MasterSeries MasterPort Lite Sample Output

Σχετικά έγγραφα
MasterSeries MasterPort Plus Sample Output

STRUCTURAL CALCULATIONS Using MASTERSERIES POWERPAD ARCHITECT

CONTENTS. Examples of Ultimate Limit states. 1. SECT.-001, ULTIMATE LIMIT STATE, Tension Structural design Structural Fire design

Analyse af skrå bjælke som UPE200

APPENDIX 1: Gravity Load Calculations. SELF WEIGHT: Slab: 150psf * 8 thick slab / 12 per foot = 100psf ROOF LIVE LOAD:

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

5.0 DESIGN CALCULATIONS

1-Μοντέλο πεπερασμένων στοιχείων (FEM) Διαστασιολόγηση κατασκευής από Χάλυβα Σελ. 1

Struct4u b.v. Calculation number : Revision : 0 Page 1 of 8 Project number : Date - time : :25 Project description : Part :

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

CONSULTING Engineering Calculation Sheet

COMPOSITE SLABS DESIGN CONTENTS


5. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών

8. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών

Το σχέδιο της μέσης τομής πλοίου

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10)

STRUCTURAL CALCULATIONS FOR SUSPENDED BUS SYSTEM SEISMIC SUPPORTS SEISMIC SUPPORT GUIDELINES

MECHANICAL PROPERTIES OF MATERIALS

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Design of Self supporting Steel Chimney for

Structural Design of Raft Foundation

D28 1-1/4" PIPE x 42-1/2" HIGH RAIL WITHOUT BOTTOM RAIL

MS SERIES MS DESK TOP ENCLOSURE APPLICATION EXAMPLE FEATURE. Measuring instruments. Power supply equipments

3.4 MI Components, Allowable Load Data and Specifications. MI Girder 90/120. Material Specifications. Ordering Information

MSN DESK TOP ENCLOSURE WITH STAND / CARRYING HANDLE

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ

HSS Hollow. Structural Sections LRFD COLUMN LOAD TABLES HSS: TECHNICAL BROCHURE

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

Εθνικό Μετσόβιο Πολυτεχνείο National Technical University of Athens. Aerodynamics & Aeroelasticity: Applications Σπύρος Βουτσινάς / Spyros Voutsinas

Τ Ε Χ Ν Ι Κ Η Ε Κ Θ Ε Σ Η

HIGH SPEED TRACTION LIFTS WITH MACHINE ROOM. Version: 1.1 Page: 1/8 Date:11-Jun-08. Range of Application. High Speed EN V1.1

Type. Capacities. 441, 442 Full nozzle DIN. Flanged Safety Relief Valves spring loaded. The-Safety-Valve.com LWN E

STATIC ANALYSIS / STRUCTURAL DESIGN GLASSCON SHADOGLASS LOUVERS SYSTEM

ΔΗΛΩΣΗ ΕΠΙΔΟΣΕΩΝ Αρ. HSL-3_B-1109-CPR-0002

ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά

RANGE OF APPLICATION TRACTION LIFT MR HIGH SPEED. ver sion 1.1 / web: info@doppler.gr

ΕΥΡΩΚΩ ΙΚΑΣ 9: Φέρουσες κατασκευές αλουµινίου

Bulletin 1489 UL489 Circuit Breakers

Longitudinal strength standard

2013 AF/009 ΣΤΑΤΙΚΗ ΜΕΛΕΤΗ

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Version: 1.0 Page: 1/15 TYPE: HYDRO SUPERIOR MRL HYDRAULIC LIFTS. Date: Range of Application

«Διερεύνηση μη γραμμικής συμπεριφοράς μεταλλικών διατμητικών τοιχωμάτων»

Type 441 DIN 442 DIN. Capacities. Flanged Safety Relief Valves spring loaded. The-Safety-Valve.com LWN E

ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά. Κωδικός μαθήματος:

Προφίλ Profiles Overview R=1:4 A01

Contents TRACTION LIFTS WITH MACHINE ROOM EN V1.2. Version: 1.2 Page: 2/8 Date:4-Jan-10

PRB. Development of a New Bending Method PRB for High Strength Steel Tube and Application of High Strength Steel Tubes for Automotive Parts

Self-Lubricating Rod End > Spherical Bearings Product Overview

Model VRT Miniature Type (Tapped Base Type)

Visual Systems Division Technical Bulletin MultiSync MT820/MT1020 Installation Data Desk Top and Ceiling Mount

Figure 1 - Plan of the Location of the Piles and in Situ Tests

STRENGTH AND STABILITY OF HIGH-STRENGTH STEEL TUBULAR BEAM-COLUMNS

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ

Contents MRL HYDRAULIC LIFTS TYPE: HYDRO TOTAL MRL. Version: 3.0 Page: 2/18 Date:

Chapter 7 Transformations of Stress and Strain

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Τοµέας οµοστατικής ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΑΣΤΟΧΙΑΣ ΑΠΟ ΛΥΓΙΣΜΟ ΚΑΙ ΠΛΑΣΤΙΚΟΠΟΙΗΣΗ ΣΕ ΜΕΤΑΛΛΙΚΑ ΠΛΑΙΣΙΑ

Ventilated Distribution Transformers

RSDW08 & RDDW08 series

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Deck Fasteners for Attachment to Bar Joist 3.5.2

BRIEF INTRODUCTION TO STRUCTURAL DESIGN WITH EUROCODES

MRL HYDRAULIC LIFTS TYPE:

Technical Report. General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor

DAFTAR PUSTAKA. 1. American Petroleum Institute, Spesification for Line Pipe, API Publishing Service, Washington D.C., 2000.

MRL HYDRAULIC LIFTS TYPE:

WOODexpress RUNET software ΕΠΕ

OWA-60E series IP67. 60W Single Output Moistureproof Adaptor. moistureproof. File Name:OWA-60E-SPEC

RANGE OF APPLICATION TRACTION MR LIFT. ver sion 1.4 / web: info@doppler.gr

ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα

Spherical Bearings Product Overview

Rod End > Spherical Bearings Product Overview

Precision Metal Film Fixed Resistor Axial Leaded

RANGE OF APPLICATION HYDRO DL. ver sion 1.1 / web:

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

2013 AF/009b ΣΤΑΤΙΚΗ ΜΕΛΕΤΗ ΦΩΤΟΒΟΛΤΑΙΚΩΝ ΦΟΡΕΩΝ ΣΤΑΘΕΡΟ ΣΥΣΤΗΜΑ ΑΠΛΟ ΤΡΙΓΩΝΟ

Homework 8 Model Solution Section

Βαθιές Θεµελιώσεις Εισαγωγή

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Στο κεφάλαιο αυτό παρουσιάζονται βήµα προς βήµα οι οδηγίες για την προσοµοίωση στο ETABS ενός κτιρίου µε φέροντα οργανισµό από ωπλισµένο σκυρόδεµα.

moment ENGINEERING + DESIGN Warwick Ave, Suite C5 Fairfax, VA Phone: Web: February 20, 2015

Linearized Lifting Surface Theory Thin-Wing Theory

ΑΣΚΗΣΕΙΣ

20/01/ of 8 TOW SSD v3. C 2.78AC Σ Cumul. A*C. Tc 1 =A14+1 =B14+1 =C14+1 =D14+1 =E14+1 =F14+1 =G14+1 =H14+1 =I14+1 =J14+1 =K14+1

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Contents HYDRAULIC LIFTS TYPE: HYDRO DL. Version: 1.0 Page: 2/15 Date:

Finish: Anticorrosive finish in polyester. Number of motor poles 4=1400 r/min. 50 Hz 6=900 r/min. 50 Hz 8=750 r/min. 50 Hz

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

2013 AF/09 ΣΤΑΤΙΚΗ ΜΕΛΕΤΗ ΦΩΤΟΒΟΛΤΑΙΚΩΝ ΦΟΡΕΩΝ ΣΤΑΘΕΡΟ ΣΥΣΤΗΜΑ ΑΠΛΟ ΤΡΙΓΩΝΟ

SPBW06 & DPBW06 series

(Mechanical Properties)

ΣΤΑΤΙΚΗ ΜΕΛΕΤΗ ΦΩΤΟΒΟΛΤΑΙΚΩΝ ΦΟΡΕΩΝ

Grey Cast Irons. Technical Data

Folder: _EC3 Bolted connections

Type. Capacities. Flanged Safety Relief Valves spring loaded. The-Safety-Valve.com LWN E

of concrete buildings Illustration of elements design

Type 947D Polypropylene, High Energy Density, DC Link Capacitors

Transcript:

MasterSeries MasterPort Lite Sample Output The following output is from the MasterPort Lite Design program. Contents 2 Frame Geometry and Loading 3 Tabular Results Output 4 Bending Moment and Diagrams 5 Column Design to EC 6 Rafter Design to EC

Sheet : Calcs / 2 - Frame Geometry - (Full Frame) - Front View Load Diagram - 006 : Dead Plus Live Plus Wind On Gable (Ultimate) - All Groups Frame Geometry - (Full Frame) - Front View

Sheet : Calcs / 3 - Load Case No. End1 End2 Member Forces Ultimate (001 : 1.25 (Dead+Services) + 1.5 Live) Bending Axial Force Shear Force Moment (kn) (kn) (knm) Moment (knm @m) (mm@m) 1 5 114.601C 146.239-690.802 339.341 55.236 7 98.146C -10.316 334.235 @ 14.027 @ 10.407 2 6 114.601C 146.239-690.802 339.341 55.236 7 98.146C -10.316 334.235 @ 14.027 @ 10.407 3 1 164.578C -98.686 0.000 27.568 3 158.115C -98.686-634.156 @ 4.048 4 2 164.578C -98.686 0.000 27.568 4 158.115C -98.686-634.156 @ 4.048 5 3 158.115C -98.686-634.156 27.568 5 157.417C -98.686-690.802 @ 4.048 6 4 158.115C -98.686-634.156 27.568 6 157.417C -98.686-690.802 @ 4.048 Load Case No. Member Forces Ultimate (006 : Dead Plus Live Plus Wind On Gable (Ultimate)) Bending End1 Axial Force Shear Force Moment Moment (knm End2 (kn) (kn) (knm) @m) (mm@m) 1 5 51.830C 82.702-392.181 201.946 32.513 7 39.138C -4.114 200.480 @ 14.329 @ 10.407 2 6 51.830C 82.702-392.181 201.946 32.513 7 39.138C -4.114 200.480 @ 14.329 @ 10.407 3 1 94.828C -69.151 0.000 17.119 3 88.365C -45.053-366.937 @ 3.984 4 2 94.828C -69.151 0.000 17.119 4 88.365C -45.053-366.937 @ 3.984 5 3 88.365C -45.053-366.937 17.119 5 87.667C -42.901-392.181 @ 3.984 6 4 88.365C -45.053-366.937 17.119 6 87.667C -42.901-392.181 @ 3.984 Support Reactions Serviceability (002 : Dead + Services + Live (Service)) 0 0 Rx (kn) Ry (kn) Mz (knm) Rx (kn) Ry (kn) Mz (knm) 1 82.254 120.862-73.145 2-82.254 120.862 73.145 Total 0.000 241.725 0.000 Support Reactions Serviceability (007 : Dead Plus Live Plus Wind On Gable (Serviceability)) 0 0 Rx (kn) Ry (kn) Mz (knm) Rx (kn) Ry (kn) Mz (knm) 1 62.201 75.862-49.970 2-62.201 75.862 49.970 Total 0.000 151.725 0.000

Sheet : Calcs / 4 - Load Case 001 : 1.25 (Dead+Services) + 1.5 Live Bending Moment Diagram (Major Axis) - (Full Frame) - Front View Load Case 002 : Dead + Services + Live (Service) Deflected Shape - (Full Frame) - Front View

Sheet : Calcs / 5 - AXIAL WITH MOMENTS (MEMBER) Column 1 : Members 3 & 5 (N.1-N.5) Between 5.050 and 6.426 m, in Load Case 1 Member Loading and Member Forces Loading Combination : 1 UT + 1.25 D1 + 1.25 D2 + 1.5 L1 UT Spacing 06.000 [Multiply AllLoads] UT PartFix 20.00 +++ --- (Mt My Mz) Member No. Member Forces in Load Case 1 and from Load Case 2 Bending Axial Force Shear Force End 1 Moment Moment (kn) (kn) End 2 (knm) (knm) (mm @ m) 1 164.578C -98.686 0.000 17.328 5 157.417C -98.686-690.802 @ 4.177 Classification and Effective Area (EN 1993: 2006) Section (82.02 kg/m) 457x191 UB 82 [S 355] Class = Fn(b/T,d/t,fy,N,My,Mz) 5.98, 41.17, 355, 164.58, 690.8, 0 (Axial: Non- Auto Design Load Cases 1 & 5-6 Local Capacity Check Slender) Class 1 Vy.Ed/Vpl.y.Rd 98.686 / 986.1 = 0.1 Low Shear Mc.y.Rd = fy.wpl.y/ γm0 355 x 1831.3/1 650.112 kn.m Npl.Rd = Ag.fy/ γm0 104.48 x 355/1 = 3709.04 kn n = NEd/Npl.Rd 157.417 / 3709.04 = 0.042 OK Wpl.N.y = Fn(Wpl.y, Avy,) 1831.3, 48.112, 0.042 1831.3 cm³ MN.y.Rd = Wpl.N.y.fy/ γm0 1831.3 x 355/1 650.112 kn.m (My.Ed/MN.y.Rd+(M_(z.Ed/MN.z.Rd) (634.155/650.112) 2 +(0) 1 = 0.952 OK Compression Resistance N.b.Rd λy = A.fy/Ncr 104.48x355/15673.3 0.487 Nb.y.Rd = Area.c.fy/ γm1 104.48x0.928x355/10/1 = 3443.490 kn Curve a λz = A.fy/Ncrz 104.48x355/20510.79 0.426 Nb.z.Rd = Area.c.fy/ γm1 104.48x0.916x355/10/1 = 3396.493 kn Curve b Let = Kt.Lx 1x7 = 7 λt = A.fy/NcrT 104.48x355/2545.78 1.207 Nb.T.Rd= Area.c.fy/ γm1 104.48x0.474x355/10/1 = 1759.280 kn Curve b Equivalent Uniform Moment Factor C1 C1= fn(m1, M2, ~y) -498.5,-634.1, 0.786 1.110 Not Loaded CmLT=Max(0.6+0.4~y, 0.4) M = -634.07, ~y = 0.786 0.914 Table B.3 Cmz=Max(0.6+0.4~y, 0.4) M = 0, ~y = 1.000 1 Table B.3 Cmy=Max(0.6+0.4~y, 0.4) M = -690.8, ~y = 0.000 0.6 Table B.3 Lateral Buckling Check M.b.Rd Le = 1.00 L 1 x 1.376 = 1.376 m Mcr = Fn(C1,Le,Iz,It,Iw,E) 1.110, 1.376, 1874, 69.21, 0.9201, 210000 5182.951 kn.m λlt = W.fy/Mcr 1831.3 x 355 / 5182.951 0.354 clt = Fn(λLT, λlt5950 ) 0.354, 0.369 1.000 Curve d clt.mod = Fn(cLT,λLT,kc,f) 1.000, 0.354, 0.756, 0.882 1.000 6.3.2.3 Mb.Rd = c Wpl.y.fy Mc.y.Rd 1.000 x 1831 x 355 650.112 = 650.112 kn.m Buckling Resistance UN.y = NEd/(cy.NRk/γM1) 164.578 / 3443.49 0.048 OK UN.z = NEd/(cz.NRk/γM1) 164.578 / 3396.493 0.048 OK UM.y = My.Ed/(cLT.My.Rk/γM1) 634.155 / 650.112 0.975 OK UM.z = Mz.Ed/(Mz.Rk/γM1) 0 / 107.885 0.000 OK

Sheet : Calcs / 6 - kyy=cmy{1+(λy-0.2)un.y} 0.608 kzz=cmz{1+(2λz-0.6)un.z} 1.012 kyz=0.6 kzz 0.607 kzy=0.6 kyy 0.365 UNy+kyy.UM.y+kyz.UM.z 0.048+0.608x0.975+0.607x0.000 0.641 OK UNz+kzy.UM.y+kzz.UM.z 0.048+0.365x0.975+1.012x0.000 0.404 OK Check - Load Case 2 In-span δ Span/360 17.33 7000 / 360 17.33 mm OK AXIAL WITH MOMENTS (MEMBER) Rafter 1 of Bay 1 : Member 1 (N.5-N.7) Between 12.600 and 14.400 m, in Load Case 5 Member Loading and Member Forces Loading Combination : 1 UT + 1.25 D1 + 1.25 D2 + 1.5 L1 UT Spacing 06.000 [Multiply AllLoads] D1 UDLY -000.350 [ kn/m ] D2 UDLY -000.200 [ kn/m ] L1 UDLY -000.600 [ kn/m ] Member No. Member Forces in Load Case 5 and from Load Case 2 Bending Axial Force Shear Force End 1 Moment Moment (kn) (kn) End 2 (knm) (knm) (mm @ m) 1 5 114.175C 145.865-685.168 339.733 37.796 7 97.720C -10.690 334.232 @ 14.027 @ 10.407 Classification and Effective Area (EN 1993: 2006) Section (74.18 kg/m) 406x178 UB 74 [S 355] Class = Fn(b/T,d/t,fy,N,My,Mz) 5.61, 37.94, 355, 114.17, 685.17, 0 (Axial: Non- Auto Design Load Cases 1 & 5-6 Local Capacity Check Slender) Class 1 Vy.Ed/Vpl.y.Rd 10.07 / 857.632 = 0.012 Low Shear Mc.y.Rd = fy.wpl.y/ γm0 355 x 1500.8/1 532.784 kn.m Npl.Rd = Ag.fy/ γm0 94.5 x 355/1 = 3354.75 kn n = NEd/Npl.Rd 97.72 / 3354.75 = 0.029 OK Wpl.N.y = Fn(Wpl.y, Avy,) 1500.8, 41.844, 0.029 1500.8 cm³ MN.y.Rd = Wpl.N.y.fy/ γm0 1500.8 x 355/1 532.784 kn.m (My.Ed/MN.y.Rd+(M_(z.Ed/MN.z.Rd) (334.828/532.784) 2 +(0) 1 = 0.395 OK Compression Resistance N.b.Rd λy = A.fy/Ncr 94.5x355/2488.18 1.161 Nb.y.Rd = Area.c.fy/ γm1 94.5x0.555x355/10/1 = 1861.847 kn Curve a λz = A.fy/Ncrz 94.5x355/9886.52 0.583 Nb.z.Rd = Area.c.fy/ γm1 94.5x0.846x355/10/1 = 2837.235 kn Curve b Let = Kt.Lx 1x15.083 = 15.083 λt = A.fy/NcrT 94.5x355/1841.4 1.35 Nb.T.Rd= Area.c.fy/ γm1 94.5x0.404x355/10/1 = 1354.161 kn Curve b Equivalent Uniform Moment Factor C1 C1= fn(m1, M2, ~y) 328.8, 339.1, 0.970 1.014 Not Loaded CmLT=Max(0.6+0.4~y, 0.4) M = 339.11, ~y = 0.970 1 Table B.3 Cmz=Max(0.6+0.4~y, 0.4) M = 0, ~y = 1.000 1 Table B.3 Cmy=Max(0.1(1-~y) -0.8αs, 0.4) Mh = -685.17, Ms = 119.64, ~y = -0.488, αs = -0.175 0.4 Table B.3 Lateral Buckling Check M.b.Rd Le = 1.00 L 1 x 1.8 = 1.8 m

Sheet : Calcs / 7 - Mcr = Fn(C1,Le,Iz,It,Iw,E) 1.014, 1.800, 1546, 62.77, 0.6071, 210000 2112.568 kn.m λlt = W.fy/Mcr 1500.8 x 355 / 2112.568 0.502 clt = Fn(λLT, λlt5950 ) 0.502, 0.498 0.883 Curve b clt.mod = Fn(cLT,λLT,kc,f) 0.883, 0.502, 0.809, 0.934 0.883 6.3.2.3 Mb.Rd = c Wpl.y.fy Mc.y.Rd 0.883 x 1501 x 355 532.784 = 470.578 kn.m Buckling Resistance UN.y = NEd/(cy.NRk/γM1) 114.175 / 1861.847 0.061 OK UN.z = NEd/(cz.NRk/γM1) 114.175 / 2837.235 0.040 OK UM.y = My.Ed/(cLT.My.Rk/γM1) 334.828 / 470.578 0.712 OK UM.z = Mz.Ed/(Mz.Rk/γM1) 0 / 94.785 0.000 OK kyy=cmy{1+0.8un.y} 0.420 kzz=cmz{1+(2λz-0.6)un.z} 1.023 kyz=0.6 kzz 0.614 kzy= 1- {0.1/(CmLT-0.25)}UN.z 0.995 UNy+kyy.UM.y+kyz.UM.z 0.061+0.420x0.712+0.614x0.000 0.360 OK UNz+kzy.UM.y+kzz.UM.z 0.040+0.995x0.712+1.023x0.000 0.748 OK Check - Load Case 2 In-span δ Span/360 37.8 15083 / 360 37.8 mm OK APPENDIX-BB STABILITY (MEMBER) : Rafter 1 of Bay 1 : Member 1 (N.5-N.7) Between 1.800 and 6.003 m, in Load Case 1 Member Loading and Member Forces Loading Combination : 1 UT + 1.25 D1 + 1.25 D2 + 1.5 L1 UT Spacing 06.000 [Multiply AllLoads] D1 UDLY -000.350 [ kn/m ] D2 UDLY -000.200 [ kn/m ] L1 UDLY -000.600 [ kn/m ] Lateral and Torsional Restraints Purlins @ 1.8, 3.6, 5.4, 7.2, 9, 10.8, 12.6, 14.4 and 15.083 m Stays @ 1.8 and 15.083 m Member No. End 1 End 2 Axial Force (kn) Member Forces in Load Case 1 Shear Force (kn) Bending Moment (knm) Moment (knm) (mm @ m) 1 5 114.601C 146.239-690.802 339.341 0.000 7 98.146C -10.316 334.235 @ 14.027 @ 10.407 Classification and Effective Area (EN 1993: 2006) Section (74.18 kg/m) 406x178 UB 74 [S 355] Class = Fn(b/T,d/t,fy,N,My,Mz) 5.61, 37.94, 355, 114.6, 690.8, 0 (Axial: Non- Slender) Class 1 Auto Design Load Cases 1 & 5-6 Tension Side Lateral Restraint Spacing Check, Lm Lm = fn(ned, A, C1, Wpl,y, IT) 114.6, 94.5,1.28, 1500.8, 62.8 1.614m Lm < s 1.614<1.800 - Effect of tension side lateral restraints ignored Compression Resistance N.b.Rd λz = A.fy/Ncrz 94.5x355/1813.3 1.36 Nb.z.Rd = Area.c.fy/ γm1 94.5x0.399x355/10/1 = 1338.474 kn Curve b is = Fn(iy, iz, a) 170.0, 40.4, 247.7 174.7 mm NcrT = Fn(E, Iz, It, Iw, Lt, a, is) 210, 1546, 63, 0.607, 4203, 0, 175 3992.9 kn λt = A.fy/NcrT 94.5x355/ 10 /3992.93 0.917 Nb.T.Rd= Area.c.fy/ γm1 94.5x0.65x355/10/1 = 2182.247 kn Curve b Lateral Buckling Resistance Moment Mb Mcr0 = fn(lt, E, Iz, It, Iw) 4.203, 210, 1546, 62.77, 0.6071 470.194 kn.m Mcr = C1 Mcr0 1.750 470.2 822.741 kn.m

Sheet : Calcs / 8 - λlt = W.fy/Mcr 1500.8 x 355 / 2112.568 0.805 clt = Fn(λLT, ΦLT, β) 0.805, 0.565, 0.750 0.722 Curve b clt.mod = Fn(cLT,λLT,kc,f) 0.722, 0.805, 0.809, 0.934 0.722 6.3.2.3 Mb.Rd = c Wpl.y.fy 0.722 x 1501 x 355 384.424 kn.m Combined Axial and Bending 6.62 kzy 1- {0.1/(CmLT-0.25)} NEd/Nb,z,Rd 0.993 NEd/Nb,z,Rd+kzy.My,Ed/Mb,Rd 114.601 / 1338.474 + 0.993 x 298.827 / 384.424 = 0.858 OK