Vol. 41 No Journal of Jiangxi Normal University Natural Science Nov. 2017

Σχετικά έγγραφα
The martingale pricing method for pricing fluctuation concerning stock models of callable bonds with random parameters

ADVANCES IN MECHANICS Jan. 25, Newton ( ) ,., Newton. , Euler, d Alembert. Lagrange,, , Hamilton ( )

A method of power system harmonic detection based on wavelet transform

High order interpolation function for surface contact problem

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

EXISTENCE AND UNIQUENESS THEOREM FOR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITION

21 2 TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY Feb TM464

Exact linearization control scheme of DFIG

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

Space-Time Symmetries

Research Article Existence of Positive Solutions for Fourth-Order Three-Point Boundary Value Problems

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Adaptive grouping difference variation wolf pack algorithm

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

Reading Order Detection for Text Layout Excluded by Image

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

. i-vector, Total Variability Subspace Adaptation Based Speaker Recognition. Brief Paper ACTA AUTOMATICA SINICA Vol. 40, No. 8 August, 2014.

Quick algorithm f or computing core attribute

ER-Tree (Extended R*-Tree)

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Mellin transforms and asymptotics: Harmonic sums

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Area Location and Recognition of Video Text Based on Depth Learning Method

STABILITY OF ABERRATION RETRIEVAL METHOD USING SPOT IMAGES

Approximate System Reliability Evaluation

DOI /J. 1SSN

Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment

ADVANCED STRUCTURAL MECHANICS

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

Motion analysis and simulation of a stratospheric airship

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

Congruence Classes of Invertible Matrices of Order 3 over F 2

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

An Appro ach for Shot Retrieval by Optimal Matching in the Bipartite Graph

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

CorV CVAC. CorV TU317. 1

Research on explaining porosity in carbonate reservoir by capture cross section method

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Single-value extension property for anti-diagonal operator matrices and their square

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Approximation Expressions for the Temperature Integral

Homework 3 Solutions

EQUIVALENT MODEL OF HVDC-VSC AND ITS HYBRID SIMULATION TECHNIQUE

Geodesic Equations for the Wormhole Metric

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Reminders: linear functions

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

FENXI HUAXUE Chinese Journal of Analytical Chemistry. Savitzky-Golay. n = SG SG. Savitzky-Golay mmol /L 5700.

Math 6 SL Probability Distributions Practice Test Mark Scheme

Research on real-time inverse kinematics algorithms for 6R robots

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Electronic Supplementary Information (ESI)

ON DEFINITIONS OF SAFETY FACTOR OF SLOPE STABILITY ANALYSIS WITH FINITE ELEMENT METHOD

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Second Order Partial Differential Equations

A research on the influence of dummy activity on float in an AOA network and its amendments

,,, (, ) , ;,,, ; -

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

A summation formula ramified with hypergeometric function and involving recurrence relation

Research on model of early2warning of enterprise crisis based on entropy

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.


Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul. 2016

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Turkish Journal of I N E Q U A L I T I E S

Envelope Periodic Solutions to Coupled Nonlinear Equations

Homework 8 Model Solution Section

On the Galois Group of Linear Difference-Differential Equations

Supporting Information

ΠΔΡΗΛΖΦΖ ΛΔΞΔΗ ΚΛΔΗΓΗΑ

SURVEY AND NEW RESULTS ON BOUNDARY-VALUE PROBLEMS OF SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSE EFFECTS

Supporting Information

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Determination of Optimal Supply When Demand Is a Sum of Components

. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u

TP A.20 The effect of spin, speed, and cut angle on draw shots

Polyvinyl Chloride PVC, The effects of organotin thermal stabilizers on the dehydrochlorination of TPUΠPVC blends

DuPont Suva 95 Refrigerant

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Transcript:

41 6 Vol 41 No 6 2017 11 Journal of Jiangxi Normal UniverityNatural Science Nov 2017 1000-5862201706-0637-04 Lagrange 1 2* 1 2150092 215009 Noether 1 Lagrange Lagrange Noether Lagrange Noether Noether Noether Lagrange O 316 A DOI10 16357 /j cnki in1000-5862 2017 06 16 Lagrange 0 Lagrange -Mill 1 1 1 2-3 Lagrange 4-5 16 Lagrange T R R Z N 6-14 Lagrange N 0 Noether 6 Lie T 6-9 Mei 6 i σ T T ρ 1988 Stefan Hilger T T σt = infp Tp > tρt = 15 upp Tp < tt Tinf = up T up = inf T ii μ T 0 2 μt= σt- t t T iiiσt> t σt= t ρt< t ρt= t ρt< t < σtt = σt= ρt t 16 17-21 20-27 Lagrange Noether T = Rt R σt = t μt = 0 T = Zt Z σt= t + 1 μt= 1 2017-09-20 11572212 11272227 KYLX15_0405 1987- E-mailongchuanjingun@ 126 com 1964- E-mailzhy@ mail ut edu cn

638 2017 delta f σ = f σ = f + μtf αf + βg t= αf t+ βg t fg t= f tg σ t+ ftg t= f σ tg t+ f tgt 2 Lagrange n q k k = 1 2 n Lagrange L = Lt q σ k q k b Sγ= a Ltqσ k t q k t t 1 Hamilton q σ k t= q k σ t q k tdelta t T LR R n R n R C 1 17 Lagrange t L q - L q σ = 0 = 1 2 n r + 1 r + 2 n 18 2 3 ft R t T κ aε > 0δ > 0 ω t - δ t + Lagrange Noether δ T fσt - fω- f t σt- ω Hamilton ε σt- ω f t f t delta Noether Noether bf ~ f t = t + - t q ~ t ~ = q t+ - q 4 C rd C 1 rd = ft R f C rd t ~ = t + εξ 0 t q k q t ~ = q t+ εξ t q k 5 T = Rdelta ε ξ 0 ξ - f t= f 'tt = Zdelta f t= ft + 1- ft 4 Hamilton ~ 1 Sγ ~ b = a ~ Lt~ q ~ σ ~ k t ~ q ~ k t ~ ~ ~ t - S Sγ ~ - Sγ ε 1 Hamilton 1 5 - S = 0 5Noether Lξ 0 - S = 0 20 + L t ξ 0 + L ξ σ q σ ξ σ t q k t = q k t = t ξ t q k t + L ξ q - ξ 0 q = 0 6 ξ σt q k σt ξ t 1 5 6 Lagrange 2 Hamilton 1 det ( 2 L ) = 0 5 q q k Lagrange - b S = - a t - Gt Lagrange 5Noether 2 r G = Gt q σ k q k n - r q i = α i t - b S = - q σ k q k i = 1 2 rβ j tq σ k q k = 0j = a t - Gt 20 Lξ 0 + L t ξ 0 + L ξ σ q σ + L ξ q - ξ 0 q = - G N 7 L - L t t μt = L t + L q σ q σ + L - G = εg q N G N q 3 3 Noether 2 5 7

6 Lagrange 639 Lagrange I NR = Lξ 0 + L ξ - q ξ 0 + G N = cont q 1 2 3 6 Lagrange 4 Lagrange q k 1 Lagrange 2 5 1 I N = Lξ 0 - L t ξ 0μt+ L ξ q - ξ 0 q = cont 2 Lagrange 2 5 2 I N = Lξ 0 - L t ξ 0μt+ L ξ q - ξ 0 q + G N = cont 2 2 3 7 t I N = L ξ σ t q + L ξ + L - L q t t μt ξ σ 0 + ( L - L t μt ξ ) 0 - L t( ξ q 0 q ) + G N = L ξ σ q σ + L ξ q + ( L t + L q σ + L q q σ q ξ ) σ 0 + ( L - L t μt ξ ) 0 - ( L ) ξ t q 0 q σ - L ξ q 0 q + G N = L ξ σ q σ + L ξ q + ( L t + L q σ + L q ) ξ σ 0 + q σ q 3 Lagrange Lξ 0 + L t ξ 0 + L q ξ + L q ξ - q ξ 0+ G N = 0 5 Lagrange L = t + q 1 q σ 2 - q 2 + a q σ 1 2 + q σ 2 2 a T = 2 n n N 0 3 Lagrange Noether t I Nt q k q σ k q k = 0 I N t q k q σ k 2 q 2 = aq σ 1 - q 2 /t q 1 + 2aq σ 2 = 0 r = 1 7 t + q 1 q σ 2 - q 2 + a q σ 1 2 + q σ 2 2 ξ 0 + ξ 0 + 2aq σ 1 ξ σ 1 + q 1 + 2aq σ 2 ξ σ 2 + q σ 2 ξ 1 - ξ 0 q 1 - ξ 2 - ξ 0 q 2 + G N = 0 8 ξ 0 = - 1ξ 1 = ξ 2 = 0 = t 8 2 G N I N = - a q σ 1 2 + q σ 2 2 +t = cont 6 Lagrange 1 2 Lagrange Noether 2 Lagrange Lagrange Lagrange Lie Mei Lagrange Hamilton L - L t μt ξ 0 - L ξ σ q σ 0 q σ - L ξ σ q 0 q - L ξ q 0 q + Hamilton 28 Hamilton G N = 0 1 T = R 2 28-30 Hamilton 31 32 -σ

640 2017 2003 274 316-319 14 Hojman III J 2004 281 36-38 15Hilger S Ein Makettenkalkül mit Anwendung auf Zentrummannigfaltigkeiten D Würzburg Univerity of Würzburg 1988 16Bohner M Peteron A Dynamic equation on time cale an introduction with application M Boton Birkhuer 2001 17Bohner M Calculu of variation on time cale J Dy- namic Sytem & Application 2004 1312 339-349 7 1 M 1993 2Luca W F Differential equation model M New YorkSpringer Verlag 1983 3 M cale J 1999 omy 2013 565 1017-1028 4Santilli R M Foundation of theoretical mechanic I M New YorkSpringer Verlag 1978 ytem on time cale J 5 M ic 2015 5610 102701 1988 22Bartoiewicz Z 6 M cale J 2004 tion 2008 3422 1220-1226 7Mei Fengxiang Zhu Haiping Lie ymmetrie and conerved quantitie for the ingular Lagrange ytem J Journal of Beijing Intitute of Technology 2009 91 11-14 24Malinowka A B 8 M on time cale J 1999 20131 /2675127 9 Lie 25Malinowka A B J 2002 51 10 2186-2190 10 Lie 12 Hojman I J 2003 273 193-195 13 Hojman II J 18Bartoiewicz Z Martin N Torre D F M The econd Euler-Lagrange equation of variational calculu on time cale J European Journal of Control 2011 171 9-18 19Hilcher RZeidan V Calculu of variation on time caleweaklocal piecewie olution with variable endpoint J Journal of Mathematical Analyi and Application 2004 2891 143-166 20Cai Pingping Fu Jingli Guo Yongxin Noether ymmetrie of the nonconervative and nonholonomic ytem on time Science ChinaPhyic Mechanic & Atron- 21Song Chuanjing Zhang Yi Noether theorem for Birkhoffian Journal of Mathematical Phy- Torre D F M Noether' theorem on time Journal of Mathematical Analyi and Applica- 23Martin N Torre D F M Noether' ymmetry theorem for nabla problem of the calculu of variation J Applied Mathematic Letter 2010 2312 1432-1438 Martin N The econd Noether theorem Abtract and Applied Analyi 2013 Ammi M R S Noether' theorem for control problem on time cale J International Journal of Difference Equation 2014 91 87-100 26Peng Keke Luo Yiping Dynamic ymmetrie of Hamiltonian ytem on time cale J Journal of Mathematical J 2007 42 9 30-35 Phyic 2014 554 42702 11 27 Hamilton Noether J J 2003 27 1 2016 372 214-224 1-3 28Dirac P A M Lecture on quantum mechanic M New YorkYehiva Univerity Pre 1964 29 Hamiltonian M 1999 30Li Ziping Jiang Jinhuan Symmetrie in contrained canonical ytem M BeijingScience Pre 2002 31Liu Xinya Theoretical tudy of deflection of reflected and refracted of electromagnetic wave from incident plane J Communication in Theoretical Phyic 1996 25 3 361-364 32Wilczek F Quantum mechanic of fractional-pin particle J Phyical Review Letter 1982 4914 957-959 655

6 655 The Study on Licene Plate Location Technology by Pixel Connection DENG Hong 1 2 LI Shuiquan 3 PENG Yingqiong 1 2 1 School of Software Jiangxi Agricultural Univerity Nanchang Jiangxi 330045 China 2 Key Laboratory of Agricultural Information Technology of Jiangxi College Nanchang Jiangxi 330045 China 3 College of Computer Science & Software Engineering Shenzhen Univerity Shenzhen Guangdong 518060 China AbtractLicene plate location i regaded a the guide part of the licene plate recognition it accuracy determine the licene plate recognition ytem reliability The exiting licene plate locating algorithm ha the following two problem which i the fuion image morphological operation the ize of tructural element controland if the body ha a licene and the ame color and morphological dilation i likely to caue both connected In view of the above problem the method of licene plate location baed on pixel connection ha been propoed to achieve the better edge detection reult of the licene plate recognition ytem Key wordlicene plate locationpixel connectionedge detection 640 The Symmetry and Conerved Quantity for Singular Lagrangian Sytem on Time Scale SONG Chuanjing 1 ZHANG Yi 2* 1 School of Mathematic & Phyic Suzhou Univerity of Science and TechnologySuzhou Jiangu 215009 China 2 College of Civil EngineeringSuzhou Univerity of Science and TechnologySuzhou Jiangu 215009 China AbtractNoether ymmetry and conerved quantity for ingular Lagrangian ytem on time cale are tudied Firtly the differential equation of motion on time cale for ingular Lagrangian ytem are preented Secondly the definition and criteria of Noether ymmetry and Noether quai-ymmetry for thi ytem are tudied Latly conerved quantitie deduced from Noether ymmetry and Noether quai-ymmetry are obtained for ingular Lagrangian ytem on time cale And an example i given to illutrate the reult Key wordymmetryconerved quantityingular Lagrangian ytemtime cale