Βαθιές Θεµελιώσεις Εισαγωγή
|
|
- Βαριησού Κρεστενίτης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Φέρουσα Ικανότητα Απόκριση Πασσαλοθεµελιώσεων
2 Προσδιορισµός Απόκρισης Μεµονωµένου Πασσάλου Γεωτεχνικές Μέθοδοι Εµπειρικές Μέθοδοι (DIN 4014) Μέθοδος t-z Δοκιµαστική Φόρτιση 3-D ανάλυση Αρνητικές Τριβές
3 Προσδιορισµός Απόκρισης Μεµονωµένου Πασσάλου Γεωτεχνικές Μέθοδοι Εµπειρικές Μέθοδοι (DIN 4014) Μέθοδος t-z Δοκιµαστική Φόρτιση 3-D ανάλυση Αρνητικές Τριβές
4 Γεωτεχνικές µέθοδοι προσδιορισµού φ.ι. R= R s + R b
5 Γεωτεχνικές µέθοδοι προσδιορισµού φ.ι. R= R s + R b
6 Προσδιορισµός Απόκρισης Μεµονωµένου Πασσάλου Γεωτεχνικές Μέθοδοι Εµπειρικές Μέθοδοι (DIN 4014) Μέθοδος t-z Δοκιµαστική Φόρτιση 3-D ανάλυση Αρνητικές Τριβές
7 ΦΕΡΟΥΣΑ ΙΚΑΝΟΤΗΤΑ ΚΑΤA DIN 4014 είκτης καθίζησης S/D ή S/D f Χαρακτηριστική αντίσταση αιχµής q b;k (MPa)* για µέση τιµή αντίστασης διείσδυσης κώνου q c;k (MPa) =S g * Ενδιάµεσες τιµές θα πρέπει να λαµβάνονται µε γραµµική παρεµβολή. Εάν ο έγχυτος πάσσαλος έχει διευρυµένη βάση, τότε όλες οι τιµές µειώνονται κατά 75%. Αντοχή µη συνεκτικού εδάφους όπως καθορίζεται από τη µέση τιµή αντίστασης διείσδυσης κώνου q c;k (MPa) Χαρακτηριστική οριακή πλευρική τριβή q s;k (MPa)* * Ενδιάµεσες τιµές λαµβάνονται µε γραµµική παρεµβολή. είκτης καθίζησης S/D ή S/D f Χαρακτηριστική αντίσταση αιχµής q b;k (MPa)* για αστράγγιστη διατµητική αντοχή c u;k (MPa) =S g * Ενδιάµεσες τιµές θα πρέπει να λαµβάνονται µε γραµµική παρεµβολή. Εάν ο έγχυτος πάσσαλος έχει διευρυµένη βάση, τότε όλες οι τιµές µειώνονται κατά 75%. Αντοχή συνεκτικού εδάφους όπως καθορίζεται από την αστράγγιστη διατµητική αντοχή c uk (MPa) Χαρακτηριστική οριακή πλευρική τριβή q s;k (MPa)* * Ενδιάµεσες τιµές λαµβάνονται µε γραµµική παρεµβολή.
8 ΦΕΡΟΥΣΑ ΙΚΑΝΟΤΗΤΑ ΚΑΤA DIN 4014 Φέρουσα Ικανότητα - Bearing Capacity (kn) Qr Αντίσταση Τριβής Qs Αντίσταση Αχµής Q Φέρουσα Ικανότητα Καθίζηση - 10 Settlement (cm) 15
9
10
11 Προσδιορισµός Απόκρισης Μεµονωµένου Πασσάλου Γεωτεχνικές Μέθοδοι Εµπειρικές Μέθοδοι (DIN 4014) Μέθοδος t-z Δοκιµαστική Φόρτιση 3-D ανάλυση Αρνητικές Τριβές
12 E A 2 d u 2 dx + E s u= 0 Smith and Griffiths: Programming the Finite Element Method; J. Wiley
13 Προσδιορισµός Απόκρισης Μεµονωµένου Πασσάλου Γεωτεχνικές Μέθοδοι Εµπειρικές Μέθοδοι (DIN 4014) Μέθοδος t-z Δοκιµαστική Φόρτιση 3-D ανάλυση Αρνητικές Τριβές
14 ιατάξεις οκιµαστικής Φόρτισης
15 οκιµαστική Φόρτιση Πασσάλου
16 οκιµαστική Φόρτιση Πασσάλου
17 οκιµαστική Φόρτιση Πασσάλου ιάταξη - Ενοργάνωση
18 οκιµαστική Φόρτιση Πασσάλου Χρήση οπτικών ινών
19 οκιµαστική Φόρτιση Πασσάλου Axial Force N t, N s (MN) Axial Force N sn, N s (MN) Depth (m) Depth (m) Nt= 1 MN FLAC3D Ns= 1 MN Nt= 2 MN FLAC3D Ns=2 MN Nt= 3 MN FLAC3D Ns= 3 MN Nsn= 1 MN Ns= 1 MN Nsn=2 MN Ns=2 MN Nsn= 3 MN Ns= 3 MN Nsn= 4 MN Ns= 4 MN Ns= 5 MN Nt= 4 MN FLAC3D Ns= 4 MN Nsn= 5 MN Ns=5.5 MN Nsn=5.5 MN Σύγκριση αποτελεσµάτων αντίστροφης αριθµητικής ανάλυσης δοκιµαστικής φόρτισης Σύγκριση απόκρισης δοκιµαζόµενου πασσάλου µεµονωµένου πασσάλου
20 οκιµαστική Φόρτιση Πασσάλου Σύγκριση απόκρισης µε τον DIN4014 Σύγκριση απόκρισης µε αντίστροφη αριθµητική ανάλυση του δοκιµαζόµενου πασσάλου και µε αριθµητική ανάλυση µεµονωµένου πασσάλου
21 Προσδιορισµός Απόκρισης Μεµονωµένου Πασσάλου Γεωτεχνικές Μέθοδοι Εµπειρικές Μέθοδοι (DIN 4014) Μέθοδος t-z Δοκιµαστική Φόρτιση 3-D ανάλυση Αρνητικές Τριβές
22 Προσδιορισµός Απόκρισης Πασσάλου µε 3-D ανάλυση FLAC3D 2.10 Settings: Model Perspective 19:47:24 Fri Mar Center: X: e+000 Y: 8.739e-001 Z: e+001 Rotation: X: Y: Z: Dist: 2.500e+002 Mag.: 1 Ang.: Block Group Layer_A Layer_B Layer_c Layer_D1 Layer_D2 pile1 pile2 pile3 pile4 pile5 pile6 pile7 pile8 pile9 Civil_Engineering_Department University_of_Thessaly
23 Προσδιορισµός Απόκρισης Πασσάλου µε 3-D ανάλυση Axial Load N (MN) Settlement S (mm) Load A1 (4 MN) Load A2 (10 MN) Load A3 (15 MN) DIN 4014 Axial Load N (MN) 12 8 Load A1 (4 MN) Load A2 (10 MN) 4 Load A3 (15 MN) Pile Test Simulation Single Pile Settlement S (mm)
24 Προσδιορισµός Απόκρισης Πασσάλου µε 3-D ανάλυση Axial Force Nt, Ns (MN) 14 Depth (m) Ns= 3 MN Nt= 3 MN Ns= 6 MN Nt= 6 MN Ns= 9 MN Nt= 9 MN Ns= 12 MN Nt= 12 MN Ns= 15 MN Nt= 15 MN Ns= 16 MN Nt= 16 MN Shaft and Tip Resistance (MN) Single Pile Shaf t Res. Single Pile Tip Res. Test Shaft Res. Test Tip Res Settlement S (mm)
25 Προσδιορισµός Απόκρισης Πασσάλου µε 3D ανάλυση FLAC3D 2.10 Step Model Perspective 11:35:21 Mon Feb Job Title: Pile Test incremtally Loaded FLAC3D 2.10 Step Model Perspective 11:49:37 Mon Feb Job Title: Single Pile D150cm gradually loaded Center: X: 3.895e-001 Y: 9.210e+000 Z: e+001 Rotation: X: Y: Z: Dist: 1.743e+002 Mag.: 1.13 Ang.: Center: X: e+000 Y: 4.357e+000 Z: e+001 Rotation: X: Y: Z: Dist: 1.827e+002 Mag.: 1.26 Ang.: Contour of Z-Displacement Magfac = 0.000e e-002 to e e-002 to e e-003 to e e-003 to e e-003 to e e-003 to e e-003 to e e-003 to e e-003 to e e-003 to e e-003 to e e+000 to e e-003 to e e-003 to e-003 Interval = 1.0e-003 Contour of Z-Displacement Magfac = 0.000e e-002 to e e-002 to e e-002 to e e-002 to e e-002 to e e-003 to e e-003 to e e-003 to e e+000 to e+000 Interval = 2.5e-003 Civil_Engineering_Department University_of_Thessaly Civil_Engineering_Department University_of_Thessaly
26 Προσδιορισµός Απόκρισης Μεµονωµένου Πασσάλου Γεωτεχνικές Μέθοδοι Εµπειρικές Μέθοδοι (DIN 4014) Μέθοδος t-z Δοκιµαστική Φόρτιση 3-D ανάλυση Αρνητικές Τριβές
27 Ανάπτυξη αρνητικών τριβών
28 Ανάπτυξη αρνητικών τριβών
29 Ανάπτυξη αρνητικών τριβών Άνω όριο της δύναμης λόγω ανάπτυξης αρνητικών τριβών Πραγματικό φορτίο λόγω ανάπτυξης αρνητικών τριβών α(ds)=συντελεστής κινητοποίησης αρν. τριβών
30 Εκτίµηση της επίδρασης των αρνητικών τριβών στις θεµελιώσεις µε πασσάλους µε χρήση µεθόδων 3-διάστατης αριθµητικής ανάλυσης < positive friction Shear stress (kpa) negative friction > Surface Load= 5 kpa Settlement (mm) Surface Load= 100kPa Settlement (mm) Depth (m) Depth (m) neutral point 50 S.L.= 5 kpa S.L.=10 kpa S.L.=25 kpa S.L.=50 kpa S.L.=75 kpa S.L.=100 kpa S.L.=50 kpa, P.A.L.=4500 kn P.A.L.=4500 kn P.A.L.=4500 kn, S.L.=50 kpa Shear strength pile settlement soil settlement neutral point
31 Εκτίµηση της Επίδρασης των αρνητικών τριβών στις θεµελιώσεις µε πασσάλους µε χρήση µεθόδων 3-διάστατης αριθµητικής ανάλυσης 0 10 Dragload (MN) S. L.=10 kpa S. L.=25 kpa S. L.=50 kpa P.A.L.= 4.5 MN Superposition of S.L. =50 kpa and P.A.L= 4.5 MN S.L=50 kpa + P.A.L.= 4.5 MN P.A.L.= 4.5 MN + S.L.=50 kpa Pile axial force (MN) S. L.=75 kpa Depth (m) 20 S. L.=100 kpa Depth (m)
32 Εκτίµηση της Επίδρασης των αρνητικών τριβών στις θεµελιώσεις µε πασσάλους µε χρήση µεθόδων 3-διάστατης αριθµητικής ανάλυσης S.L.= 50 kpa + P.A.L.= 4.5 MN P.A.L.= 4.5 MN +S.L.= 50 kpa S.L.= 50 kpa 0 10 Pile axial force (MN) pile i, s=3d pile p, s=3d pile c, s=3d single pile Pile axial force (MN) Dragload (MN) pile i, s=3d pile p, s=3d pile c, s=3d single pile pile i, s= 6D pile p, s=6d Depth (m) 20 Depth (m) 20 pile c, s=6d p i p i d 40 c d 40 c
33 Προσδιορισµός Απόκρισης Οµάδας Πασσάλων Εµπειρικές Σχέσεις 3-D ανάλυση
34 Προσδιορισµός Απόκρισης Οµάδας Πασσάλων Εµπειρικές Σχέσεις 3-D ανάλυση
35 Προσδιορισµός Απόκρισης Οµάδας Πασσάλων Εµπειρικές Σχέσεις
36 Προσδιορισµός Απόκρισης Οµάδας Πασσάλων Εµπειρικές Σχέσεις 3-D ανάλυση
37 Μηχανισμός αλληλεπίδρασης πασσάλων ομάδας
38 Συντελεστής επαύξησης καθιζήσεων: R a R a = S S mg mls = S S ng ns 1 S mls R G = = = a R SmG S S ns ng K G = R G K S n
39 Προσδιορισµός Απόκρισης Οµάδας Πασσάλων µε 3D ανάλυση p C Axial Load N (MN) c Settlement S (mm) Single Pile 3*3, d=3d, Center 3*3, d=3d, corner 3*3, d= 4.5D, Center 3*3, d= 4.5D, corner 3*3 d= 6D, center 3*3 d= 6D, corner Row of 3, d= 3D, center Row of 3, d= 3D, corner
40 Προσδιορισµός Απόκρισης Οµάδας Πασσάλων µε 3D ανάλυση Efficiency Factor Single Pile 3*3, d= 3 D 3*3, d= 4.5 D 3*3, d= 6 D 3*1, d= 3 D 0.5 Single Pile 3*3, d= 3 D 3*3, d= 4.5 D 3*3, d= 6 D 3*1, d= 3 D Pile Disposition Επίδραση αξονικής απόστασης πασσάλων στη φέρουσα ικανότητα οµάδας Επίδραση αξονικής απόστασης πασσάλων στη δυσκαµψία οµάδας
41 Προσδιορισµός Απόκρισης Οµάδας Πασσάλων µε 3D ανάλυση Mean Axial Load N (MN) Single Pile 3*3, d=3d 3*3, d= 4.5D 3*3 d= 6D 2*2, d=3d 2*2, d= 4.5D 2*2 d= 6D 2*3, d=3d 2*3, d= 4.5D 2*3 d= 6D 5 0 0% 2% 4% 6% 8% 10% Normalised Settlement S/D
42 Προσδιορισµός Απόκρισης Οµάδας Πασσάλων µε 3D ανάλυση Bearing Capacity Efficiency Factor *3, d= 3 D 3*3, d= 4.5 D 3*3, d= 6 2*2, d= 3 D D 2*2, d= 4.5 D 2*2, d= 6 2*3, d= 3 D D 2*3, d= 4.5 D 2*3, d= 6 D Stiffness Efficiency Factor *3, d= 3 D 3*3, d= 4.5 D 3*3, d= 6 2*2, d= 3 D D 2*2, d= 4.5 D 2*2, d= 6 2*3, d= 3 D D 2*3, d= 4.5 D 2*3, d= 6 D Group Configuration Group Configuration Επίδραση αξονικής απόστασης και αριθµού πασσάλων στη φέρουσα ικανότητα οµάδας Επίδραση αξονικής απόστασης και αριθµού πασσάλων στη δυσκαµψία οµάδας
43 Προσδιορισµός Απόκρισης Οµάδας Πασσάλων µε 3D ανάλυση Stiffness Efficiency Factor Group 3*3, d=6d Group 3*3, d=4,5d Group 3*3, d=3d Settlement 1% D Settlement 3% D Settlement 5% D Settlement 10%D Επίδραση επιπέδου καθίζησης στη δυσκαµψία οµάδας
44 Προσδιορισµός Απόκρισης Οµάδας Πασσάλων µε 3D ανάλυση Αποκρίσεις χαρακτηριστικών πασσάλων οµάδας 25 Axial Load N (MN) P 2 P 3 P 1 d 5 P1, d=3d P3, d=3d P1, d=4.5d P3, d=4.5d P1, d=6d P3, d=6d 0 0% 5% 10% 15% Normalised Settlement S/D
45 Προσδιορισµός Απόκρισης Οµάδας Πασσάλων µε 3D ανάλυση Normalised Mean Axial Load Na (%) 140% 120% 100% 80% 60% 40% P1 P2 P3 20% Normalised Pile Spacing d/d Normalised Axial Load Na (%) 160% P1 P2 P3 140% P4 P5 P6 120% 100% 80% 60% 40% 20% 0% 0% 5% 10% 15% 20% Normalised Settlement S/D
46 Προσδιορισµός Απόκρισης Οµάδας Πασσάλων µε 3D ανάλυση Mean Axial Load Nm (MN) Single Pile Group 3*3 Prediction for Group 3*3 Group 2*2 5 Prediction for Group 2*2 Group 2*3 Prediction for Group 2*3 Group 4*4 Prediction for Group 4*4 Group 5*5 Prediction for Group 5*5 0 0% 2% 4% 6% 8% 10% Normalised Settlement S/D R a N R z = A z n = n r + n c G = R a z d B d N c R + z E d 1 N R F exp ( N ) Curve-Fining Procedure R Response Evaluation of Axially Loaded Fixed Head Pile Groups using 3D Nonlinear Analysis, Soils and Foundations
47 Προσδιορισµός Απόκρισης Οµάδας Πασσάλων µε 3D ανάλυση R a = A B C E R [ S (. N ) S e ] N ln( ) ns R ns d N R S S n = n r + n c mg ng = R = R a a S S mls ns A = 0.8, B = 0.07, C = 1.9 και E = Curve-Fining Procedure Response Evaluation of Axially Loaded Fixed Head Pile Groups in Clayey Soils, International Journal of Numerical & Analytical Methods in Geomechanics
48 Προσδιορισµός Απόκρισης Οµάδας Πασσάλων µε 3D ανάλυση Curve-Fining Procedure K err = K G K G K Gp W err = W G W G W Gp K m err 1 = j i= 1,j K i G K i G K i Gp
49 Τέλος
Βαθιές Θεµελιώσεις Πάσσαλοι υπό Οριζόντια Φόρτιση
Απόκριση Θεµελιώσεων µε Πασσάλους υπό Οριζόντια Φόρτιση Απόκριση Πασσάλων υπό Οριζόντια Φόρτιση Μενονωµένος Πάσσαλος Οµάδα Πασσάλων Φέρουσα Ικανότητα Μέθοδος Broms Υπολογισµός Καµπύλης Απόκρισης Μέθοδος
Θεµελιώσεις - Αντιστηρίξεις Εισαγωγή. Αιµίλιος Κωµοδρόµος, Καθηγητής, Εργαστήριο Υ.Γ.Μ. Πανεπιστήµιο Θεσσαλίας Τµήµα Πολιτικών Μηχανικών
ΘΕΜΕΛΙΩΣΕΙΣ ΑΝΤΙΣΤΗΡΙΞΕΙΣ Απόκριση υπό κατακόρυφη και οριζόντια φόρτιση Υπολογισµός Φέρουσας Ικανότητας Υπολογισµός Καθιζήσεων (Άµεσες - Στερεοποίηση) Υπολογισµός Καµπύλης Απόκρισης Υπολογισµός Εντατικού
Ανάπτυξη αρνητικών τριβών σε οµάδες πασσάλων: Αποτίµηση επιπτώσεων στους επιµέρους πασσάλους
Ανάπτυξη αρνητικών τριβών σε οµάδες πασσάλων: Αποτίµηση επιπτώσεων στους επιµέρους πασσάλους Development of negative friction in pile groups: Effects on piles constituting the group ΚΩΜΟ ΡΟΜΟΣ, A. ΜΠΑΡΕΚΑ,
ιερεύνηση της συµπεριφοράς οµάδας πασσάλων εδραζοµένων σε βραχώδες υπόβαθρο
ιερεύνηση της συµπεριφοράς οµάδας πασσάλων εδραζοµένων σε βραχώδες υπόβαθρο Response evaluation of pile groups based οn rock ΜΠΑΡΕΚΑ Σ., Πολιτικός Μηχανικός, Υπ. ιδάκτωρ, Π.Θ ΛΑΖΟΥ Η Ρ., Πολιτικός Μηχανικός,
Υπολογισµός Καµπύλης Απόκρισης
Απόκριση Θεµελιώσεων µε Πασσάλους υπό Οριζόντια Φόρτιση Απόκριση Πασσάλων υπό Οριζόντια Φόρτιση Μενονωµένος Πάσσαλος Φέρουσα Ικανότητα Μέθοδος Broms Οµάδα Πασσάλων Υπολογισµός Καµπύλης Απόκρισης p-y µέθοδος
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 25-6 ΔΙΑΛΕΞΗ 9 Θεμελιώσεις με πασσάλους Αξονική φέρουσα ικανότητα έγχυτων πασσάλων 21.12.25 2. Αξονική φέρουσα ικανότητα μεμονωμένου
ΟΡΙΑΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ (ΠΙΝΑΚΑΣ ΕΝΔΕΙΚΤΙΚΟΣ)
Σχεδιασμός Θεμελιώσεων με Πασσάλους με βάση τον Ευρωκώδικα 7.1 Β. Παπαδόπουλος Τομέας Γεωτεχνικής ΕΜΠ ΘΕΜΕΛΙΩΣΕΙΣ ΜΕ ΠΑΣΣΑΛΟΥΣ ΟΡΙΑΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ (ΠΙΝΑΚΑΣ ΕΝΔΕΙΚΤΙΚΟΣ) ΑΣΤΟΧΙΑΣ Απώλεια συνολικής ευστάθειας
8.1.7 Σχεδιασμός και μη-γραμμική ανάλυση
Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης
Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7. Αιµίλιος Κωµοδρόµος, Καθηγητής, Εργαστήριο Υ.Γ.Μ. Πανεπιστήµιο Θεσσαλίας Τµήµα Πολιτικών Μηχανικών
Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7 Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7 Υπολογισµός Φέρουσας Ικανότητας Ευρωκώδικας 7 Αστράγγιστες Συνθήκες Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7 [ c b s i q] R k
Ανάλυση της συµπεριφοράς δοκιµαστικού πασσάλου Analysis of the load response of a test pile
Ανάλυση της συµπεριφοράς δοκιµαστικού πασσάλου Analysis of the load response of a test pile Σ. ΚΩΣΤΟΠΟΥΛΟΣ, ρ. Πολ. Μηχανικός, Αν. Καθηγητής, Παν. Θεσσαλίας Ν. ΚΑΤΤΗΣ, Πολ. Μηχανικός ΜSc, Υπ. ιδάκτωρ Παν.
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 8β Θεμελιώσεις με πασσάλους : Αξονική φέρουσα ικανότητα εμπηγνυόμενων πασσάλων με στατικούς τύπους 25.12.2005
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 005-06 ΔΙΑΛΕΞΗ 13 Θεμελιώσεις με πασσάλους : Εγκάρσια φόρτιση πασσάλων 1.05.005 1. Κατηγορίες πασσάλων. Αξονική φέρουσα ικανότητα
ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ
ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ Πρόλογος...11 Πίνακας κυριότερων συμβόλων...13 ΚΕΦΑΛΑIΟ 1: Εισαγωγή 21 ΚΕΦΑΛΑIΟ 2: Απόκριση μεμονωμένου πασσάλου υπό κατακόρυφη φόρτιση 29 2.1 Εισαγωγή...29 2.2 Οριακό και επιτρεπόμενο
Επιπτώσεις αλληλεπίδρασης και κατανοµή φορτίου στους πασσάλους και την πλάκα κεφαλόδεσµο πασσαλοθεµελιώσεων
Επιπτώσεις αλληλεπίδρασης και κατανοµή φορτίου στους πασσάλους και την πλάκα κεφαλόδεσµο πασσαλοθεµελιώσεων Piled raft foundations: load distribution and interaction effects to the iles and the raft ΜΠΑΡΕΚΑ,
Εισηγητής: Αλέξανδρος Βαλσαμής. Θεμελιώσεις. Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά
Εισηγητής: Αλέξανδρος Βαλσαμής Θεμελιώσεις Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά Το πρόβλημα Γεωτεχνική Επιστήμη Συνήθη προβλήματα Μέσο έδρασης των κατασκευών (θεμελιώσεις) Μέσο που πρέπει
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 8γ Θεμελιώσεις με πασσάλους Υπολογισμός αξονικής φέρουσας ικανότητας μέσω : Αποτελεσμάτων επιτόπου δοκιμών Αξιοποίησης
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 25-6 ΔΙΑΛΕΞΗ 11 Θεμελιώσεις με πασσάλους : Καθιζήσεις πασσάλων 5.1.26 1. Κατηγοίες πασσάλων 2. Αξονική φέουσα ικανότητα μεμονωμένου
Εισηγητής: Αλέξανδρος Βαλσαμής. Θεμελιώσεις. Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά Βασικές εξισώσεις
Εισηγητής: Αλέξανδρος Βαλσαμής Θεμελιώσεις Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά Βασικές εξισώσεις Φέρουσα Ικανότητα Επιφανειακών θεμελιώσεων (πεδίλων) Φέρουσα Ικανότητα Τάσεις κάτω από το
Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 4
Τεχνολογικό Εκπαιδευτικό Ίδρυµα Σερρών Σχολή Τεχνολογικών Εφαρµογών Τµήµα Πολιτικών οµικών Έργων Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 4 Βαθιές θεµελιώσεις ιδάσκων: Κίρτας Εµµανουήλ Σέρρες, Σεπτέµβριος 2010 1
2.1 Αργιλικές αποθέσεις. Η πρώτη δοκιμαστική φόρτιση πραγματοποιήθηκε στη γεωγραφική ενότητα 24/25, Τεχνικό έργο 2 (Γέφυρα Ξερίλα)
Σύγκριση Προσεγγιστικών Μεθόδων Υπολογισμού Φέρουσας Ικανότητας Πασσάλων Εκσκαφής και Δοκιμαστικών Φορτίσεων Cross-comparison Between Drilled Pier Bearing Capacity Evaluation Methods and Factual Data Provided
ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά.
ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά Γενικές πληροφορίες μαθήματος: Τίτλος Αλληλεπίδραση μαθήματος: εδάφουςκατασκευών
EN EN Μερικοί συντ αντιστάσεων (R) g b = g s = Συντελεστές μείωσης Συντ μείωσης καμπύλης φορτίου καθίζησης : k = 1,00 [ ] Έλεγχοι Συντ.
Ανάλυση πασσάλου CPT Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 09.10.2008 Ρυθμίσεις Πρότυπο - EN 1997 - DA1 CPT πάσσαλος Μεθοδολογία επαλήθευσης : Τύπος ανάλυσης : Μερικός συντ αντίστασης αιχμής : Μερικός
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΥΜΒΟΛΗΣ ΤΟΥ ΚΕΦΑΛΟΔΕΣΜΟΥ ΣΤΗΝ ΑΠΟΚΡΙΣΗ ΟΜΑΔΑΣ ΠΑΣΣΑΛΩΝ
ΕΠΙΛΟΓΗ ΥΛΙΚΩΝ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΠΡΟΪΟΝΤΩΝ. Δυσκαμψία & βάρος: πυκνότητα και μέτρα ελαστικότητας
ΕΠΙΛΟΓΗ ΥΛΙΚΩΝ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΠΡΟΪΟΝΤΩΝ Δυσκαμψία & βάρος: πυκνότητα και μέτρα ελαστικότητας Αντοχή και Δυσκαμψία (Strength and Stiffness) Η τάση (stress) εφαρμόζεται σ ένα υλικό μέσω της φόρτισής του Παραμόρφωση
Απόκριση πασσάλου μετά τη ρηγμάτωση: Οριζόντια δοκιμαστική φόρτιση με χρήση οπτικών ινών 3D μη γραμμική ανάλυση
Απόκριση πασσάλου μετά τη ρηγμάτωση: Οριζόντια δοκιμαστική φόρτιση με χρήση οπτικών ινών 3D μη γραμμική ανάλυση Pile response after cracking: horizontal pile load test using fiber optics 3D nonlinear analysis
Βαθιές Θεµελιώσεις Πάσσαλοι υπό Οριζόντια Φόρτιση
Απόκριση Θεµελιώσεων µε Πασσάλους υπό Οριζόντια Φόρτιση Απόκριση Πασσάλων υπό Οριζόντια Φόρτιση Μενονωµένος Πάσσαλος Οµάδα Πασσάλων Φέρουσα Ικανότητα Μέθοδος Broms Υπολογισµός Καµπύλης Απόκρισης Μέθοδος
Χρήση Πασσάλων στην Ελλάδα Τα Πλεονεκτήµατα των Πασσάλων Έµπηξης
Χρήση Πασσάλων στην Ελλάδα Τα Πλεονεκτήµατα των Πασσάλων Έµπηξης Piling in Greece A Case for Driven Piles CARR R.W., Γεωτεχνικός Μηχανικός, Kellogg Brown & Root, Προϊστάµενος Τµήµατος Γεωτεχνικών, /νση
ΚΕΦΑΛΑΙΟ 6 ΘΕΜΕΛΙΩΣΕΙΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ. Ν. Σαμπατακάκης Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών
ΚΕΦΑΛΑΙΟ 6 ΘΕΜΕΛΙΩΣΕΙΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ κύριο ερώτημα ΘΕΜΕΛΙΩΣΗ ΑΝΩΔΟΜΗΣ το γενικό πρόβλημα πως θα αντιδράσει η απεριόριστη σε έκταση εδαφική μάζα??? ζητούμενο όχι «θραύση» εδαφικής μάζας εύρος καθιζήσεων
Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών Μεταπτυχιακό πρόγραµµα σπουδών «Αντισεισµικός Σχεδιασµός Τεχνικών Έργων» Μάθηµα: «Αντισεισµικός Σχεδιασµός Θεµελιώσεων,
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 0 Θεμελιώσεις με πασσάλους : Ανάλυση φέρουσας ικανότητας κατά τον Ευρωκώδικα 7 2.2.2005 ΘΕΜΕΛΙΩΣΕΙΣ ΜΕ ΠΑΣΣΑΛΟΥΣ.
Πεδιλοδοκοί και Κοιτοστρώσεις
/7/0 ΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 0 - ΙΑΛΕΞΗ 7 Πεδιλοδοκοί και Κοιτοστρώσεις 8.0.0 Πεδιλοδοκοί και Κοιτοστρώσεις Η θεµελίωση µπορεί να γίνει µε πεδιλοδοκούς ή κοιτόστρωση
16ο Συνέδριο Σκυροδέματος, ΤΕΕ, ΕΤΕΚ, 21-23/10/ 2009, Πάφος, Κύπρος
1 Πειραµατική και αριθµητική διερεύνηση απόκρισης ρηγµατωµένης διατοµής πασσάλου από οπλισµένο σκυρόδεµα Experimental and numerical analysis of the post-cracking response of a reinforced concrete pile
Ν. Σαμπατακάκης Αν. Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών
ΚΕΦΑΛΑΙΟ 4 ΘΕΜΕΛΙΩΣΕΙΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ κύριο ερώτημα ΘΕΜΕΛΙΩΣΗ ΑΝΩΔΟΜΗΣ το γενικό πρόβλημα πως θα αντιδράσει η απεριόριστη σε έκταση εδαφική μάζα??? ζητούμενο όχι «θραύση» ρ η εδαφικής μάζας εύρος καθιζήσεων
«ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. Πολ. Μηχανικών Ακ. Έτος
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. Πολ. Μηχανικών Ακ. Έτος 01-014 ΙΑΛΕΞΗ 1: ΟΡΙΖΟΝΤΙΑ ΦΟΡΤΙΣΗ ΜΕΜΟΝΩΜΕΝΩΝ ΠΑΣΣΑΛΩΝ Οι διαλέξεις υπάρχουν στην
Πανεπιστήμιο Θεσσαλίας Τμήμα Πολιτικών Μηχανικών. Αριθμητικές Μέθοδοι : Αλληλεπίδρση Εδάφους - Κατασκευών Αναπληρωτής Καθηγητής Αιμίλιος Κωμοδρόμος 1
Αναπληρωτής Καθηγητής Αιμίλιος Κωμοδρόμος 1 Επίλυση Προβλημάτων Αλληλεπίδρασης Εδάφους Κατασκευών με Χρήση Αριθμητικών Μεθόδων ΑΠΛΟΠΟΙΗΜΕΝΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Απλουστευτικές Παραδοχές Πεδία και Ορια Εφαρμογών
Εισηγητής: Αλέξανδρος Βαλσαμής. Θεμελιώσεις. Γενικά
Εισηγητής: Αλέξανδρος Βαλσαμής Θεμελιώσεις Γενικά Το πρόβλημα Γεωτεχνική Επιστήμη Συνήθη προβλήματα Μέσο έδρασης των κατασκευών (θεμελιώσεις) Μέσο που πρέπει να στηριχθεί (βαθιές εκσκαφές, αντιστηρίξεις,
Προσδιορισµός απόκρισης πασσάλου υπό κατακόρυφη φόρτιση: οκιµαστική φόρτιση µε χρήση οπτικών ινών 3D µη γραµµική ανάλυση
Προσδιορισµός απόκρισης πασσάλου υπό κατακόρυφη φόρτιση: οκιµαστική φόρτιση µε χρήση οπτικών ινών 3D µη γραµµική ανάλυση Evaluatio of pile respose uder vertical loadig: Pile load test usig fiber optics
Γεωτεχνική Έρευνα - Μέρος 3 Υποενότητα 8.3.1
Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Γεωτεχνική Έρευνα
Τυπικά προβλήματα γεωτεχνικής μηχανικής
Κεφάλαιο 7 Τυπικά προβλήματα γεωτεχνικής μηχανικής Στο παρόν κεφάλαιο παρουσιάζεται η διαδικασία της προσομοίωσης του φυσικού προβλήματος ως σύνθεση των εννοιών που αναπτύχθηκαν στα προηγούμενα κεφάλαια
Αριθμητική Ανάλυση Ομάδας Πασσάλων με Ενιαίο Κεφαλόδεσμο υπό Κεντρική Κατακόρυφη Φόρτιση
Τεχν. Χρον. Επιστ. Έκδ. ΤΕΕ, Ι, τεύχ. 1 24, Tech. Chron. Sci. J. TCG, I, No 1 57 Αριθμητική Ανάλυση Ομάδας Πασσάλων με Ενιαίο Κεφαλόδεσμο υπό Κεντρική Κατακόρυφη Φόρτιση Α. ΚΩΜΟΔΡΟΜΟΣ Επίκουρος Καθηγητής,
ιερεύνηση της Τριδιάστατης Απόκρισης Οµάδας Χαλικοπασσάλων και Σύγκριση µε Αξονοσυµµετρικές Συνθήκες
ιερεύνηση της Τριδιάστατης Απόκρισης Οµάδας Χαλικοπασσάλων και Σύγκριση µε Αξονοσυµµετρικές Συνθήκες 3-D Analyses of Reinforced Soils with Stone Columns and Comparison with Axisymmetric Conditions ΑΝ ΡΕΟΥ,
ΚΕΦΑΛΑΙΟ 4 ΦΕΡΟΥΣΑ ΙΚΑΝΟΤΗΤΑ ΤΟΥ Ε ΑΦΟΥΣ ΣΥΜΠΥΚΝΩΣΗ ΤΟΥ Ε ΑΦΟΥΣ
ΚΕΦΑΛΑΙΟ 4 ΦΕΡΟΥΣΑ ΙΚΑΝΟΤΗΤΑ ΤΟΥ Ε ΑΦΟΥΣ ΣΥΜΠΥΚΝΩΣΗ ΤΟΥ Ε ΑΦΟΥΣ Φέρουσα ικανότητα εδάφους (Dunn et al., 1980, Budhu, 1999) (Τελική) φέρουσα ικανότητα -q, ονοµάζεται το φορτίο, ανά µονάδα επιφανείας εδάφους,
Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων
Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων Έργο Ημερομηνία : 6.12.2012 Ονομασία : Έργο Στάδιο : 1 7,00 2,00 +z 12,00 ΥΥΟ Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από
Υπόγεια Έργα Αντιστηρίξεις. Αιµίλιος Κωµοδρόµος, Καθηγητής, Εργαστήριο Υ.Γ.Μ. Πανεπιστήµιο Θεσσαλίας Τµήµα Πολιτικών Μηχανικών 1
Πανεπιστήµιο Θεσσαλίας Τµήµα Πολιτικών Μηχανικών 1 Ε ρ γ α Π ρ ο σ ω ρ ι ν ή ς Α ν τ ι σ τ ή ρ ι ξ η ς γ ι α τ η ν Κ α τ α σ κ ε υ ή Υ π ο γ ε ί ω ν σ ε Α σ τ ι κ ό Π ε ρ ι β ά λ λ ο ν Α Λύση: ιάφραγµα
Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων
Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων Μελέτη Περιγραφή Μελετητής Ημερομηνία Ρυθμίσεις : : : Pile Group - Exaple 3 Ing. Jiri Vanecek 28.10.2015 (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα
Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/
Page: 10 CONTENTS Contents... 10 General Data... 10 Structural Data des... 10 erials... 10 Sections... 10 ents... 11 Supports... 11 Loads General Data... 12 LC 1 - Vollast 120 km/h 0,694 kn/qm... 12 LC,
Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/
Page: 1 CONTENTS Contents... 1 General Data... 1 Structural Data des... 1 erials... 1 Sections... 1 ents... 2 Supports... 2 Loads General Data... 3 LC 1 - Vollast 90 km/h 0,39 kn/qm... 3 LC, LG Results
Ανάλυση εγκάρσια φορτιζόµενων µεµονωµένων πασσάλων σε αδροµερή εδάφη βάσει δοκιµαστικών φορτίσεων
Ανάλυση εγκάρσια φορτιζόµενων µεµονωµένων πασσάλων σε αδροµερή εδάφη βάσει δοκιµαστικών φορτίσεων Analysis of laterally loaded single piles in coarse-grained soils based on load tests ΚΕΡΑΜΙ ΑΣ, Ε. ΡΙΤΣΟΣ,
Θεμελιώσεις τεχνικών έργων. Νικόλαος Σαμπατακάκης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας
Θεμελιώσεις τεχνικών έργων Νικόλαος Σαμπατακάκης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας Ορισμός Θεμελίωση (foundation) είναι το κατώτερο τμήμα μιας κατασκευής και αποτελεί τον τρόπο διάταξης των δομικών
Προσοµοίωση της Συµπεριφοράς Πλευρικά Φορτιζόµενων Φρεάτων Θεµελίωσης σε Πρανή
Προσοµοίωση της Συµπεριφοράς Πλευρικά Φορτιζόµενων Φρεάτων Θεµελίωσης σε Πρανή Simulation of the Resonse of Laterally Loaded Foundation Shafts Located near Sloes ΙΩΑΚΕΙΜΙ ΗΣ ΙΩΑΝΝΗΣ Πολιτικός Μηχανικός
τομή ακροβάθρου δεδομένα
B 1 = 4,4 m B 2 = 1,6 m B 3 = m B 4 = m B 5 =,3 m B 6 = m Η 1 = 1,6 m Η 2 = m Η 3 = m Η 4 = m Η 5 = m Η 6 =,3 m Η 7 = 1,3 m L 1 = m L 2 = 1 m L 3 = m E C = 28847,6 ΜPa μέτρο ελαστικότητας f ck = 2 ΜPa
Προσομοίωση της Συμπεριφοράς Εδαφών Βελτιωμένων με Χαλικοπασσάλους. Modeling the Behavior of Soil Improved by Stone Columns
Προσομοίωση της Συμπεριφοράς Εδαφών Βελτιωμένων με Χαλικοπασσάλους Modeling the Behavior of Soil Improved by Stone Columns ΑΝΔΡΕΟΥ, Π. Μηχ. Μεταλλείων, DEA Γεωτεχνική Μηχ. (ΕΝPC), Υ/Δ Σχολής Πολ. Μηχ.
Αντιστηρίξεις Ωθήσεις Γαιών. Αιµίλιος Κωµοδρόµος, Καθηγητής, Εργαστήριο Υ.Γ.Μ. Πανεπιστήµιο Θεσσαλίας Τµήµα Πολιτικών Μηχανικών
1 Τοίχοι Βαρύτητας Οπλισµένου Σκυροδέµατος Οπλισµένα Γη - Επιχώµατα Βαθειές Πασσαλοσανίδες Διαφραγµατικοί Τοίχοι Πασσαλότοιχοι Ωθήσεις Γαιών Οριακή Κατάσταση Σχεδιασµός έναντι θραύσης Αριθµητικές Μέθοδοι
Διατμητική αστοχία τοιχώματος ισογείου. Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου
Διατμητική αστοχία τοιχώματος ισογείου Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου Ανάλογα με τη στατική φόρτιση δημιουργούνται περιοχές στο φορέα όπου έχουμε καθαρή κάμψη ή καμπτοδιάτμηση. m(x)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΓΕΩΤΕΧΝΙΚΟΣ ΤΟΜΕΑΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΓΕΩΤΕΧΝΙΚΟΣ ΤΟΜΕΑΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Διερεύνηση της Απόκρισης Ομάδας Πασσάλων υπό Οριζόντια Φόρτιση Εκπόνηση: Γκαραγκούνη Ελένη Μπαρέκα
Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ]
Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π. Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ 1992-1-1
8.3.4 Αλληλεπίδραση υποθαλάσσιων αγωγών και εδάφους
Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης
Διερεύνηση της αποτελεσματικότητας των πασσάλων ως μέτρο αντιμετώπισης των κατολισθήσεων
Διερεύνηση της αποτελεσματικότητας των πασσάλων ως μέτρο αντιμετώπισης των κατολισθήσεων Investigation of effectiveness of piles as landslide countermeasure ΠΑΠΑΒΑΣΙΛΕΙΟΥ, Α.N. ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΣ, Χ.T. Πολιτικός
Επαλήθευση ενισχυμένης τοιχοποιίας Εισαγωγή δεδομένων
Επαλήθευση ενισχυμένης τοιχοποιίας Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 0.08.006 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 99-- : Ενισχυμένη
ΕΔΑΦΟΜΗΧΑΝΙΚΗ. Κεφάλαιο 4. Εδαφομηχανική - Μαραγκός Ν. (2009) σελ. 4.2
ΕΔΑΦΟΜΗΧΑΝΙΚΗ Κεφάλαιο 4 Προσδιορισμός συνθηκών υπεδάφους Επιτόπου δοκιμές Είδη θεμελίωσης Εδαφομηχανική - Μαραγκός Ν. (2009) σελ. 4.1 Προσδιορισμός των συνθηκών υπεδάφους Με δειγματοληπτικές γεωτρήσεις
ΕΙΣΑΓΩΓΗ ΣΤΗΝ Ε ΑΦΟΜΗΧΑΝΙΚΗ (γιατί υπάρχουν οι γεωτεχνικοί µελετητές;)
Απρίλιος 2008 ΕΙΣΑΓΩΓΗ ΣΤΗΝ Ε ΑΦΟΜΗΧΑΝΙΚΗ (γιατί υπάρχουν οι γεωτεχνικοί µελετητές;) Τι είναι η Εδαφοµηχανική και τι είναι Γεωτεχνική Μελέτη; Ετοιµολογία: Γεωτεχνική: Επιθετικός προσδιορισµός που χαρακτηρίζει
Οριακή και Παραμορφωσιακή Ανάλυση Κατασκευών με χρήση Μαθηματικού Προγραμματισμού
Ημερίδα Διάχυσης Αποτελεσμάτων Οριακή και Παραμορφωσιακή Ανάλυση Κατασκευών με χρήση Μαθηματικού Προγραμματισμού Μανωλά Μ.Μ. Σ., Κουμούσης Β.Κ. Τομέας Στατικής & Αντισεισμικών Ερευνών Αθήνα, Μάιος 2014
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 3 Ανάλυση της Φέρουσας Ικανότητας Επιφανειακών Θεμελιώσεων κατά τον Ευρωκώδικα 7 8.0.2005 Έλεχος επάρκειας επιφανειακών
Οι ασυνέχειες επηρεάζουν τη συμπεριφορά του τεχνικού έργου και πρέπει να λαμβάνονται υπόψη στο σχεδιασμό του.
ΠΕΡΙΓΡΑΦΗ ΑΣΥΝΕΧΕΙΩΝ ΒΡΑΧΟΥ Όπως έχουμε ήδη αναφέρει οι ασυνέχειες αποτελούν επίπεδα αδυναμίας της βραχόμαζας που διαχωρίζει τα τεμάχια του ακέραιου πετρώματος. Κάθετα σε αυτή η εφελκυστική αντοχή είναι
Μ. Καββαδάς, Αναπλ. Καθηγητής ΕΜΠ
Τεχνικό Επιμελητήριο Ελλάδος (ΤΕΕ) Εκπαιδευτικό υλικό για τα Σεμινάρια Επιμόρφωσης των Ελλήνων Μηχανικών στους Ευρωκώδικες Νοέμβριος Δεκέμβριος 2009 Εφαρμογές του Ευρωκώδικα 7(EN 1997) σε θέματα σχεδιασμού
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ Αντικείμενο της Άσκησης ης Η παρουσίαση της διαδικασίας εκτέλεσης
Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί των οποίων εδράζεται µοναδικό ορθογωνικό υποστύλωµα.
CSI Hellas, Φεβρουάριος 2004 Τεχνική Οδηγία 1 Πέδιλα στα οποία εδράζονται υποστυλώµατα ορθογωνικής διατοµής Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί
Εδάφη Ενισχυμένα με Γεωυφάσματα Μηχανική Συμπεριφορά και. Αλληλεπίδραση Υλικών. Ιωάννης Ν. Μάρκου Αναπλ. Καθηγητής
Ιωάννης Ν. Μάρκου Αναπλ. Καθηγητής Εδάφη Ενισχυμένα με Γεωυφάσματα Μηχανική Συμπεριφορά και Δημοκρίτειο Πανεπιστήμιο Θράκης Τμήμα Πολιτικών Μηχανικών Εργ. Εδαφομηχανικής & Θεμελιώσεων Αλληλεπίδραση Υλικών
Figure 1 - Plan of the Location of the Piles and in Situ Tests
Figure 1 - Plan of the Location of the Piles and in Situ Tests 1 2 3 A B C D DMT4 DMT5 PMT1 CPT4 A 2.2 1.75 S5+ SPT CPT7 CROSS SECTION A-A C2 E7 E5 S4+ SPT E3 E1 E DMT7 T1 CPT9 DMT9 CPT5 C1 ground level
ΑΝΑΛΥΣΗ ΔΟΚΙΜΑΣΤΙΚΗΣ ΦΟΡΤΙΣΗΣ ΠΑΣΣΑΛΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΓΕΩΤΕΧΝΙΚΟΣ ΤΟΜΕΑΣ ΑΝΑΛΥΣΗ ΔΟΚΙΜΑΣΤΙΚΗΣ ΦΟΡΤΙΣΗΣ ΠΑΣΣΑΛΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ KΑΤΤΗΣ ΝΙΚΟΛΑΟΣ Επιβλέποντες : Σπ. Κωστόπουλος,
ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά.
ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά Γενικές πληροφορίες μαθήματος: Τίτλος Αλληλεπίδραση μαθήματος: εδάφουςκατασκευών
Τ.Ε.Ι. ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ (Σ.Τ.ΕΦ.) ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. (ΤΡΙΚΑΛΑ) ΘΕΜΕΛΙΩΣΕΙΣ - ΑΝΤΙΣΤΗΡΙΞΕΙΣ
Τ.Ε.Ι. ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ (Σ.Τ.ΕΦ.) ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. (ΤΡΙΚΑΛΑ) ΘΕΜΕΛΙΩΣΕΙΣ - ΑΝΤΙΣΤΗΡΙΞΕΙΣ Δημήτριος Ν. Χριστοδούλου Δρ. Πολιτικός Μηχανικός Δ.Π.Θ., M.Sc. ΣΚΟΠΟΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ
Η μηχανική επαφής και η στατική των πέτρινων γεφυριών
Η μηχανική επαφής και η στατική των πέτρινων γεφυριών Καθηγητής Γεώργιος Σταυρουλάκης Σχολή Μηχανικών Παραγωγής και Διοίκησης, Πολυτεχνείο Κρήτης Επίκουρη Καθηγήτρια Μαρία Σταυρουλάκη Σχολή Αρχιτεκτόνων
Συντελεστές φέρουσας ικανότητας για αστράγγιστη φόρτιση κωνικών θεμελιώσεων σε άργιλο. Undrained bearing capacity factors for conical footings on clay
Συντελεστές φέρουσας ικανότητας για αστράγγιστη φόρτιση κωνικών θεμελιώσεων σε άργιλο Undrained bearing capacity factors for conical footings on clay ΓΙΑΝΝΟΠΟΥΛΟΣ, Κ.Π. ZDRAVKOVIC, L. Πολιτικός Μηχανικός,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Ε ΑΦΟΜΗΧΑΝΙΚΗ ΙΙ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Ε ΑΦΟΜΗΧΑΝΙΚΗ ΙΙ ΕΠΙΠΛΕΟΝ ΣΗΜΕΙΩΣΕΙΣ για φέρουσα ικανότητα αβαθών θεµελίων (βασισµένες εν πολλοίς σε σηµειώσεις των Μ. Καββαδά, Καθηγητή
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΠΟΚΡΙΣΗ ΟΜΑΔΑΣ ΠΑΣΣΑΛΩΝ ΥΠΟ ΟΡΙΖΟΝΤΙΑ ΦΟΡΤΙΣΗ ΣΕ ΑΡΓΙΛΙΚΑ ΕΔΑΦΗ: ΔΙΕΡΕΥΝΗΣΗ
Ανάλυση τοίχου προβόλου Εισαγωγή δεδομένων
Ανάλυση τοίχου προβόλου Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 7.0.05 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 99-- : Aνάλυση τοίχου Υπολ ενεργητικών
Επαλήθευση πασσάλου Εισαγωγή δεδομένων
Επαλήθευση πασσάλου Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 28.0.205 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : CSN 73 20 R Πάσσαλος Συντ ασφάλειας πάσσαλου θλίψης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ Αντικείμενο της Άσκησης ης Η παρουσίαση της διαδικασίας εκτέλεσης
Προχωρημένη Εδαφομηχανική Π. Ντακούλας, Αν. Καθηγητής Πανεπιστήμιο Θεσσαλίας, Βόλος
Πρόγραμμα Μεταπτυχιακών Σπουδών Προχωρημένη Εδαφομηχανική Π. Ντακούλας, Αν. Καθηγητής Πανεπιστήμιο Θεσσαλίας, Βόλος Στόχος του μαθήματος Η μελέτη και εφαρμογή προχωρημένων καταστατικών σχέσεων για την
Ειδικά Θέματα Θεμελιώσεων 2016 16-2017 Γ. Μπουκοβάλας Αχ. Παπαδημητρίου Σοφ. Μαρονικολάκης Αλ. Βαλσαμής www.georgebouckovalas.com Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1.1 Γ. Δ. Μπουκοβάλας,
Τεχνική Νομοθεσία και Ευρωκώδικες στα Τεχνικά Έργα
Τεχνική Νομοθεσία και Ευρωκώδικες στα Τεχνικά Έργα Άνθιμος Σ. ΑΝΑΣΤΑΣΙΑΔΗΣ Δρ. Πολιτικός Mηχανικός, EurIng Τμήμα Μηχανικών και Μηχανικών Αντιρρύπανσης Τ.Ε. Εισαγωγική Κατεύθυνση: Μηχανικών Γεωτεχνολογίας
5.0 DESIGN CALCULATIONS
5.0 DESIGN CALCULATIONS Load Data Reference Drawing No. 2-87-010-80926 Foundation loading for steel chimney 1-00-281-53214 Boiler foundation plan sketch : Figure 1 Quantity Unit Dia of Stack, d 6.00 m
Επαλήθευση Τοίχου με ακρόβαθρο Εισαγωγή δεδομένων
Επαλήθευση Τοίχου με ακρόβαθρο Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 29.10.2015 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Ακρόβαθρο : Συντελεστές EN 1992-1-1 : Aνάλυση τοίχου Υπολ ενεργητικών
Ονοματεπώνυμο φοιτητή:... ΑΕΜ:...
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Δομικών Έργων Χειμερινό Εξάμηνο 00-0 Διάρκεια εξέτασης: ώρες Εξέταση Θεωρίας: ΘΕΜΕΛΙΩΣΕΙΣ Διδάσκων: Κίρτας Εμμανουήλ
Γεωτεχνικός Σχεδιασμός Κτηρίων κατά τον Ευρωκώδικα 7 (EN 1997)
Τ.Ε.Ε., Σ.Π.Μ.Ε., Ο.Α.Σ.Π., ΤΕΕ/Τμ. Δυτικής Ελλάδας Διημερίδα στην Πάτρα (17-1818 Ιουνίου 2011) «Σχεδιασμός Κτηρίων Σκυροδέματος με βάση τους Ευρωκώδικες 2, 7 & 8» Γεωτεχνικός Σχεδιασμός Κτηρίων κατά τον
Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών ομικών Έργων Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ Παραδόσεις Θεωρίας ιδάσκων: Κίρτας Εμμανουήλ Σέρρες, Σεπτέμβριος 2010 Τεχνολογικό
Θεµελιώσεις - Απαντήσεις Εργαστηριακών Ασκήσεων 1 ΘΕΜΕΛΙΩΣΕΙΣ. = 180 kpa, σ = 206 kpa
Θεµελιώσεις - Εργαστηριακών Ασκήσεων 1 ΘΕΜΕΛΙΩΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΑΣΚΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΟ 1Ο Άσκηση 1.1 Βάθος z=0.0: σ = 0, u = 0, σ = 0 w Βάθος z=-2.0: σ Βάθος z=-7.0: σ Βάθος z=-20.0: σ = 6 kpa,
ΑΣΦΑΛΤΙΚΕΣ ΑΝΤΙΟΛΙΣΘΗΡΕΣ ΣΤΡΩΣΕΙΣ ΕΙ ΙΚΟΥ ΤΥΠΟΥ ΑΠΟ ΑΣΦΑΛΤΙΚΟ ΣΚΥΡΟ ΕΜΑ ΜΕ ΤΡΟΠΟΠΟΙΗΜΕΝΗ ΑΣΦΑΛΤΟ ΕΛΑΣΤΟΜΕΡΟΥΣ ΤΥΠΟΥ
Τ.Σ.Υ. ΑΡΘΡΟ ΣΤ-5.1 1 ΣΤ 5.1 ΑΣΦΑΛΤΙΚΕΣ ΑΝΤΙΟΛΙΣΘΗΡΕΣ ΣΤΡΩΣΕΙΣ ΕΙ ΙΚΟΥ ΤΥΠΟΥ ΑΠΟ ΑΣΦΑΛΤΙΚΟ ΣΚΥΡΟ ΕΜΑ ΜΕ ΤΡΟΠΟΠΟΙΗΜΕΝΗ ΑΣΦΑΛΤΟ ΕΛΑΣΤΟΜΕΡΟΥΣ ΤΥΠΟΥ ΓΕΝΙΚΕΣ ΕΠΙΣΗΜΑΝΣΕΙΣ 1. Ισχύουν γενικά ότι και στο άρθρο
Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10)
Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης
ΤΡΙΑΞΟΝΙΚΗ ΦΟΡΤΙΣΗ UU
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΓΕΩΤΡΗΣΗ: ΒΑΘΟΣ ΔΕΙΓΜΑΤΟΣ : ΠΕΡΙΓΡΑΦΗ: ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΔΟΚΙΜΗΣ 1 (πλευρική τάση σ 3 =100kPa) Δοκίμιο: Αδιατάρακτο Διαμορφωμένο Χ Σταθερά μηκ/τρου μετακ.
Επαλήθευση πεδιλοδοκού Εισαγωγή δεδομένων
Επαλήθευση πεδιλοδοκού Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 02.11.2005 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 199211 : Καθιζήσεις Μέθοδος
CONSULTING Engineering Calculation Sheet
E N G I N E E R S Consulting Engineers jxxx 1 Structure Design - EQ Load Definition and EQ Effects v20 EQ Response Spectra in Direction X, Y, Z X-Dir Y-Dir Z-Dir Fundamental period of building, T 1 5.00
Θεµελιώσεις - Αντιστηρίξεις Επιφανειακές Θεµελιώσεις
Οριακή Κατάσταση Σχεδιασµός έναντι θραύσης Απαιτήσεις Ευρωκώδικα 7 Μηχανισµός Θραύσης - Παραδοχές Υπολογισµός Φέρουσας Ικανότητας Μέθοδοι: Terzaghi, Meyerhof, Hansen, Vesic, Caquot-Kerisel, Ευρωκώδικας
Μιχάλης ΚΛΟΥΒΑΣ 1, Χρήστος ΖΕΡΗΣ 2
6ο Συνέδριο Σκυροδέματος, ΤΕΕ, ΕΤΕΚ, -3/0/ 009, Πάφος, Κύπρος Αριθµητική ιερεύνηση της Επιφάνειας Αστοχίας του Σκυροδέµατος Παρουσία Εφελκυστικών Τάσεων A Numerical Investigation of the Failure Surface
16ο Συνέδριο Σκυροδέματος, ΤΕΕ, ΕΤΕΚ, 21-23/10/ 2009, Πάφος, Κύπρος
1 Η επίδραση της ρηγµάτωσης στην απόκριση πασσάλου οπλισµένου σκυροδέµατος υπό οριζόντια φόρτιση The effect of cracking to the response of a concrete pile under horizontal loading Αιµίλιος Μ. ΚΩΜΟ ΡΟΜΟΣ
Στοιχεία Μηχανών. Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά
Στοιχεία Μηχανών Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά Ύλη μαθήματος -ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΜΗΧΑΝΙΚΗΣ ΥΛΙΚΩΝ -ΑΞΟΝΕΣ -ΚΟΧΛΙΕΣ -ΙΜΑΝΤΕΣ -ΟΔΟΝΤΩΤΟΙ ΤΡΟΧΟΙ ΒΑΘΜΟΛΟΓΙΑ ΜΑΘΗΜΑΤΟΣ: 25% πρόοδος 15% θέμα
Εργαστήρια Τεχνικής Γεωλογίας Ι
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ Εργαστήρια Τεχνικής Γεωλογίας Ι Άσκηση 3η Χρήση των Αποτελεσμάτων
Συγκριτική Αξιολόγηση Προσοµοιωµάτων Τοιχείων και Πυρήνων Κτηρίων µε τη Μέθοδο των Πεπερασµένων Στοιχείων και Πειραµατικά Αποτελέσµατα
Συγκριτική Αξιολόγηση Προσοµοιωµάτων Τοιχείων και Πυρήνων Κτηρίων µε τη Μέθοδο των Πεπερασµένων Στοιχείων και Πειραµατικά Αποτελέσµατα Experimental verification of shear wall modeling using finite element
Εναλλακτική Θεμελίωση ομημάτων με Aσύνδετους Πασσάλους. Alternative Design of Rafts with Structurally Unconnected Piles
Εναλλακτική Θεμελίωση ομημάτων με σύνδετους Πασσάλους lternative Design of Rafts with Structurally Unconnected Piles ΓΕΡΟΛΥΜΟΣ, Ν. ΡΟΣΟΥ, Χ. ΓΚΑΖΕΤΑΣ, Γ. Πολιτικός Μηχανικός, Λέκτορας, Ε.Μ.Π. Πολιτικός