Preparation and Application of Amorphous Alloy Catalyst

Σχετικά έγγραφα
Ni2Sn2B/ SiO 2, Highly Selective Amorphous Ni2Sn2B/ SiO 2 Catalysts in Acetophenone Hydrogenation to 12Phenyl Ethanol

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

Approximation Expressions for the Temperature Integral

Supplementary material

Recent advances in coal to chemicals technology developed by SINOPEC

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Advance in Nanorealgar Studies

Rapid determination of soluble reactive silicate in seawater by flow injection analysis with spectrophotometric detection and its application

8Q5SAC) 8Q5SAC UV2Vis 8500 ( ) ; PHS23C ) ;721 ( ) :1 4. ;8Q5SAC : molπl ;Britton2Robinson Q5SAC BSA Britton2Robinson,

Quick algorithm f or computing core attribute

College of Life Science, Dalian Nationalities University, Dalian , PR China.

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

ACTA CHIMICA SINICA. Cu/ ZnO ; XRD, BET N 2 O. . In2situ XPS, Ni Cu/ Zn/ Ni. . Ni, Cu/ ZnO

The Exploitation and Utilization of Magnesium Resources in Salt Lakes

Preparation of Hydroxyapatite Coatings on Enamel by Electrochemical Technique

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

N 2. Temperature Programmed Surface Reaction of N 2Nitrosonornicotine on Zeolites and Molecular Sieves

( Fe 3 O 4 ) The Preparation Methods of Magnetite Nanoparticles and Their Morphology. Vol. 19 No. 6 June, 2007 PROGRESS IN CHEMISTRY )

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

SUPPORTING INFORMATION. Polystyrene-immobilized DABCO as a highly efficient and recyclable organocatalyst for Knoevenagel condensation

27 7 Vol. 27 No CHINESE JOURNAL OF APPLIED CHEMISTRY July CV SEM EIS DTD. MCMB / 0. 01% DTD MCMB /Li. 300 ma h /g 350 ma h /g

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Synthesis of Micro/Mesopore Composite Molecular Sieves

CuS * CuS. THz. CuS. THz-TDS. CuS. 1 THz = 33 cm - 1. THz. PACS Ci Bd. CuS. THz. THz. CuS. CuS. THz. http / / wulixb. iphy. ac.

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

PROGRESS IN CHEMISTRY. ,ZnO. Yang Sen Ni Yonghong 3 3. (No )

Journal of Fuzhou University Natural Science Edition. The preparation and visible - light photocatalysis of Ag 3 PO 4 /TiO x N y

Supporting Information. Enhanced energy storage density and high efficiency of lead-free

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Studies on Synthesis and Biological Activities of 2( 1 H21,2,42 Triazol212yl)2 2Arylthioethyl Substituted Phenyl Ketones

Polymer-Based Composites with High Dielectric Constant and Low Dielectric Loss

FENXI HUAXUE Chinese Journal of Analytical Chemistry. Savitzky-Golay. n = SG SG. Savitzky-Golay mmol /L 5700.

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Journal of Central South University (Science and Technology) May Bragg TU443 A (2011)

ER-Tree (Extended R*-Tree)

Rapid Raman spectra identification and determination of levofloxacin hydrochloride injection *

Study on Synthesis of Dibutyl Succinate Catalyzed by Phosphtungstic Acid and its Reaction Kinetics

Research on the Effect and Technique of Remediation for Multi-Metal Contaminated Tailing Soils

ACTA CHIMICA SINICA . :AAO. H 3 PO 4 AAO AAO. Unstable Growth of Anodic Aluminum Oxide Investigated by AFM

Electronic Supplementary Information (ESI)

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils

1 Vol. 16 No ELECTROCHEMISTRY Feb nanotio 2 Pb /nanotio S-2150 HITACHI Sn + SnCl 4 SnCl 2 3-4

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Antibacterial property of fabric treated with a fiber-reactive chitosan derivative

16 2 Vol. 16 No ELECTROCHEMISTRY May CO DSC200PC NETZSCH. min min 2. 1

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

Synthesis Characterization and Application of Phosphorus-Containing Derivatives of Chitosan

CdSe Hg? CdTe. Cu 2 + CdTe DNA. CdS / CdS /DNA NPs 10. CdSe /D-Pen /L-Cys Eeinburgh AFS-230E. D % Avocado Research Chemicals L- 98%

Preparation and Characterization of Solid Dispersion of Total Flavonols from Resina Draconis

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Preliminary Studies on the Antitumor Metal2Based Drugs Basing on TCM Active Ingredients

Study on the Solubility of Kiwi Fruit Seed Oil in Supercritical Carbon Dioxide

N 2 O 15 N NH + NH 3 Rittenberg mg mmol L - 1 CuSO mg. 10 mol L. Pre-Concentration device PreCon

Electronic Supplementary Information

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Study of Ne w Chemiluminescence Technique Recognition of Sodium Azide by External Reference Method

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

16 1 Vol. 16 No ELECTROCHEMISTRY Feb MnO 6 Bir-Co5% Bir-Co10% Bir-Co15% Bir-Co20%. 3 3 Li mol L - 1 MgCl 2.

Asymmetric Transfer Hydrogenation of Ketones Catalyzed by Chiral Carbonyl Iron Systems

Effect of Fluoroethylene Carbonate Additive on the Performance of Lithium Ion Battery

Research of Metalloporphyrins as Mimic Enzyme Catalysts

Metallurgical Analysis. qu) 2 BPB, 1 Table 1 Spectrophotometric determination of copper. / 10 4 (L mol - 1 cm - 1 )

Investigation on Fast Determination of Trace N2Nitrosamines Assisted by Microwave Radiation

PACS: Pj, Gg

using metal-organic framework Cu-MOF-74 as an efficient heterogeneous catalyst Hanh T. H. Nguyen, Oanh T. K. Nguyen, Thanh Truong *, Nam T. S.

4, Cu( II), Zn( II)

Phase Segregation of ZnO / ZnMgO Superlattice Affected by Ⅱ-Ⅵ Ratio

Antimicrobial Ability of Limonene, a Natural and Active Monoterpene

Determination of Organophosphate Pesticides in Soil Samples by Accelerated Solvent Extraction-Gas Chromatography

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Separation and Determination of Ephedrine Pseudoephedrine and Methylephedrine by Capillary Electrophoresis with Electrochemiluminescence Detection

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Nitro-Tetrazole and Its High Nitrogen-Contented Compounds

Research on explaining porosity in carbonate reservoir by capture cross section method

ZnO-Bi 2 O 3 Bi 2 O 3

Supporting Information

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Studies on the Interaction between Copper( ) Complex with Phenanthroline and L2Methionine Ligands and D NA

Supporting information

Gain self-tuning of PI controller and parameter optimum for PMSM drives

CorV CVAC. CorV TU317. 1

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

,,, (, ) , ;,,, ; -

Vol. 15,No HIGH POWER LASER AND PARTICL E BEAMS Apr.,2003 ,,,,,, , ) SiO 2. ; ZrO 2 PVP [2 22J / cm 2 ( 1064nm, 1ns) [3 ]

Progress in Biomimicing of Super2Hydrophobic Surface

(II) * PACS: a, Hj 300. ) [6 9] ) [10 23] ) [26 30]. . Deng [24,25] Acta Phys. Sin. Vol. 61, No. 15 (2012)

JOURNAL OF THE CHINESE CERAMIC SOCIETY. TiO 2 X

. (SERS),,. ( 1.2~ 0.9 V),

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

Application of Statistical Process Control in Pretreatment Production Process of Gardenia jasminoides

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

phase: synthesis of biaryls, terphenyls and polyaryls

Protective Effect of Surface Coatings on Concrete

Slide D-FLOW 8km. 13a. 400mm / d

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Transcript:

17 4 2005 7 PROGRESS IN CHEMISTRY Vol. 17 No. 4 Jul., 2005 3 ( 300072), XRD EXAFS DSC SEM TEM XPS : O643136 ; TQ42618 : A : 10052281X(2005) 0420614208 Preparation and Application of Amorphous Alloy Catalyst Xiong Zhongqiang Mi Zhentao Zhang Xiangwen 3 ( Key Laboratory for Green Chemical Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China) Abstract The development and applications of amorphous alloy catalyst are summarized. The most widely used techniques for the preparation of amorphous alloy catalyst are classified into rapid quenching method, chemical reduction method and impregnation2chemical reduction method. The reaction activity of the catalyst can be adjusted by changing the preparing condition, which including the calcination temperature, the metal load and the carrier. The amorphous structure, surface morphology and activity center can be determined and characterized by XRD, EXAFS, DSC, SEM, TEM and XPS. A detailed discussion of amorphous alloy catalyst in hydrogenation of unsaturated compound is presented. Key words amorphous alloys ; catalysts ; rapid quenching methods ; chemical reduction methods [2 4 ] : +, Fe2B Pd2Si Co2B2Si Ni2Fe2P2B ; +,, Ni2Zr Cu2Zr Pd2Zr, 1934, ;,, 1nm, 15nm 1980 Simth [1 ] 1nm,, 5 15nm : 2004 6, : 2004 9 3 e2mail :zliuying @public. tpt. tj. cn

4 615, ; (2),, ; (3),, ; (4), 011 1m 2 Πg, Ni2Al2P [8,9 ],,,, Ni2P Ni2B Ni2Cu2B 2.,,, PdΠC, 1986 van Wonterghem,, [5 ] 2 2,Ni2B : BH - 4 + 2H 2 O BO - 2 + 4H 2 (1), BH - 4 + 2Ni 2+ + 2H 2 O - 3 : 2Ni + BO 2 + 4H + + 2H 2 (2) BH - 4 + 2H 2 O B + OH - + 2. 5H 2 (3) 11 (2) (3) 1960 Duwez, Willens [6 ],, 106 Πs Al 2 O 3 Au 70 Si 30, (3) (2), B, [10 ] ; [11, ] Ni 2 B Ni 3 B, :, 2BH - 4 + 2Ni 2 + + H 2 O 30mΠs 5mm 30m Ni 2 B + HBO 2 + 2H + + 4. 5H 2 (4), [7 ] 5BH - 4 + 6Ni 2 + + 6H 2 O 2Ni 3 B + 7H + + 11H 2 (5) : (1) : ; (2), 2H 2 PO - 2 + Ni 2 + + 2H 2 O ; (3) 2H 2 PO - 3 + Ni + H 2 (6) : (1) Ni2B 200m 2 Πg,

616 17 [12 ] NaH 2 PO 2 6H 2 O CH 3 COONa, 10gΠL,, 90, 2h,,, 50 100 NiCoB Ni2BΠSiO 2 (10nm),,, SiO 2 NiCl 2, 8 ; Ni2B KBH 4,, 100 % 98 %,, PdΠC [18,19 ] (3) Ni2Co2B, : (1), [20 24 ], ; (2), ; (3) Ni2Co2B KBH 4 NiCl 2 CoCl 3,, KBH 4 = 5 2 (mol),,,, Deng [13 ] 1988, (4) Pd2BΠSiO 2,,,,, Yu [25 ] Pd2BΠSiO 2, PdCl 2 3., ( 100 ) ( 200 ), KBH 4, KBH 4, ( KBH, 4 Pd 2 + = 5 1 (mol) ) ( KBH 4 NaH 2 PO 3 ),,, (1) R2Ni2P Ni2Al2P,Li, [14 ] Ni :4812 %, Al :4817 %, P :311 %, 5mm 10 20nm 1. 200, Ni2BΠSiO 2, - Al BH 4 Ni 2 + Π [26, SiO 2, ] 17 ] (2) Ni2B (P) (110g SiO 2, 198mΠg, 40 60 ) [15,Ni2BΠSiO 2 NiCl 2,100 350,200

4 617, 1 1 Fig. 2 Effect of annealing temperature on conversion for benzene Fig. 1 Dependence of hydrogenation activity of hydrogenation over ultrafine NiP and NiB amorphous acrylonitrile on calcination temperature alloys XPS,, 1 400 350 30 %,, NiP 200,, 300 400,,400,Ni 2 + SiO 2 20 %, X (XAFS) X ;,Ni 2 + (XRD) (DTA) SiO 2,, ; NiB :, Ni 2 + SiO 2, 320 Ni 2 + BH - 4, NiB Ni 3 B 200 Ni 2 B ; 380 1 Ni, Ni 3 B Ni [29 ] Table 1 Dependence of mol ratio of surface Ni on NiP,300 calcination temperature calcination temperature ( ) 0 100 200 300 400 500 mol ( %) Ni 35. 26 38. 21 44. 17 33. 69 14. 72 6. 95 Ni 2 + 64. 74 61. 79 55. 83 66. 31 85. 28 93. 05 2. [27 ], Ni, ; NiP NiB NiP [28 ] :2gNiB, NiP 300 NiP, Ar, Ni 3 P Ni,, 2h 2 2 NiP NiB, NiP Ni Ni 3 P, 360 Ni 3 P Ni, Ni 3 B Ni 2 B NiB, 400, NiB 3.,NiB Ni 2 + BH - 4 Ni2B,350 Ni 2 + 63 %, 1 ;,3 Ni2BΠSiO 2

618 17, 3 Ni Fig. 3 Dependence of reduction percent on Ni content,, Ni 2 + ;,3. Ni 2 + BH - 4 X 614 % : 614 % (XPS),,,, Ni2B B Ni,Ni2P Ni, : P 34 ] ;Beilin [35 ] Ni P ; ; Tamaki [36 ] X ( XRD) X Ni2P RF :Ni2P ( EXAFS) ; P,P (DSC) ( TPR) 25 %, P Ni,P ; X 25 %,P Ni, Ni2B (XPS) B Ni ; (SEM2EDX) ( HRTEM) ; [5,11,30,31 ] 1. 2, 1. 3 : ; ( RDF) (3) (SAED), 1 2. (1) XRD XRD,, ;,, (2) EXAFS Wang, [39 ] Pd Pt Ni K,, [32,

4 619 2 Table 2 Amorphous catalyst in different hydrogenation reactions reaction reaction condition catalyst conversion( %) selectivity( %) benzene2cyclohexane liquid,150,4. 0MPa,4. 0h Ni2BΠAl 2 O 3 (1. 0g,20 %) 100 100 phemethylol2methylbenzene liquid,120,1. 0MPa,ethanol,4. 0h Ni2BΠSiO 2 (1. 0g,20 %) 10. 7 100 adipic dinitrile2hexamethylene diamine [37,38 ] liquid,120,410mpa,ethanol,4. 0h Ni2Co2BΠSiO 2 (1. 0g,20 %) 100 90 cyclopentadiene2cyclopentene [39,40 ] gas2solid,120,s. V. 10h - 1 Ni2BΠSiO 2 (1. 0g,5 %) 100 > 96 cyanobenzene2benzoic amine liquid,110,4. 0MPa,ethanol,4. 0h Ni2Co2BΠSiO 2 (1. 0g,20 %) 78 100 nitrobenzene2aniline liquid,110,1. 0MPa,ethanol,4. 0h Ni2BΠSiO 2 (1. 0g,20 %) 100 100 glucose2sorbitol [41,42 ] liquid,100,4. 0MPa,water,4. 0h 10 %Ni21 %W2BΠSiO 2 (1. 0g) 95 100,, 10h - 1, [39,43 47 ] Ni2BΠSiO 2 3, : 150 112 1 3 Ni2BΠSiO 2 Table 3 Properties of the amorphous Ni2BΠSiO 2 catalysts on cyclopentadiene hydrogenation samples S active (m 2 Πg Ni) S BET (m 2 Πg) V pore (cm 3 Πg) d pore (nm) Ni cont. (wt. %) B cont. (wt. %) conversion ( %) selectivity ( %) Ni2BΠSiO 2 70 183 0. 58 17. 0 4. 3 0. 31 100 96. 2 Ni2BΠSiO 2 a 58 160 0. 53 20. 0 4. 1 0. 29 81. 5 100 a catalyst used for 700h, Al 2 O 3 [48,49 ], Ni2P Ni2PΠSiO 2 Ni2BΠ SiO 2 94 %, 100 % [52 57 2. ] 10gΠg,, Pd2BΠSiO 2 [24,58 ] [59 ] 110MPa 30 [50 ] Ni 80 P 20 Pd2BΠSiO 2,, 98 % 95 %, 200,400, 90 % 8719 [51 ] Li [14 ], Ni2B Ni2Al2P, :C 2 H 2 1. 65 %, C 2 H 4 Al, 110MPa 30 95. 79 %, H 2 2. 56 %, 110 110MPa SiO 2,Cu Al 2 O 3 3.,Raney Ni 90 000h - 1 100 %

620 17 [14,16,18,60 63 ] Ni2P, :015ml 10ml 012g 210MPa,100 4h 3017 %,, Ce :Ni = 0108 :1 62 % Ni2Co2B Ru2BΠSiO 2 [17], : ; 115 : 473 493,,, [ 1 ] Smith G V, Brower W E. Proc. Int. Congr. Catal. 7th, Tokyo, 1980. 355 [ 2 ] ( Tang Z). ( Chemical Industry and Engineering Progress), 2001(2) : 24 30 [ 3 ] (Lv Z G), ( Guo Z M). ( Chemical Industry and Engineering Progress), 2002, 21(8) : 552 555 [ 4 ] ( Tang Z). ( Advances in Fine Petrochemicals), 2000, 1(2) : 23 27 [ 5 ] (Min E Z), (Li C Y). [30] Deng J F, Chen H Y, Bao X H, et al. Applied Surface Science, ( Science and Engineering Foundation of Green Petrochemical Technology). (Beijing) : [31] (Shen B R), ( Fang Z G), ( Fan K N) (China Petrochemical Press), 2002. (Acta Chimica Sinica), 1999, 57 : 366 371 [ 6 ] Duwez P, Willens R H. TMS2AIME, 1963, 227 : 362 [ 7 ] Deng J F, Li H X, Wang W J. Catalysis Today, 1999, 51 : 113 125 [ 8 ] (Zong B N), (Min E Z), ( Zhu Y S). CN 91 111 807. 1, 1993 [ 9 ] Ma A Z, Lu W Z, Zong B N, et al. Research in Chinese Univ., 2000, 16 : 15 [10] Li H X, Li H, Dai W L, et al. Applied Catalysis A : General, 2003, 238 : 119 130 [11] (Ma A Z). ( Chinese Journal of Catalysis), 1999, 20(6) : 603 607 [12] ( Yang J), (Chai L), (Deng J F). (Acta China Sinica), 1994, 52 : 53 58 [13] Deng J F, Zhang X P, Min E Z. Applied Catalysis, 1988, 37 : 339 343 [14] Li H X, Wang W J, Zong B N, et al. Chem. Lett., 1998, 4 : 371 372 [15] Deng J F, Zhang X P. Applied Catalysis A : General, 1988, 37 : 339 343 [16] Deng J F, Zhang X P. Solid State Ionics, 1989, 32 : 1006 1011 (Deng J F), (Zhang X P), (Li D J). (Acta Chimica Sinica), 1991, 49(3) : 209 213 [18] Wang H M, Yu Z B, Chen H Y, et al. Applied Catalysis A : General, 1995, 129 : L143 L149 [19] Yu Z B, Qiao M H, Li H X, et al. Applied Catalysis A : General, 1997, 163 : 1 13 [20] Zhang R B, Li F Y, Zhang N, et al. Applied Catalysis A : General, 2003, 239 : 17 23 [21] (Shi Q J), (Li F Y), (Luo L T). (Journal of Molecular Catalysis), 1999, 13(1) : 9 14 [22] Baiker A. Journal of Molecular Catalysis A : Chemical, 1997, [23] Takahashi T, Inoue M, Kai T. Applied Catalysis A : General, 2001, 218 : 189 195 [24] Takahashi T, Kai T. Materials Science and Engineering, 1999, A267 : 207 213 [25] Yu X B, Wang M H, Li H X. Applied Catalysis A : General, 2000, 202 : 17 22 [26] Li H, Li H X, Dai W L, et al. Applied Catalysis A : General, 2001, 207 : 151 157 [27] (Wei S Q), (Wang X G), ( Yin SL). (Chinese Journal of Catalysis), 2001, 22 (2) : 113 118 [28] (Wang X G), ( Zhang X Y), (Li Z R). ( Chinese Journal of Catalysis), 2001, 22 (4) : 397 401 [29] Li H X, Chen H Y, Dong S Z, et al. Applied Surface Science, 1998, 125 : 115 119 1994, 81 : 341 346 [32] Okamoto Y, Nitta Y, Imanaka T, et al. J. Catal., 1980, 64 : 397 404 [33] Hou YJ, Wang Y Q, He F, et al. Materials Letters, 2004, 58 : 1267 1271 [34] Hou YJ, Wang YQ, He F, et al. Applied Catslysis A : General, 2004, 259 : 35 40 [35] Beilin E, Traverse A, Szasz A, et al. J. Phys. F : Met. Phys., 1987, 17 : 1913 1923 [36] Tamaki J, Imanaka T. Chem. Lett., 1986 : 679 682 [37] Li H X, Xu Y P, Deng J F. New J. Chem., 1999, 23 (11) : 1059 1061 [38] Yu X B, Li H X, Deng J F. Applied Catalysis A : General, 2000, 199 : 191 198

4 621 [39] Wang W J, Qiao M H, Yang J, et al. Applied Catalysis A : General, 1997, 163 (1Π2) : 101 109 [40] Wang W J, Qiao M H, Li H X, et al. J. Chem. Tech. Biotech., 1998, 72(3) : 280 284 [41] Li H, Li H X, Wang WJ, et al. Chem. Lett., 1999, 7 : 629 630 [42] (Qiao M H), (Xie S H), (Dai WL). (Acta Chimica Sinica), 2000, 58(7) : 904 908 [43] Wang W J, Qiao M H, Li H X, et al. Applied Catalysis A : General, 1998, 166 : L243 L247 [44] Wang W J, Qiao M H, Li H X, et al. Applied Catalysis A : General, 1998, 168 : 151 157 [45] Wang W J, Li H X, Xie S H, et al. Applied Catalysis A : General, 1999, 184 : 33 39 [46] Wang W J, Li H, Li H X, et al. Applied Catalysis A : General, 2000, 203 : 301 306 [47] Wang W J, Li H X, Deng J F. Applied Catalysis A : General, 2000, 203 : 293 300 [48] (Chen H Y), (Deng J F), (Sheng S S). (Acta Chimica Sinica), 1994, 52 : 877 882 [49] Varga M, Mulas G, Cocco G, et al. Materials Science and Engineering, 2001, A304Π306 : 462 466 [50] (Song Z), (Hao Z X), ( Tan D L). (Chinese Journal of Catalysis), 1999, 20(3) : 193 198 [51] (Ma A Z), (Lu W Z), (Min E Z). (Petrochemical Technology), 2000, 29(3) : 179 183 [52] Guo H B, Li H X, Zhu J, et al. Journal of Molecular Catalysis A : Chemical, 2003, 200 : 213 221 [53] Guo H B, Li H X, Xu Y P, et al. Materials Letters, 2002, 57 : 392 398 [54] Chen X F, Li H X, Luo H S, et al. Applied Catalysis A : General, 2002, 233 : 13 20 [55] Li H X, Wu Y D, Luo H S, et al. Journal of Catalysis, 2003, 214 : 15 25 [56] Li H, Li H X, Deng J F. Applied Catalysis A : General, 2000, 193 : 9 15 [57] Xie S H, Li H X, Li H, et al. Applied Catalysis A : General, 1999, 189 : 45 52 [58] ( Yu X B), (Wang M H), ( Ye L M). (Journal of Molecular Catalysis), 1999, 13(1) : 3 8 [59] ( Yu X B), (Wang G H), (Li H X). (Journal of Molecular Catalysis), 1999, 13 (5) : 351 356 [60] (Cheng Q Y), (Li W), ( Zhang M H). (Chinese Journal of Catalysis), 2001, 22 (4) : 326 330 [61] (Chen C R), (Jiang M), (Wan X H). (Chinese Journal of Catalysis), 1999, 20 (6) : 659 663 [62] (Li J), (Qiao M H), (Deng J F). ( Chemical Journal of Chinese Universities), 2001, 22(6) : 1022 1024 [63] Xie S H, Qiao M H, Li H X, et al. Applied Catalysis A : General, 1999, 176 : 129 134