Identificatio n of No n2uniformly Perio dically Sa mpled Multirate Syste ms

Σχετικά έγγραφα
Quick algorithm f or computing core attribute

CorV CVAC. CorV TU317. 1

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Motion analysis and simulation of a stratospheric airship

CAP A CAP

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Fragility analysis for control systems

High order interpolation function for surface contact problem

ER-Tree (Extended R*-Tree)

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

A new practical method for closed-loop identification with PI control

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

A System Dynamics Model on Multiple2Echelon Control

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Buried Markov Model Pairwise

Probabilistic Approach to Robust Optimization

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Gain self-tuning of PI controller and parameter optimum for PMSM drives

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Control Theory & Applications PID (, )

, -.

Research on model of early2warning of enterprise crisis based on entropy

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Λέκτορας στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων, Πανεπιστήμιο Πειραιώς, Ιανουάριος 2012-Μάρτιος 2014.

Numerical Analysis FMN011

Research on Economics and Management

Approximation Expressions for the Temperature Integral

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ

Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media

Supplementary Appendix

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

YOU Wen-jie 1 2 JI Guo-li 1 YUAN Ming-shun 2

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

[2] T.S.G. Peiris and R.O. Thattil, An Alternative Model to Estimate Solar Radiation

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΣ ΤΟΜΕΑΣ

Resilient static output feedback robust H control for controlled positive systems

Prey-Taxis Holling-Tanner

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Μαθηματικών Π.Μ.Σ. Θεωρητικής Πληροφορικής και Θεωρίας Συστημάτων και Ελέγχου

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

Reading Order Detection for Text Layout Excluded by Image

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []

The Simulation Experiment on Verifying the Convergence of Combination Evaluation

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

Reminders: linear functions

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

Homomorphism in Intuitionistic Fuzzy Automata

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System

1 n-gram n-gram n-gram [11], [15] n-best [16] n-gram. n-gram. 1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e)

supporting phase aerial phase supporting phase z 2 z T z 1 p G quardic curve curve f 2, n 2 f 1, n 1 lift-off touch-down p Z

Ανάλυση Προτιμήσεων για τη Χρήση Συστήματος Κοινόχρηστων Ποδηλάτων στην Αθήνα

þÿ¹º±½ À Ã Â Ä Å ½ ûµÅĹº þÿàá ÃÉÀ¹º Í Ä Å µ½¹º Í þÿ à º ¼µ Å Æ Å

MIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ


Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

Χαρτογράφηση θορύβου

A research on the influence of dummy activity on float in an AOA network and its amendments

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και. Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του. Πανεπιστημίου Πατρών

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ταυτοποίηση ασθενούς μέσω ραδιοσυχνικής αναγνώρισης (RFID) με σκοπό τον έλεγχο της χορήγησης αναισθησίας κατά τη διάρκεια χειρουργικής επέμβασης

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

«ΧΩΡΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΤΟΥ ΠΛΗΘΥΣΜΟΥ ΤΗΣ ΠΕΡΔΙΚΑΣ (ALECTORIS GRAECA) ΣΤΗ ΣΤΕΡΕΑ ΕΛΛΑΔΑ»

Supporting Information

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

Computing the Gradient

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

CE 530 Molecular Simulation

* * E mail : matsuto eng.hokudai.ac.jp. Zeiss

Ηλεκτρικές δοκιµές σε καλώδια µέσης τάσης - ιαδικασίες επαλήθευσης και υπολογισµού αβεβαιότητας ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

EE101: Resonance in RLC circuits

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker

Control Theory & Applications. Lyapunov. : (intelligent transportation system, ITS),

Transcript:

9 24 9 ACTA ELECTRONICA SINICA Vol. 32 No. 9 Se. 24 1,2, 2, 1 (11, 184 ;21, T6G 2V4) :,.,,;,,,,.,. : ; ; ; : TP273 : A : 37222112 (24) 92141427 Identificatio n of No n2uniformly Perio dically Sa mled Multirate Syste ms DING Feng 1,2,CHEN Tong2wen 2,XIAO De2yun 1 (11 Deartment of Automation, Tsinghua University, Beijing 184, China ; 21 Deartment of Electrical and Comuter Engineering, University of Alberta, Edmonton, Alberta, Canada T6 G 2V4) Abstract : For non2uniformly eriodically samled multirate systems,we derive the corresonding lifted state2sace models by using the lifting technique. Furthermore,for multirate systems whose states are measurable,an identification method to estimate the lift2 ed system arameter matrices is given by using the least squares rincile ;for multirate systems whose states are unmeasurable,the lift2 ed multirate systems are decomosed into some subsystems according to the hierarchical identification rincile,and the hierarchical state2sace model identification methods are develoed,which tae causality constraints into consideration. The simulation results indi2 cate that the roosed algorithms are effective. Key words : multirate systems ;state2sace models ;hierarchical identification ;arameter estimation 1 1 S c, H T1 T 1, S T2 T 2. T 1 T 2,T 1 = T 2 = h,,, 1, u ( t), y( t), v ( t),. [1 ].. 1, 1 ( T 1 = T 2 = h) T 1 T 2, (Dual2Rate System) [2 ] ;, ( ), (Multirate System).. [3,4 ]., ( [5 ] ),,,,., [61 ], [11 ], [5,12 ].,,,,,.,,[13,14 ].,,. [15 ].,. [16,17 ].,,. : [182 ], :232921 ; :242426 : (No. 67429)

9 : 1415,. 2,, h., ( 2 ), 2 H T S T, { 1, 2,, }, 3 4, t = T t i ( =,1,2, ), i = 1,2,,, t i = 1 2 i (t = ), T = 1 2 = t. H T [ T, ( 1) T ], u t = T t i ( i = 1,2,, ),, H T u ( t) =, u ( T t 1 ), u ( T t ), T Φ t < T t 1, T t 1 Φ t < T t 2, T t Φ t < ( 1) T., t = T t i ( i = 1,2,, )., { 1, 2,, }. 3 4.,: (1), 3,(2), 4. 4, T,.,.,u y., [5,11,15 ],, u y (),T. :,, { u ( T t i ), y ( T t i ) }, =,1,2,, ( i =,1,2,, ),,,. 3 : (1) (3),(2) (4).,2 S c, S c : gx ( t) = A c x ( t) B c u ( t) y( t) = Cx ( t) Du ( t) v( t), x ( t) R n, u ( t) R r, y ( t) R r, v ( t) R r, A c, B c, C, D. 311 t =, t 1 = t 1 = 1, t 2 = t 1 2,, t = t = T = 1 2, u ( t) [ T t i, T t i 1 ], i =,1,2,,, u ( t) = u ( T t i ), T t i Φ t < T t i 1, i =, 1, 2,,,. 3,u ( T t i ) ( i =,1, 2,, ) y( T). (1), x ( ( 1) T) = e A c T x ( T) ( 1) T e A c ( ( 1) T - r) B c u ( ) d T ) = e A c T x ( T) B c du ( T t i ) = e A c T x ( T) T t i e A ( ( 1) T - r) c i =1 T t i T- t i i =1 = e A c T x ( T) T- t i e A c t dtb c u ( T t i ) t i i =1 = e A c T x ( T) i =1 t i e A c ( T - t) dtb c u ( T t i ) e A c ( T - t i ) t i = : A T x ( T) [ B 1, B 2,, B ] = : A T x ( T) B T A T = e A c T R n n, A ti = e A c t i R n n B i = i B i = e A c ( T - t i ) i e A c t dtb c R n r e A c t dtb c = A T A t i n ( r) B T = [ B 1, B 2,, B ] R = u ( T t 1 ) u ( T t ) x ( ( 1) T) y( T) = A T B 1 B 2 B C D (1) e A c t dtb c u ( T t i ) B i R n r = : u ( ) R r ( x ( T) v( T)

1416 24 x ( ( 1) T) y( T) = A T B T C T D T x ( T) v( T), C T = C R m n, D T = [ D,,, ] R m ( r). 312 4, u ( T t i ) y( T t i ), i =,1,2,,, x ( T t i ) = e At i x ( T) T t i e A( T t i - r) Bu ( ) d T = A ti x ( T) [ B 1, B 2,, B i ] u ( T t 1 ) u ( T t i ) y( T t i ) = Cx ( T t i ) Du ( T t i ) v( T t i ) = CA ti x ( T) [ CB 1, CB 2,, CB i ] Du ( T t i ) v( T t i ) = : C i x( T) [ D 1, D 2,, D i, D ] v( T t i ) u ( T t 1 ) u ( T t i ) u ( T t 1 ) u ( T t i ) u ( T t i ), C i = CA ti, D i = CB i, i = 1,2,,., x ( 1) y( ) = A T B T C T D T x ( ) u ( ) v ( ) n ( r) x ( ) : = x ( T), B T = [ B 1, B 2,, B ] R C D D 1 D C T = C 1 C 2 R ( m) n, D T = C y( ) : = y( T) = v( ) : = v( T) = 4 y( T) y( T t 1 ) y( T t 2 ) y( T t ) v( T) v( T t 1 ) v( T t 2 ) v( T t ) D 1 D 2 ω R ω D D 1 D 2 D D (2) ( m) ( r) R ( m) () R ( m) (),S c. T (No2Pathological), ( C, A c ) ( C, A T ) [2 ].,,,. ( 2), (2).. 411 u ( ), y ( ) x ( ), (2) ( A T, B T, C T, D T ), Z( ) = x ( 1) y( ) ( ) = x ( ) u ( ) Z( ) = T ( ) E( ) (3) R n m, T = A T B T R ( n m) ( n r) C T D T R n r, E( ) = v( ) R n m, T., [1,22 ] (3), : ^( ) = ^( ) L ( ) [ Z T ( ) - T ( ) ^( ) ] L ( ) = P ( ) ( ) / [1 T ( ) P ( ) ( ) ] P ( ) = [ I - L ( ) T ( ) ] P ( ), I, ^( ), ^ T ( ) = ^A T ( ) ^B T ( ) ^C T ( ) ^D T ( ) v ( ) v v = 1 N N ^ =1 [ y ( ) - ^C T x ( ) - ^D T u ( ) ] [ y ( ) - ^C T x ( ) - ^D T u ( ) ] T, N, [ ^A T, ^B T, ^C T, ^D T ] N, [ A T, B T, C T, D T ]., D T,, D T,.,,,,. 412,,, ( )., [182 ]. : (),,,., S c,. : y ( ) = : y ( ) Y( ), Y( ) = Y 1 ( ) Y 2 ( ) Y ( ), Y i ( ) = y ( T t i )

9 : 1417 v ( ) = : u ( ) = : v ( ) V ( ) U 1 ( ) U 2 ( ), V ( ) = V 1 ( ) V 2 ( ) V ( ), U i ( ) = u ( T t i ), V i ( ) = v ( T t i ) U ( ) ( ), x ( ) = M a gx ( ), M R n n = R,(2) n ( r 1) n, a : = [ - a n, - a n,, - a 1 ] T R n, b : b : = [ D, b 1, b 2,, b n ] T r( n 1) R gx ( 1) y ( ) Y( ) A x = M A T M = R n n B x = M B T = : b 1 = A x B x C y D y C Y D Y gx ( ) u ( ) v ( ) V ( ) 1 1 ω 1 - a n - a n - a n - 2 - a 1 b 2 R n ( r), b i R b n 1 ( r) C y = CM = [1,,,,] R 1 n 1 ( r), D y = [ D,,,,] R C Y = D Y = C 1 C 2 M = : C F 1 F 2 R ( ) n, F D 1 D D 1 D 2 ω R ( ) ( r) (5) ω D D 1 D 2 D D M = (4) : C CA T CA n T gx ( 1) = A x gx ( ) B x u ( ) R n n y ( ) = C y gx ( ) D y u ( ) v ( ) = C y gx ( ) Du ( ) v ( ) Y( ) = C Y gx ( ) D Y u ( ) V ( ) (7) (4),, { u ( ), y ( ) } { u ( ), y ( ) },(6) [ A x, B x, D ]gx ( ), gx^ ( t), (7) (6) { C Y, D Y }. [ A x, B x, D ]gx ( ) gx ( ) = gx 1 ( ) gx 2 ( ) R n gx n ( ) ( ) = [ gx T ( ), u T ( n), u T ( n ), u T ( n - 2),, u T ( ) ] T n ( r 1) n R (6) gx 1 ( 1) = gx 2 ( ) b 1 u ( ) gx 2 ( 1) = gx 3 ( ) b 2 u ( ) gx n ( 1) = gx n ( ) b n u ( ) gx n ( 1) = agx ( ) b n u ( ) (8) y ( ) = gx 1 ( ) Du ( ) v ( ) (9) z, zu ( ) = u ( 1), (8) j z n - j ( j = 1,2,, n), gx 1 ( n) = a T gx ( ) b 1 u ( n ) b 2 u ( n - 2) (9) z n b n u ( ) (1) y ( n) = T ( ) v ( n),( ) gx ( ), gx ( ), : P ( ) ^( ) ^( 1) = ^( ) 1 ^ T ( ) P ( ) ^( ) [ y ( n) - ^ T ( ) ^( ) ] (11) P ( ) = P ( ) - P ( ) ^( ) ^ t ( ) P ( ) 1 ^ T ( ) P ( ) ^( ) gx^ ( 1) = ^A x ( ) gx^ ( ) ^B x ( ) u ( ) ( ) C T y (12) [ y ( ) - C y gx^ ( ) - Du ( ) ] (13) ^( ) = [ gx^ T ( ), u T ( n), u T ( n ), ^( ) = u T ( n - 2),, u T ( ) ] T (14) ^a ( ) ^b ( ), ^a ( ) = [ - ^a n ( ), - ^a n ( ),, - ^a 1 ( ) ] T, ^b ( ) = [ ^D ( ), ^b 1 ( ), ^b 2 ( ),, ^b n ( ) ] T ^A x ( ) = 1 1 ω 1 - ^a n ( ) - ^a n ( ) - ^a n - 2 ( ) - ^a 1 ( ),

1418 24 ^B x ( ) = ^b 1 ( ) ^b 2 ( ) ^b n ( ) (15), ^( ), gx^ ( ) gx ( ), [ ^A x ( ), ^B x ( ) ][ A x, B x ], [ ^a i ( ), ^b i ( ) ], ( ) Ε, ( ) =, 2 ( ) <. P () = I,, = 1 6, ^() = ^,^() = 1-6 1 n ( n = dim,1 n 1 n ), gx^ () ^(). 2 [ C Y, D Y ] (7) [ C Y, D Y ],, [ C Y, D Y ]., D Y, D Y 3 : (1) D Y, ; (2) D Y ; (3) D Y i D i, i = 1,2,,, 1 D. 1 D Y, c = [ C Y, D Y ] R ( ) ( n r), c ( ) = gx ( ) u ( ) R n r (7) Y( ) = c c ( ) V ( ), c. : ^ c ( ) = ^ c ( j) ^ T c ( j) ^ c ( j) Y T ( j) (16) gx^ ( ) ^ c ( ) = R n r (17) u ( ) 2 D Y (7) ( ) : Y i ( ) = T di ( ) di V i ( ), i = 1,2,, di = [ F i, D 1, D 2,, D i, D ] T R n ( i 1) r di ( ) = gx ( ) U 1 ( ) U 2 ( ) U i 1 ( ) R n ( i 1) r di ^ di ( ) = ^ di ( ) = ^ di ( j) ^ T di ( j) gx ( ) U 1 ( ) U 2 ( ) U i 1 ( ) ^ di ( j) Y i ( j) (18) R n ( i 1) r, i = 1,2,, (19) Y i ( ) - Y i ( ) - 3 D Y i D i ( i = 1,2,, ) (7) ( ) : i D l U l ( ) - DU i 1 ( ) = F i gx ( ) D i U i ( ) V i ( ) l =1 i D l U l ( ) - DU i 1 ( ) = T ei ( ) ei V i ( ), l =1 i = 1,2,, ei = [ F i, D i ] T R n gx ( ) r, ei ( ) = U i ( ) ei ^ ei ( ) = ^ ei ( ) = ^ ^ ei ( j) ^ T ei ( j) i ei ( j) Y i ( ) - gx^ ( ) U i ( ) l =1 R n r ^D l ( ) U l ( ) - ^D ( ) u ( ) (2) R n r, i = 1,2,, (21) (11) (21) (2). Boot2 stra [21 ],,. 5 1 S c ( s) = 12s 2 1s 1 = 3, 1 = 1s, 2 = 2s, 3 = 3 s,t 1 = 1s, t 2 = 3 s, t 3 = T = 1 2 3 = 6 s. x ( ( 1) T) = 1515 3742 41492 187522 15412 1132763 2162137 4122621 6162568 411219 y ( T) = [,1833] x ( T) v ( T) x ( KT) u ( T 1) u ( T 3), { v ( T) } 2 v = 11 2. ( ) = 1/ ( n ), x ( ( 1) T) = b 11 b 12 b 13 b 21 b 22 b 23 1 - a 2 - a 1 x ( T) y ( T) = [1, ] x ( T) v ( T) u ( T 1) u ( T 3), 1, = ^- / ( x 2 = x T x),, ^.

9 : 1419 5. x ( ( 1) T) = x ( KT) u ( T 1) 1 62482 1139511 13522 15521 13435 1517 198 112815 u ( T 3) 1 ( 2 v = 11 2 ) - a 2 - a 1 b 11 b 12 b 13 b 21 b 22 b 23 ( %) 1 117819 158898 13191 16912 11392 11766 111957 17335 73151195 2 12884 193657 13227 15493 1155 13478 1988 19492 42193566 3 41296 112653 13713 16371 11361 1436 19964 1119 14191779 5 6345 11455 13753 15493 11545 151 19746 11588 311368 1 65989 1142694 13243 15511 12575 1511 1128 11138 419961 2 62623 1139365 13298 15783 12975 15123 19978 112114 1183767 y ( T) = [1, ] x ( T) 3 62482 1139511 13481 15699 1335 1569 1149 11231 1179759 (22) 6653 1137627 13522 15521 13435 1517 198 112815 S c ( s) (22) 6. 1 5,,,. 6, 5 ( 2 v = 11 2 ) S c,. 6, 6 ( 2 v = 11 2 ),,.,,,. : [ 1 ],. [M]. :,1988. [ 2 ] CHEN T,FRANCIS B. Otimal Samled data Control Systems[ M]. London :Sringer2Verlag,1995. [ 3 ] OHSHIMA M,HASHIMOTO I,et al. Multirate multivariable model re2 dictive control and its alication to a semi2commercial olymerization reactor[ A ]. Proceedings of the 1992 American Control Conference [ C]. Chicargo,USA : Evanston,IL. 1992,2. 1576 581. [ 4 ] GUDI R D,SHAH SL,GRAYM R. Multirate state and arameter esti2 mation in an antibiotic fermentation with delayed measurements [J ]. Biotechnology and Bioengineering,1994,44 (11) :1271 278. [ 5 ] LI D,SHAH S L,Chen T,Qi K Z. Alication of dual2rate modeling to CCR octane quality inferential control[j ]. IEEE Trans Control Systems Technology,23,11 (1) :43-51. [ 6 ] CHEN T. On stability robustness of a dual2rate control system [J ]. IEEE Trans Automatic Control,1994,39 (7) :1139 152. [ 7 ] CHEN T,QIU L. H design of general multirate samled2data control systems[j ]. Automatica,1994,3 (7) :1139 152. [ 8 ] QIU L,CHEN T. H 2 otimal design of multirate samled2data systems [J ]. IEEE Trans Automatic Control,1994,39 (12) :256-2511. [ 9 ] QIU L, CHEN T. Multirate samled2data systems : all H subotimal controllers and the minimum entroy controller [J ]. IEEE Trans Aut2 moatic Control,1999,44 (3) :537-55. [ 1 ] TANGIRALA A K,LI D,PATWARDHAN R S,SHAH S L,CHEN T. Rile2free conditions for lifted multirate control systems[j ]. Automati2 ca,21,37 (1) :1637 645. [ 11 ] SHENGJ,CHEN T,SHAH S L. Generalized redictive control for non2 uniformly samled systems [J ]. Journal of Process Control,22,12 : 875-885. [ 12 ] LI D,SHAH SL,CHEN T. Analysis of dual2rate inferential control sys2 tems[j ]. Automatica,22,38 (6) :153 59. [ 13 ] LU W P,FISHER G. Outut estimation with multi2rate samling[j ]. International Journal of Control,1988,48 (1) :149 6. [ 14 ] Lu W P, FISHER G. Least2squares outut estimation with multirate samling[j ]. International Journal of Control,21,74 (7) :68-689. [ 15 ] LI D,SHAH S L,CHEN T. Identification of fast2rate models from mul2 tirate data [J ]. International Journal of Control,21,74 (7) : 68-689. [ 16 ] DING F,CHEN T. Parameter identification and intersamle outut esti2 mation of a Class of Dual2Rate Systems[A]. Proceedings of 43nd IEEE Conference on Decision and Control [ C]. Hawaii,USA : IEEE,Decem2 ber 9212,23. 5555-556. [ 17 ] DING F,CHEN T. Parameter estimation for dual2rate systems with fi2 nite measurement data [J ]. Dynamics of Continuous,Discrete and Im2 ulsive Systems,Series B :Alications &Algorithms,24,11 (1) :11 21. [ 18 ],. [J ].,1999,25 (5) : 647-654. [ 19 ] DING Feng, YANG Jiaben,XU Yongmao. Convergence of hierarchical stochastic gradient identification for transfer function matrix model[j ]. Control Theory and Alication,21,18 (6) :949-953. [ 2 ],,,.

142 24 [J ].,22,17 (1) :6. [ 21 ],,. [J ].,24,3. [ 22 ],. [ M]. :, 22. :,1963 3,1984, 4,199 1994 ( ), 1994,22 6 (Al2 berta),, (,22), 1 7,.,1961 1,1984,1988 1991,1991 1997 (Calgary),(Alberta). B A Francis Otimal Samled2Data Control Systems ( Sringer, 1995).,,,.,1945 8,197,, CIMS.