogen supply of grapevine. Acta Horticulturae 427 57 62. Spring G P. 1992. Ratio of microbial biomass to soil organic matter carbon as a sensitive indicator of changes in soil organic matter. Australian Journal of Soil Research 30 195 207. Steenwerth K Belina K M. 2008. Cover crops and cultivation Impacts on soil N dynamics and microbiological function in a Mediterranean vineyard agroecosystem. Applied Soil Ecology 40 (2) 370 380. Sun Bo Zhao Qi-guo Zhang Tao-lin Yu Shen. 1997. Soil quality and sustaining environment Biological indicator of soil quality evaluation. Soil 29 (5) 225 234. (in Chinese). 1997... 29 (5) 225 234. Tang Yu-shu Wei Chao-fu Yan Ting-mei Yang Lin-zhang Ci En. 2007. Biological indicator of soil quality A review. Soil 39 (2) 157 163. (in Chinese). 2007.. 39 (2) 157 163. Taylor J P Wilson B Mills M S Burns R G. 2002. Comparison of numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biology & Biochemistry 34 387 401. Tiquia S M Lioyd J herms D N A Hoiting H A J Michel F C. 2002. Effect of mulching and fertilization on soil nutrients microbial activity and rhizosphere bacterial community structure determined by analysis of RFLPs of PCR-amplified 16s rrna genes. Applied Soil Ecology 21 31 48. Whitelaw-Weckert M A Rahman L Hutton R J Coombes N. 2007. Permanent swards increase soil microbial counts in two Australian vineyards. Applied Soil Ecology 36 224 232. Xue Quan-hong. 2000. Microbiology. Xi an World Books Press. (in Chinese). 2000... Xu Xiong Zhang Jian Zhang Meng Liao Er-hua. 2005. Relationship between biological factors and soil nutrients in artificial fruit-grass ecosystem. Journal of Soil and Water Conservation 19 (6) 178 181. (in Chinese). 2005.. 19 (6) 178 181. Xu Qiang Cheng Zhi-hui Meng Huan-wen Zhang Xian. 2007. Relationships between soil nutrients and rhizospheric soil microbial communities and enzyme activities in a maize-capsicum intercropping system. Chinese Journal of Applied Ecology 18 (12) 2747 2754. (in Chinese). 2007.. 18 (12) 2747 2754. Zhou Hui-jie Shi Lei-li. 2007. Effect of planting years on soil microorganisms and enzyme activity under greenhouse condition. Journal of Heilongjiang Vocational Institute of Ecological Engineering 20 (6) 39 41. (in Chinese). 2007.. 20 (6) 39 41.