Diane Hu LDA for Audio Music April 12, 2010

Σχετικά έγγραφα
1. For each of the following power series, find the interval of convergence and the radius of convergence:

Homework for 1/27 Due 2/5

Ψηφιακή Επεξεργασία Εικόνας

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

4.6 Autoregressive Moving Average Model ARMA(1,1)


Notes on the Open Economy

α β

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Solutions to Exercise Sheet 5

Srednicki Chapter 55

Solution Series 9. i=1 x i and i=1 x i.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Inertial Navigation Mechanization and Error Equations

Second Order RLC Filters

Exercises to Statistics of Material Fatigue No. 5

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

( ) 2 and compare to M.

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Lecture 2. Soundness and completeness of propositional logic

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

6. MAXIMUM LIKELIHOOD ESTIMATION

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Homework 4.1 Solutions Math 5110/6830

Partial Differential Equations in Biology The boundary element method. March 26, 2013

The Simply Typed Lambda Calculus

derivation of the Laplacian from rectangular to spherical coordinates

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Math221: HW# 1 solutions

Other Test Constructions: Likelihood Ratio & Bayes Tests

Solutions: Homework 3

Partial Trace and Partial Transpose

C.S. 430 Assignment 6, Sample Solutions

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

2 Composition. Invertible Mappings

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Tutorial on Multinomial Logistic Regression

Syntactic Topic Models Supplement

6.3 Forecasting ARMA processes

Approximation of distance between locations on earth given by latitude and longitude

ST5224: Advanced Statistical Theory II

Section 7.6 Double and Half Angle Formulas

Example Sheet 3 Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Every set of first-order formulas is equivalent to an independent set

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Bessel function for complex variable

w o = R 1 p. (1) R = p =. = 1

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Matrices and Determinants

Section 8.3 Trigonometric Equations

Higher Derivative Gravity Theories

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

Homework 8 Model Solution Section

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Numerical Analysis FMN011

Fractional Colorings and Zykov Products of graphs

PARTIAL NOTES for 6.1 Trigonometric Identities

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Tridiagonal matrices. Gérard MEURANT. October, 2008

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Inverse trigonometric functions & General Solution of Trigonometric Equations

The Heisenberg Uncertainty Principle

Areas and Lengths in Polar Coordinates

LAD Estimation for Time Series Models With Finite and Infinite Variance

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Degenerate Perturbation Theory

Differential equations

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

On Generating Relations of Some Triple. Hypergeometric Functions

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Solve the difference equation

Calculating the propagation delay of coaxial cable

Tired Waiting in Queues? Then get in line now to learn more about Queuing!

ECON 381 SC ASSIGNMENT 2

Parametrized Surfaces

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Statistical Inference I Locally most powerful tests

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Outline. Detection Theory. Background. Background (Cont.)

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Areas and Lengths in Polar Coordinates

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

Transcript:

Diae Hu LDA for Audio Music April, 00 Terms Model Terms (per sog: Variatioal Terms: p( α Γ( i α i i Γ(α i p( p(, β p(c, A j Σ i α i i i ( V / ep β (i j ij (3 q( γ Γ( i γ i i Γ(γ i q( φ q( ω { } (c A T Σ (c A i γ i ( (4 (5 φ i i (6 V ω j j ( ωj j (7 {,..., K} is a scalar represeted by a K vector, where i for a uique i. j is a biary V vector idicatig which of the pitches are o for the th segmet. c is a cotiuous V vector represetig the chromogram for that time period {,, c} are the sequece of {topics, words, chromograms} withi a sog. There are N of each. A is a V V matri Joit Distributio p(,,, c α, β, A p( α p( α p( p(, β p(c, A (8 Σ N/ { ep } (c K A T Σ (c A j V ( i β ij i j (9

Diae Hu LDA for Audio Music April, 00 3 Margial Distributio (Likelihood p(c α, β, A p( α p( p(, β p(c A (0 p( α p( p(, β p(c, A ( 4 Variatioal Distributio 5 Decompose Log-likelihood q(,, γ, φ, ω q( γ q( φ q( ω ( For readability, we drop depedece parameters below. 6 Lower-Boud l p(c α, β, A q(,, l p(,,, c q(,, [ p(,,, c q(,, l l q(,, q(,, l p(,,, c q(,, p(,, q(,, q(,, l p(,, q(,, (3 (4 (5 L(γ, φ, ω; α, β, A KL( q(,, p(,, (6 L(γ, φ, ω; α, β, A q(,, l p(,,, c q(,, d (7 q(,, l p(,,, c d q(,, l q(,, d (8 E q [l p(,,, c α, β, A E q [l p(,, γ, φ, ω (9 E q[l p( α + E q [l p( + E q [l p(c, A + E q [l p(, β E [l q( γ E q [l q( φ E [l q( ω (0

Diae Hu LDA for Audio Music April, 00 Where, E q [l p( α l Γ( α i l Γ(α i + (α i (Ψ(γ i Ψ( γ i ( E q [l p( E q [l p(c, A E q [l p(, β φ i (Ψ(γ i Ψ( γ i ( l Σ N/ j i j k c T kσ kj c j + j i j k l j k c T kσ kl A ljω j (ω j ωjm jj + ω j ω k M kj (3 φ i l β ij ω j (4 E [l q( γ l Γ( γ i l Γ(γ i + (γ i (Ψ(γ i Ψ( γ i (5 E q [l q( φ E [l q( ω j φ i l φ i (6 ωj T l ω j + ( ωj T l( ω j (7 The mai differeces from the origial LDA model occur i the terms show i eq. (3, 4, 7: i E q [l p(c, A E q [l p(c, A (8 [ N l Σ + E N/ q (c A T Σ (c A l Σ N/ l Σ N/ tr [ N l Σ N/ c T Σ c + c T Σ AE q [ c T Σ c + c T Σ Aω ( diag(ω ω + ω ω T A T Σ A j k c T kσ kj c j + j (9 E q [ T A T Σ A (30 (3 j k l j k c T kσ kl A ljω j (ω j ωjm jj + ω j ω k M kj (3 3

Diae Hu LDA for Audio Music April, 00 E q [l p(, β E q [l p(, β E q l β (i j ij (33 j j E q [l q( ω E q [l E q [ i j l β ij j j E q [E i q [ j l β ij (34 φ i l β ij ω j (35 q( ω j (36 (37 V E q l ω j j ( ω j j (38 j j E q [ j l ω j + ( E q [ j l( ω j (39 ωj T l ω j + ( ωj T l( ω j (40 Gettig from the last term i eq. (30 to eq. (3 is show i sectio A.. I eq. (34, ad are idepedet of each other, so we ca break up the epectatio. 7 Iferrig Variatioal Parameters 7. Iferrig φ i We maimie the lower boud L(γ, φ, ω; α, β, A with respect to the elemets of φ: ( K L [φi φ i (Ψ(γ i Ψ i γ ( V i + φ i j ω V j l β ij φ i l φ i + λ j φ i (4 Take the derivative of L [φi: L ( ( [φi K Ψ(γ i Ψ i φ γ i + V j ω j l β ij l φ i + λ (4 i Settig eq. (4 equal to 0 ad solvig for φ i : { ( K } { φ i ep Ψ(γ i Ψ i γ V } i ep j ω j l β ij { ( K } ep Ψ(γ i Ψ i γ V i j (43 β ij ω j (44 7. Iferrig ω j Let M A T Σ A. 4

Diae Hu LDA for Audio Music April, 00 We maimie the lower boud L(γ, φ, ω; α, β, A with respect to the elemets of ω: L [ωj Take the derivative of L [ωj: k l + c T kσ kl A ljω j (ω j ω jm jj ω j ω k M kj k φ i l β ij ω j ωj T l ω j ( ωj T l( ω j (45 L [ωj ω j k l c T kσ kl A lj M jj k j ω k M kj + ( ωj φ i l β ij l ω j (46 Set eq. (46 equal to 0 ad solve for ω : ( ωj l ω j k l ω j σ k l σ k l c T kσ kl A lj M jj k j ω k M kj + φ i l β ij (47 c T kσ kl A lj M jj k j ω k M kj + φ i l β ij (48 c T kσ kl A lj (AT Σ A jj k j ω k (A T Σ A kj + A more detailed derivatio of the derivative i eq. (46 ca be foud i sectio A.. Notes o choosig Σ ad A: Let A ai ad Σ δi. The, eq. (49 ca be writte as φ i l β ij (49 ω j c j δa a δ + (50 8 Parameter Estimatio The parameters for α ad β eist at the corpus level, ad L ow represets the overall variatioal lower boud. This is the sum of the idividual variatioal bouds for each sog i the corpus. 8. Estimatig β We maimie the lower boud L(γ, φ, ω; α, β, A with respect to the matri β ij : L [βij Take the derivative of L [βij: MN d φ i ω j l β ij + d j λ i β ij (5 j L [βij β ij MN d d φ i ω j + β ij λ i (5 5

Diae Hu LDA for Audio Music April, 00 Set eq. (5 to 0 ad solve for β ij : β ij ( M N d d φ i ω j β ij λ i (53 MN d d φ i ω j ( M ω φ d ij (54 The last term i eq. (5 is a Lagrage multiplier that restricts all rows of β to sum to. 8. Estimatig A 8.. Method : Ifer A from model We maimie the lower boud L(γ, φ, ω; α, β, A with respect to the matri A: L [A MN d d c T Σ Aω [( tr diag(ω ω + ω ω T A T Σ A (55 Take the derivative of L [A : L [A A MN d d ( c T Σ ω diag(ω ω + ω ω T A T Σ (56 Set eq. (56 equal to 0 ad solve for A: ( M N T ( d A Σ c T M Σ ω d N d d diag(ω 8.. Method : Estimate A ad Σ from groud-truth ω + ω Give that both c ad are observed, we use MLE to estimate A ad Σ from eq. (??: L l ω T (57 p(c, A, Σ (58 Maimie L with respects to A: N l Σ (c A T Σ (c A (59 N l Σ tr[ct Σ c + tr[c T Σ A tr[t A T Σ A (60 Isolate terms: L [A tr[ac T Σ tr[at Σ A T (6 L [A Take derivative: A Σ c T Σ A T (6 Set equal to 0 ad solve for A: A c T ( T (63 6

Diae Hu LDA for Audio Music April, 00 Maimie L with respect to Σ. Let Z Σ : 9 Variatioal EM Isolate terms: L [Z N l Z tr[zcct + tr[zac T tr[(at ZA (64 Take derivative: L [Z Z Z cct + c T A T AT A T (65 Set equal to 0 ad solve for Z: Z Σ cct + c T A T AT A T (66. (E-step Fi the curret model parameters α, β, ad A. Compute variatioal parameters {γ m, φ m, ω m } for each sog s m by miimiig the KL divergece: γ i α i + φ i (67 φ i ep[ψ(γ i k l V ω β j ij (68 j ω j σ c T kσ kl A lj (AT Σ A jj ω k (A T Σ A kj + k j φ i l β ij (69. (M-step Fi the curret variatioal parameters γ, φ, ad ω across all sogs from the E-step. Maimie the lower boud L(α, β, A, γ, φ, ω with respect to the model parameters: β M ω φ (70 d ( M N T ( d A Σ c T M Σ ω d N d d diag(ω ω + ω ω T (7 The variatioal parameters all deped o each other, so at each step of the variatioal EM, full variatioal iferece requires alteratig betwee eqs. (67, (68, ad (69 util the boud coverges. The update rule for α is the same as i the LDA paper; it caot be computed directly A Derivatio Details A. Computig E q [c, A We show how to derive the last term of eq. (3 from the last term of eq. (30. Give the distributio for q( ω, we first show how to calculate the term E q [ T : E q [ i j δ ij ω i + ( δ ij ω i ω j (7 δ ij (ω i ω i + ω i ω j (73 7

Diae Hu LDA for Audio Music April, 00 I matri form: E q [ T ω ω ω... ω ω V ω ω ω... ω ω V.... ω V ω ω V ω... ω V diag(ω ω + ω ω T δ ij if i j, ad 0 otherwise The first term i eq. (7 accouts for the case that i j, so E q [( i. The square does ot affect the epected value of the multiomial, so E q [( i E q [ i ω i. The secod term accouts for the case whe i j. Sice i ad j are idepedet, we ca break up the epectatio ito E q [ i j E q [ i E q [ j ω i ω j. Now, we show how to compute the last term of eq. (3: E q [ T A T Σ A E q tr[ T A T Σ A (74 E q tr[ T A T Σ A (75 [ N tr E q [ T A T Σ A (76 tr [ N ( diag(ω ω + ω ω T A T Σ A It will be useful later o to epress eq. (77 i scalar form, so we cotiue epadig. Let M A T Σ A. [ E q [ T A T Σ A N tr ( diag(ω ω + ω ω T M (77 (78 tr [ diag(ω ωm + tr [ ω ω T M (79 (ω j ωjm jj + ω j ω k M kj (80 j j k Sice, the term iside the epected value is a scalar i eq. (74, it is trivially equivalet to take the trace of it. 8

Diae Hu LDA for Audio Music April, 00 A. Computig ω j E q [ T A T Σ A f (ω j ωjm jj + ω j ω k M kj (8 j f [ωj (ω j ω jm jj + j k ω j ω k M kj (8 k V ω j M jj ωjm jj + ωjm jj + ω j ω k M kj (83 f ω j M jj + k j ω k M kj (84 k j Refereces [ Hu, D. J., Saul, L. K. A probabilistic topic model for music aalysis, Neural Iformatio Processig Systems (NIPS Applicatios for Topic Models Workshop, 009. 9