339 Vol. 32, pp. 339 356, 2004 : in vitro : 16 8 20 in vitro 538 828 In vitro 6 3 b in vitro in vitro in vitro in vitro 2000 2002 40 5.8 1 121
340 evidence-based medicine: EBM 1 b a 1 2 b 3 b 4 5 6 7 9 in vitro : 1 2 3 in vitro: 1 : 538 828 1 b a 1b 10 b 0.5 0.5 0.5 0.5 XE 0.5 TG 2 2 5 a 1 b 2 2 2 122
341 1 1 a 1 0.01 0.1 0.1 2 FL- 500 11 BSS PLUS 0.5 3 ml 10 BSS PLUS 20 ml 30 20 FL-500 3 superficial punctuate keratopathy;spk AD 12 A area, D density SPK 4 tear film break up time BUT Schirmer I 13 14 BUT 3 BUT 5.0 Schirmer I 0.4 5 1 3 5mm 5 5.0 mm 5 paired t-test Mann- Whitney U-test 5 in vitro: Epilife HCGS KC-6450 Cell Titer 96 One Solution Cell Proliferation Assay 0.5 2 1 1 25 cm 3 1 105 ml 96 well 50 ml 0.5 104 100 ml 24 2 10 2560 48 20 ml 37 C 1 490 nm 2 1 2 18 4 100 100 2 123
342 Fig. 1. Time course of corneal fluorescein uptake after topical administration of antiglaucoma eyedrop. Timolol group n 10 Unoprostone group n 10 Pilocarpine group n 10 paired t test p 0.05 Values are mean SD. ANOVA Bonferroni Dunnett[s test 1 1 12 Fig. 1 0.5 10 10 10 10 2 10 10 3 73.2 77.6 ng ml 3 6 94.2 105.6 ng ml p 0.05 6 81.6 89.2 ng ml 71.7 79.8 ng ml 1 1 b 55 55 26 XE 10 TG 11 8 21 22 12 Fig. 2 111.8 ng ml 3 140.3 ng ml p 0.05 126.7 144.7 ng ml 111.8 ng ml 5 132.8 p 0.05 124.8 133.1 ng ml 104.7 ng ml 106.7 119.6 ng ml 6 2 124
343 Fig. 2. Time course of corneal fluorescein uptake after addition of antiglaucoma eyedrop. Latanoprost adition group n 22 Unoprostone adition group n 21 Dorzolamide adition group n 12 paired t test p 0.05 Values are mean SD. 5 538 828 204 297 34 2 239 358 43 3 59 107 15 4 22 39 5 5 14 27 3 2 5 Fig. 3 6.9 0.8 98.8 ng ml 2 6.3 2.3 118.4 ng ml 3 6.4 1.7 130.6 ng ml 2 2 3 p 0.05 4 6.7 2.1 5 7.9 3.2 131.8 ng ml 133.9 ng ml 3 3 6 n 5 6 n 5 1 Fig. 4, Table 1. 40 58 11 22 60.8 29.1ng ml 61.2 18.7 ng ml 2 70.2 34.8ng ml 70.7 26.5 ng ml 77.0 47.2 ng ml b 2 106.3 57.1 ng ml 0.5 TG 107.6 50.3 ng ml 0.5 XE 117.4 56.5 ng ml 0.5 124.9 50.1 ng ml 125
344 Fig. 3. Corneal fluorescein uptake versus number of antiglaucoma eyedrop. Values are mean SD. 132.4 47.6 ng ml 115.5 53.0 ng ml SPK 0.05 0.22 0.07 0.26 0.5 TG 0.08 0.29 2 0.09 0.30 0.5 XE 0.13 0.34 0.14 0.35 0.5 0.18 0.31 0.19 0.30 SPK Fig. 5 BUT 8.3 1.7 7.6 1.3 7.4 2.0 7.3 1.3 0.5 TG 6.7 1.0 2 6.5 1.3 6.4 1.6 0.5 5.9 1.3 0.5 XE 5.8 2.0 5.8 1.5 BUT Schirmer I 9.7 2.6 mm 11.9 5.5 mm 0.5 TG 8.6 3.4 mm 8.0 2.4 mm 7.9 2.9 mm 0.5 7.7 2.1 mm 2 7.3 2.0 mm 0.5 XE 7.2 0.9 mm 6.5 2.7 mm 6.1 1.6 mm 2 Fig. 6, Table 2 2 21 6.8 3.4 n 4 n 4 n 3 5 b 120 ng ml 0.5 XE TG 120.5 ng ml 122.1 ng ml 126.7 ng ml 141.5 ng ml 143.9 ng ml 145.7 ng ml b 126
345 Fig. 4. Fluorescein uptake after asingle antiglaucoma eyedrop. Pilocarpine: PL Unoprostone: UP Latanoprost: LP Timolol: TM Timoptol XE: XE Rysmon TG: TG Betaxolol: BX Carteolol: CT Nipradilol: NP Values are mean SD. Table 1. Background of Patients in the Group Receiving Eye Drops for a Long Period 130 ng ml 130.8 ng ml 157.3 ng ml 158.7 ng ml b 122.7 ng ml b 113.1 118.4 ng ml 81.3 ng ml 89.5 ng ml b p 0.05 3 Fig. 7, 127
346 Fig. 5. Fluorescein staining score after asingle antiglaucoma eyedrop. Pilocarpine: PL Unoprostone: UP Latanoprost: LP Timolol: TM Timoptol XE: XE Rysmon TG: TG Betaxolol: BX Carteolol: CT Nipradilol: NP Values are mean SD. Table 3. 3 14 6.8 3.4 TG n 2 n 4 n 4 n 2 5 83.7 ng ml 218.5ng ml n 8 XE 218.3 ng ml n 6 4 Fig. 8, Table 4. 4 10 7.5 4.8 n 4 TG n 2 n 1 5 85.6 ng ml 0.5 XE 165.9 ng ml n 6 5 7 10 160.4ng ml 6.7 4.6 Table 4. 5 54.3 161.2 ng ml 4 Fig. 9 : n 8 0.494 0.064 0.541 0.116 0.5 0.526 0.074 1 0.478 0.035 0.551 0.091 2 128
347 Fig. 6. Fluorescein uptake after varying combination of two antiglaucoma eyedrops. Unoprostone: UP Latanoprost: LP Timolol: TM Timoptol XE: XE Rysmon TG: TG Betaxolol: BX Carteolol: CT Nipradilol: NP Values are mean SD. Table 2. Background of Patients in the Group Receiving Eye Drops for a Long Period 0.569 0.091 0.450 0.028 10 160 100 40 100 80 88 160 70 b 80 90 160 22 40 100 80 61 160 15 2 40 93 80 51 0.5 129
348 Fig. 7. Fluorescein uptake after varying combination of three antiglaucoma eyedrops. Pilocarpine: PL Unoprostone: UP Latanoprost: LP Timolol: TM Timoptol XE : XE Rysmon TG: TG Betaxolol: BX Carteolol: CT Nipradilol: NP Dorzolamide: DO Bunazosin: BU Values are mean SD. Table 3. Background of Patients in the Group Receiving Eye Drops for a Long Period 40 47 80 12 b 40 40 1 2003 1 10 10 16 130
349 Fig. 8. Corneal fluorescein uptake after varying combination of four antiglaucoma eyedrops. Pilocarpine: PL Unoprostone: UP Latanoprost: LP Timolol: TM Timoptol XE: XE Rysmon TG: TG Betaxolol: BX Carteolol: CT Nipradilol: NP Dorzolamide: DO Bunazosin: BU Dipivefrin: DI Values are mean SD. Table 4. Background of patients in the group receiving eye drops for a long period 4 7 8 131
350 Fig. 9. Inhibitory e#ects of topical antiglaucoma eyedrops on corneal epithelial proliferation. : Unoprostone : Latanoprost : Carteolol : Timolol : Betaxolol : Nipradilol : Dorzolamide Values are mean SD. 2 20 7 18 SPK delayed staining 19 20 21 0.5 3 ml 22 1 6 3 5 6 34 66 2 132
351 23 25 6 3 4 3 4 5 6 26 27 b 6 b 28 29 6 BUT b 29 Hoh 30 b 0.2 1.4 0.5 BUT Schirmer 1 0.5 XE 31 0.5 TG 32 SPK b 0.5 XE 31 0.5 TG 10 C 32 34 C 32 0.5 TG 33 BUT BUT 6.7 Schirmer test 8.6 mm 133
352 2 b 140 ng ml b 150 ng ml 4 b 120 ng ml 3 b a 1 b b 83.7 ng ml XE 218.5 ng ml 157.2 ng ml 3 b b b 3 2 10 4 5 4 7 5 1 b 85.6 124.7ng ml XE TG 128.3 165.9 ng ml 3 b 1981 34 5 6 tight junction 35 36 134
353 3 36 in vitro b b b 37 reflex loop 38 26 in vitro in vitro in vitro SPK 1 2003; 107: 125 157 2 1998; 15: 493 496 3 1998; 15: 497 501 4 TGTM 1 2002; 53: 800 803 5 b 2001; 105: 149 154 135
354 6 2000; 17: 1567 1570 7 2000; 104: 737 739 8 2001; 55: 1995 1999 9 1993; 10: 887 891 10 2000; 10: 243 251 11 1994; 98: 641 647 12 1994; 48: 183 188 13 1995; 37: 765 770 14 1996; 13: 829 836 15 2004; 108: 75 83 16 2003; 57: 1755 1760 17 1 2004: 305 311 18 1 1999: 387 392 19 Wolosin, J. M. Regeneration of resistance and ion transport in rabbit corneal epithelium after induced surface cell exfoliation. J. Membr. Biol 1988; 104: 45 55 20 Wang, Y. ZO-1 in corneal epithelium; Stratal distribution and synthesis induction by outer cell removal. Exp. Eye Res 1993; 57: 283 292. 21 Huang, AJW. Paracellular permeability of corneal and conjunctival epithelia. Invest. Ophthalmol. Vis. Sci 1989; 30: 684 689. 22 Yokoi N, Kinoshita S. Clinical evaluation of corneal epithelial barrier function with the slit lamp fluorophotometer. Cornea 1995; 14: 485 489. 23 1987; 58: 7 12 24 1991; 8: 1599 1603 25 1994; 48: 1099 1102 26 F2a 1998; 102: 101 105 27 2001; 105: 333 337 28 : b 1995; 49: 395 397 29 1998; 49: 811 816 30 Hoh H & Nastainczyk W. b-blocker und Hornhautsensibilitat. Fortschr Ophthalmol 1991; 88: 515 521 31 Timolol GS 1 1995; 12: 1607 1612 32 2001; 18: 3 7 33 T TG 2003; 20: 1183 1185 136
355 34 KT-210 III 0.5 1996; 13: 1771 1783 35 1 1997: 2 13 36 Iwata, T.: In vitro studies on the permeability of the corneal epithelium with horseradish peroxidase Jpn J. ophthalmol. 1975; 19: 139 152. 37 Van Buskirk EM. Corneal Anesthesia after timolol maleate therapy. Am J Ophthalmol 1979; 88: 739 743. 38 Yokoi N, Komuro A, Takehisa Y, Kinoshita S: Clinical assessment of conjunctival damage and tear film stability in drug-induced epithelial keratopathy. In Lass JH Eds : Advances in corneal research: Selected transaction of the world cornea congress. Plenum Press, New York, 1998; 57 63. 137
356 Abstract E#ects of Antiglaucoma Eye Drops on the Cornea: In clinic in vitro Naoto Tokuda, Yumiko Aoyama, Jun Inoue and Satoki Ueno Purpose: To elucidate the e#ects of antiglaucoma eyedrops on the cornea in clinic and in vitro. Patients and methods: In the clinic corneal epithelial barrier function was examined by fluorophotometry in 538 eyes of 828 glaucoma patients treated with various antiglaucoma eyedrops. In vitro, to investigate the e#ects of antiglaucoma eyedrops on the proliferation of human corneal epitherial cells. Results: Fluorescein uptake in the cornea increased following administration of antiglaucoma eyedrops and reached a plateau by 6 months. Among eyes concurrently treated with more than 1 medication, the barrier function of eyes treated with 2 or 3 medications was significantly lower than that of eyes treated with 1 medication. As to eyes treated with a single medication, parasymapathetic nerve stimulating agents and prostaglandin analogues did not reveal marked change in the barrier function, while beta-blockers reduced the barrier function. In the case of multidrug use, a combined regimen of prostaglandin analogues and beta-blockers, specifically betaxolol and timolol, a#ected the corneal epithelial barrier. These results suggest that topical administration of prostaglandin analogues inhibits the proliferation of human corneal epithelial cells more strongly than topical administration of beta-blockers. Although timolol has a low toxicity on corneal epithelial cells in vitro, it may alter the corneal epithelial barrier function when applied clinically and may a#ect corneal sensitivity and tear fluid dynamics. Therefore, caution should be taken when administering timolol in combination with other antiglaucoma eyedrops. Prostaglandin analogues has a high toxicity on corneal epithelial cells in vitro, however prostaglandin analogues did not reveal marked change in the barrier function. Conclusions: This study demonstrates that clinical as well as in vitro evaluations are important for assessing the e#ects of antiglaucoma eyedrops on the corneal epithelium. Department of Ophthalmology, St Marianna University School of Medicine 138