43 2015 3 FENXI HUAXUE Chinese Journal of Analytical Chemistry 3 399 ~ 403 DOI 10. 11895 /j. issn. 0253-3820. 140659 1 2 1 2 2 2 * 1 1 100081 2 100089 PP 2 6- BHT 3 5- -4-1010 190 PP 0. 1 mm HPLC PDA 282 nm PP 95% BHT 1010 BHT Weibull Piringer Weibull R 2 0. 99 Weibull Piringer Weibull Piringer τ 12. 2 /D 1 PP PP 2 6- BHT C 15 H 24 O 3 5- -4-1010 C 73 H 108 O 12 1 2 3 PP 4 5 Begley 6 PP PE Piringer Galotto 7 LDPE 1076 D Pocas 8 4 PP PE Weibull PP HPLC PP BHT 1010 2 2014-08-02 2014-11-02 * E-mail yjluo@ bit. edu. cn
400 43 Fick 1 9 Baner 10 Piringer 2 PP M $ = 1-8 π 2 $ n = 0 C t = D 2 C x 2 1 1 2n + 1 2exp - Dt 2n + 1 2 π 2 2 t t 11 M D L 2 t 3 8 12 = /M P C $ = M $ /M P mg /kg M p 3 4 M $ = 1-8 π 2exp - π 2 Dt 3-9. 87Dt - 0. 811C $ exp 4 Weibull Waloddi Weibull 5 13 t M 0 M t τ β 0 M 0 = 0 C 0 = 0 C Weibull 5 6 - M $ = exp - t β - M $ τ M 0 5 - C $ exp - t β τ 6 3 3. 1 HAAKE PolyLab OS Thermo LC-20A HPLC PDA HPLC Fisher Scientific HPLC J. T Baker 2 6-99. 0% Sigma-Aldrich 3 5- -4-98% Sigma-Aldrich PP Milli-Q 3. 2 PP 1010 BHT HAAKE PolyLab OS 190 190 PP 0. 1 mm 0. 1% ~ 0. 5% 1 3. 3 1. 0 ml /min A B 0 ~ 5 min 75% A 5 ~ 20 min 100% A 20 ~ 25 min 100% A 25 ~ 30 min 75% A 45 20 μl 282 nm Phenomenex C 18 250 mm 4. 6 mm 5 μm BHT 1010 10. 28 21. 43 min
3 401 3. 4 1 PP PP 4 cm 3 cm Table 1 Content of antioxidants in polypropylene PP film sample PP 2 60 ml BHT 1010 40 ml 95% PP Sample No. BAT conc. % Irganox 1010 % 40 1# 0. 1 0. 1 2# 0. 2 0. 2 20 μl HPLC 3# 0. 4 0. 4 4# 0. 6 0. 6 BHT 2 6-Di-tert-butyl-4-methyl-phenol. Irganox 1010 Penta-erythritol tetrakis 3-3 5-di-tert-butyl-4-hydroxyphenyl propio- 4 nate. 4. 1 GB /T 23296. 1-2009 4 3% w /V 10% V /V 95% V /V 11 6 dm 2 1 kg 1 kg /L 1 kg 1 L - 6 dm 2 /L 24 cm 2 /40 ml mg /kg 3# 4 2 1010 4 BHT 10% 95% 1010 PP BHT GB /T 23296. 1-2009 3 95% 40 2 1010 BHT 40 240 h Table 2 Migration level of Antioxidants 1010 and BHT in different food stimulants 40 240 h Distilled water 3% w /V 3% Acetic acid w /V 10% V /V 95% V /V 10% Ethanol V /V 95% Ethanol V /V BHT mg /kg n. d. 0. 07 10 3 0. 154 10 3 2. 06 10 3 Irganox1010 n. d. n. d. n. d. n. d. n. d. not detected. 4. 2 HPLC BHT t 1 Origin Piringer 4 Weibull 6 Piringer D C Weibull τ β C 3 4 2 3 Weibull R 2 Piringer 2a Piringer PP BHT 1 2b Fig. 1 change over time graph Weibull 1 The number is the same as in Table 1 4. 3 Weibull Piringer 2 β 0. 965 1 5 6 7 - C $ exp - 0. 21 - t B B = 9. 87D 7
402 43 2 Fig. 2 a Weibull b Piringer Model fitting curves a Weibull model b Piringer model 1 The number is the same as in Table 1 Piringer 7 B Weibull τ 3 4 B τ τ 0. 81B 8 8 Weibull Piringer β = 1 τ L D 9 8 τ 12. 2 /D 8 τ /D 9 3 Weibull Piringer PP Fig. 3 Relationship between Weibull and Piringer BHT 8 migration model parameters 8 3 Piringer Weibull Table 3 Piringer model and Weibull model fitting parameters No. 1# 2# 3# 4# Pringer Piringer model fitting results Migrating equation = C -0. 811 C "9. 87 D t exp Migration D equilibrium Diffusion quantity coefficient 10 "9 C mm 2 /s 10 3 mg /kg Goodness of fit R 2 2. 49 0. 476 0. 97 2. 77 1. 23 0. 99 2. 88 2. 05 0. 99 3. 96 3. 60 0. 99 1 The number is the same as in Table 1 5 Weibull Weibull model fitting results Migration equilibrium Scale Shape Migrating parameter parameter equation τ β = C -C exp - t τ β quantity C 10 3 mg /kg 78. 2 1. 13 0. 491 0. 99 Goodness of fit R 2 128 0. 910 1. 34 0. 999 118 0. 940 2. 20 0. 999 147 0. 880 4. 07 0. 999 PP PP Weibull Piringer PP Weibull Weibull Piringer
3 403 References 1 Gillet G Vitrac O Tissier D Saillard P Desobry S. Food Additives and Contaminants 2009 26 12 1556-1573 2 WANG Hui-Juan DING Li LI Zhong-Hai REN Jia-Li GUO Xiao-Bing. Packaging Engineering 2013 34 13 16-19. 2013 34 13 16-19 3 GUO Chun-Hai CHEN Rui-Chun MA Yu-Song L Hong-Ying AI Lian-Feng. Packaging Engineering 2011 32 17 20-24. 2011 32 17 20-24 4 Margarita A Vera P Canellas E. J. Mater. Chem. 2011 21 12 4358-4370 5 Zeddam C N Bensemra B. International Journal of Polymeric Materials 2010 59 9 318-329 6 Begleya T Castleb L Feigenbaumc A Franzd R Hinrichse K Licklyf T Merceag P Milanah M O'Brieni A Rebrej S Rijkk R Piringer O. Food Additives & Contaminants 2005 22 2 73-90 7 Galotto M J Torres A Guarda A Moraga N Romero J. Food Research International 2011 44 9 3072-3078 8 Po as M F Oliveira J C Brandsch R Hogg T. Journal of Food Process Engineering 2012 35 4 657-676 9 Crank J. The Mathematics of Diffusion. London Oxford University Press 1979 20-45 10 Baner B J Franz A Piringer R. Food Additives & Contaminants 1996 13 5 587-601 11 Materials and Articles in Contact with Foodstuffs-Plastics Substances Subject to Iimitation-Guide to Test Methods for the Specific Migration of Substances from Plastics to Foods and Food Simulants and Determination of Substances in Plastics and the Selection of Conditions of Exposure to Food Stimulants. National Standards of the People's Republic of China. GB / T 23296. 1-2009.. GB /T 23296. 1-2009 12 Po as M F Oliveira J C Oliveira F A R Hogg T. Critical Reviews in Food Science and Nutrition 2008 48 10 913-928 13 Po as M F Oliveira J C Pereira J R. Food Control 2011 22 2 303-312 Study on Migration Model of Antioxidants in Food Contact Polypropylene Plastics CHI Hai-Tao 1 2 LIU Ying 1 GAO Xia 2 LIU Wei-Li 2 HU Guang-Hui 2 LUO Yun-Jun * 1 1 School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081 China 2 Beijing Center for Physical and Chemical Analysis Beijing Key Laboratory of Organic Material Detection Technology and Quality Evaluation Beijing 100089 China Abstract A PP plastic film for food packaging 0. 1 mm was prepared by adding two antioxidants of 2 6-di-tert-butyl-4-methyl-phenol BHT and pentaerythritol tetrakis 3-3 5-di-tert-butyl-4-hydroxyphenyl propionate Irganox 1010 with different concentrations into polypropylene PP resin then mixing extrusion granulate by the double screw plastic extruder and hot pressing the film at 190. The migration amount of the two antioxidants in food simulants 95% ethanol was determined by high performance liquid chromatography HPLC with diode array detector PDA detection wavelength is 282 nm. The migration of BHT was detected and Irganox 1010 was not detected. Based on the large amount of experimental data the migration model was fitted by a software then the migration model of antioxidant BHT was established the applicability of the two migration model was compared with the actual data. The results showed that the fitting degree R 2 of Weibull model to the actual migration result was greater than 0. 99 and better than Piringer model. It was found that there was a mathematical relationship as τ 12. 2 /D between parameters of Weibull model and Piringer model. Keywords Migration Model Polypropylene Antioxidant Received 2 August 2014 accepted 2 November 2014